Disclosed is a method and apparatus for mitigating temperature spikes and dissipating heat. The apparatus for mitigating temperature spikes and dissipating heat comprises one or more heatsinks, one or more sensors, one or more phase change materials and one or more processors coupled to the one or more sensors. The one or more processors may be configured to obtain one or more sensor measurements and may be configured to determine whether to store heat or dissipate heat based on the one or more sensor measurements. In response to a determination to dissipate heat, the one or more processors may be configured to dissipate heat from the one or more processors, the one or more phase change materials or both using the one or more heatsinks. Furthermore, in response to a determination to store heat, store heat from the one or more processors using the one or more phase change materials.
An engine control system includes an integrated engine control module assembly having an engine control module and an adapter module. The integrated engine control module assembly further includes a first connector, a second connector, and a hermetic enclosure. The first connector includes a connection circuit configured to connect the integrated engine control module assembly to engine hardware. The second connector is configured to connect the adapter module to engine hardware. The hermetic enclosure houses the engine control module and is configured to protect the engine control module from environmental conditions.
The disclosure discloses a display device and a frame member. A display device according to an aspect of the disclosure includes a bezel that forms a border of a display and a frame fixed to the bezel to hide a front surface of the bezel. The bezel includes at least one first member, the frame includes a plurality of frame pieces, and each of the plurality of frame pieces includes at least one second member and is fixed to the bezel by an attractive force between the first member and the second member.
Graphene oxide is used as an insulation barrier layer for metal deposition. After patterning and modification, the chemical characteristics of graphene oxide are induced. It can be used as the catalyst for electroless plating in the metallization process, so that the metal is only deposited on the patterned area. It provides the advantages of improving reliability and yield. The metallization structure includes a substrate, a graphene oxide catalytic layer, and a metal layer. It may be widely applied to the metallization of the fine pitch metal of a semiconductor package as well as the fine pitch wires of a printed circuit board (PCB), touch panels, displays, fine electrodes of solar cells, and so on.
A controlled-impedance printed circuit board (PCB) design program allows interactive movement of features from one of the vertically-stacked layers of the design to another layer in a graphical interface. The movement either moves a region of a layer of the PCB design, or moves an entire layer in a layer-swapping operation. The program computes modified widths of circuit traces of the first layer of the controlled-impedance printed circuit board design according to an impedance control value of the controlled-impedance printed circuit board design and according to a new position of the circuit traces caused by a movement of the features of the first layer to the second layer. The program also checks for violation of reference plane requirements for critical signals and warns the designer if such a violation is present.
A flexible circuit board having enhanced bending durability and a method for preparing same are provided. The method comprises: forming a signal line and a first ground layer on a first dielectric body and forming a second ground layer on a bottom side of the first dielectric body; preparing a second dielectric body; preparing a first bonding sheet and a first protective sheet which is connected to one end of the first bonding sheet or of which one or more parts are overlapped on one end of the first bonding sheet; bonding the second dielectric body onto the first dielectric body by means of the first bonding sheet; forming a via hole such that the first ground layer and the second ground layer are conducted; and cutting in a width direction the second dielectric body placed on the first protective sheet.
An apparatus includes a printed circuit board (PCB) having a top surface, where the top surface includes a mounting aperture, a chassis, and a fastener having a width and length extending at least from the top surface of the PCB to the chassis through the mounting aperture. The apparatus also may include a logic ring that includes a via to a logic circuit of the PCB and a washer including a substantially flat surface including a high yield strength material. The washer may include a through-hole to accommodate the width of the fastener. The washer may additionally include a plurality of contact fingers extending out from the through-hole. The plurality of contact fingers is configured to contact the logic ring. The washer may be made to be in electrical communication with the chassis when compressed in response to a downward force from the fastener.
A microwave plasma equipment and a method of exciting plasma are disclosed. The microwave plasma equipment includes: a plasma reaction device having a cavity in which a base support and a plasma-forming area is provided; a conversion device having gradient electrodes, the gradient electrodes being disposed inside the cavity and configured to generate a gradient electric field in the plasma-forming area; a gas supply device configured to introduce gas into the cavity of the plasma reaction device; and a microwave generating device configured to generate and transmit microwave into the cavity of the plasma reaction device.
An intelligent lighting system may be installed using pre-existing electrical wiring, such as in a construction or retrofit environment. An intelligent lighting controller and an intelligent lighting fixture may be connected via electrical wiring that is configured for transmitting AC power signals. A commissioning signal may be transmitted to the intelligent lighting fixtures via the electrical wiring. In some cases, the intelligent lighting controller modifies portions of the AC power signal to indicate the commissioning signal. The intelligent lighting fixtures may receive the commissioning signal via the electrical wiring. In some cases, each intelligent lighting fixture that is connected to the electrical wiring, such as each intelligent lighting fixture on a lighting circuit in a room, receives the commissioning signal.
A wiring device and method that control an amount of power delivered to a load, which maintain function even if a line connection and a load connection are reverse wired. Designed circuitry comprising steering diodes in both a line and a load wire direct a power source to an AC/DC power supply. The wiring device comprises a housing, a line terminal nominally designated for receiving electrical power from a power source, a load terminal nominally designated to feed electricity to a load, a neutral terminal, a line wire electrically connected to the line terminal, a load wire electrically connected to the load terminal, and a means for controlling an amount of power delivered to the load. Embodiments of the present invention include automated universal lighting controls, dimers, timers, and wired lighting devices.
Lighting systems and methods for lighting fixture location mapping, for example, using a combination of photosensing readings and/or other sensors to identify a correct mapping. These systems and methods may be used to resolve ambiguities that could not be resolved using other processes, such an auto-commissioning method that identifies more than one possible mapping of the lighting fixtures to spatial locations. Such ambiguities are typically found in floor plans that are symmetrical. The systems and methods of the present invention record and utilize environmental profiles, such as ambient lighting levels and occupancy patterns, to match lighting fixtures to their respective spatial locations and provide resolution to ambiguities in an auto-commissioning method that identifies more than one possible mapping of the lighting fixtures to spatial locations.
A color temperature sensor assembly comprising a sensor body, a substantially dome shaped diffuser extending through an opening in the sensor body, a substantially flat diffuser disposed within the sensor body below the first diffuser, and a color temperature sensing module disposed below the flat diffuser and adapted to detect a color temperature of light collected by the dome shaped diffuser and the flat diffuser. The shape of the dome diffuser helps capture light from all angles to bring in more light to the sensor and provide more accurate readings. The secondary flat diffuser is adapted to further diffuse the light to reduce light concentration and prevent inaccurate readings. The color temperature readings from the color temperature sensor assembly may be used to control at least one lighting load.
An exterior aircraft light unit includes at least two light sources. Each light source is provided with a variable current bypass component. Each variable current bypass component is configured to allow bypassing an adjustable electric current by the respective light source.
A lighting wall controller having a capability to reject user inputs at a surface of the wall controller and/or proximity detection in accordance with sensing signals received at locations on and near the wall controller. Programming configures a processor for proximity detection to detect a presence of a conductive object within a predetermined distance to the wall controller. The processor further determines whether user inputs correspond to touches at locations on the wall controller or user gestures near the wall controller to perform one of a plurality of defined lighting functions for a lighting system. When user inputs do not correspond to defined lighting functions, a number of the non-defined inputs is counted to provide an indicator of activity on the surface of the wall controller to activate a locked mode for a duration of the non-defined inputs.
An oven includes a cooking chamber configured to receive a food product and an RF heating system configured to provide RF energy into the cooking chamber using solid state electronic components. The solid state electronic components include power amplifier electronics configured to provide a signal into the cooking chamber via a launcher assembly operably coupled to the cooking chamber via a waveguide assembly. An isolation assembly is provided between the launcher assembly and the power amplifier electronics. The power amplifier electronics are controlled at least in part based on an efficiency parameter determined from a forward power value and a reflected power value that are each measured after the isolation assembly.
An induction heating device includes: a rotor having a rotation shaft; a heating part disposed to be opposed to the rotor at a distance; a magnetic flux generating part provided at the rotor to generate magnetic flux for the heating part; a magnetic flux guide part provided on an opposed surface side of the heating part that is opposed to the magnetic flux generating part to guide the magnetic flux from the magnetic flux generating part to the heating part; and a flow passage provided in the heating part to allow a heating medium to circulate. The magnetic flux guide part includes magnetic substance parts. The magnetic flux guide part has a structure in which the magnetic substance parts and the insulator parts extend along a direction from the magnetic flux generating part to the heating part and are alternately layered along a circumferential direction of the heating part.
The present subject matter describes a heating unit. The heating unit comprises a heating element and a controlling unit coupled to the heating element to determine a desired value of a direct current (DC) voltage based on heating element parameters. The desired value is a value of DC voltage desired for operation of the heating element. The controlling unit computes a value of a duty cycle parameter based on device input parameters and the desired value of the DC voltage. The heating unit further comprises a power factor correction (PFC) unit coupled to the controlling unit and the heating element to convert an input alternating current (AC) voltage, received by the PFC unit from an AC supply, to a direct current (DC) voltage of the desired value based on the duty cycle parameter. The PFC unit provides the DC voltage to the heating element.
According to an aspect of the present invention, a method for adjusting a Periodic-Tracking Area Update (P-TAU) timing performed by a user equipment in a wireless communication system may include transmitting P-TAU support information indicating that an adjustment of the P-TAU timing is available to a Mobility Management Entity (MME) through an Attach request message or a TAU request message; receiving a request accept message with respect to the Attach request message or the TAU request message; and adjusting the P-TAU timing in accordance with an eDRX application timing based on the P-TAU timing adjustment condition information when the request accept message includes the −TAU timing adjustment condition information.
A wireless device receives a radio resource control message from a first base station. The radio resource control message comprises bandwidth part (BWP) configuration parameters of a plurality of BWPs of a first cell. The BWP configuration parameters comprise: an index of a BWP of the plurality of BWPs; and a field indicating a bandwidth of the BWP. The wireless device receives transport blocks via one or more of the plurality of BWPs based on the BWP configuration parameters. The wireless device detects, during a time that the BWP is active, a connection failure with the first base station. The wireless device transmits a radio link failure report indicating the connection failure. The radio link failure report comprises: a cell identifier of the first cell; and the index of the BWP.
The present invention provides a user equipment for use in a cellular network and a method for initiating a radio link abandonment in user equipment in advance of a radio link failure. The present invention includes establishing and maintaining a communication connection between the user equipment and a cellular network via a serving cell base station in support of a data flow via a radio link. The availability of other potential serving cell base stations including the availability of preferred potential serving cell base stations is then monitored. At least one of an uplink condition and a downlink condition of the data flow via the radio link are then monitored. Based upon the determined at least one of the uplink condition and the downlink condition, any impending degradation of the radio link is then predicted. When an impending degradation of the radio link is predicted, and a preferred potential serving cell base station is available, the radio link is abandoned prior to a radio link failure.
A wireless communication device for a human-powered vehicle comprises a wireless communicator and a controller. The wireless communicator is configured to wirelessly receive a control signal from an operating wireless communicator of an operating device. The wireless communicator has a first mode and a second mode. The wireless communicator is configured to wirelessly transmit a connection demand signal in the second mode to establish wireless communication between the wireless communicator and an external wireless communicator of an external electric device different from the operating device. The wireless communicator is configured to wirelessly receive a connection signal which is wirelessly transmitted in response to the connection demand signal from the external wireless communicator of the external electric device. The controller is configured to set the wireless communicator with the first mode if the connection signal indicates that the external electric device is the paired device.
A controller and a plurality of client apparatuses form a wireless home network. Predetermined setting information necessary for each client apparatus to communicate with the controller is input to each client apparatus, for example, through a path via a remote controller in a manner of communication different from a manner of communication of the wireless home network. Each client apparatus has the input setting information retained in an internal memory to automatically connect to the wireless home network later.
There is provided mechanisms for beamforming. A method is performed by a network node. The network node is capable of communicating with served wireless devices using multiple beams generated by analog beamforming in an antenna array. The method comprises identifying, based on statistics of handovers of the served wireless devices between the beams, a need to combine at least two of the beams into a new beam. The method comprises determining beamforming weights to be applied at the analog antenna array for generating the new beam. The method comprises communicating with the served wireless devices using the new beam with the determined beamforming weights having been applied at the analog antenna array.
Disclosed are a method for transmitting, by a terminal, a sounding reference signal to a base station without a physical uplink shard channel in a licensed assisted access (LAA) system in which a base station or a terminal performs listen-before-talk (LBT)-based signal transmission, and an apparatus supporting the same.
A radio terminal according to an embodiment includes a controller configured to control a random access procedure. The random access procedure includes first processing of transmitting a random access preamble to a base station, second processing of receiving a random access response from the base station, and third processing of performing uplink transmission to the base station based on the random access response. The controller is configured to notify, in the first processing or the third processing, the base station of an amount of uplink data in a transmission buffer of the radio terminal.
A wireless device receives a message. The message comprises first configuration parameters of a first SPS, and second configuration parameters of a second SPS. The wireless device receives a first DCI indicating activation of the first SPS. The first SPS allocates resources in TTIs comprising a first TTI. The wireless device receives a second DCI indicating activation of the second SPS and transmits second TB(s) based on the second DCI and the second configuration parameters. The wireless device receives a negative acknowledgement for a scheduled retransmission of the second TB(s) in the first TTI. The wireless device selects TB(s) for transmission in the first TTI, one of: a scheduled transmission of first TB(s) corresponding to the first SPS, or the scheduled retransmission of the second TB(s). The selected TB(s) are transmitted in the first TTI.
A method of transmitting an uplink (UL) signal by a user equipment (UE) in a wireless communication system, where the method includes: receiving, through a physical downlink control (PDCCH) signal, downlink control information (DCI) regarding a semi-persistent scheduling (SPS) physical uplink shared channel (PUSCH); and periodically transmitting an SPS PUSCH signal based on the DCI. Periodically transmitting the SPS PUSCH signal based on the DCI includes: in a state in which (i) the SPS PUSCH signal is subslot-based, (ii) a demodulation reference signal (DMRS) pattern field included in the DCI is set to a first value, and (iii) simultaneous transmission of a physical uplink control channel (PUCCH) and the PUSCH is configured for the UE: transmitting uplink control information (UCI) through the SPS PUSCH signal, without simultaneously transmitting a PUCCH signal.
A communication device for handling a scheduling request (SR) is configured to execute instructions of: receiving a configuration of a first logical channel (LC), a configuration of a second LC and a first SR configuration associated to the first LC, from a network; triggering the SR; transmitting the SR via at least one physical resource configured by the first SR configuration to the network, if the SR is triggered by first data of the first LC available for a first transmission; and transmitting a random access (RA) preamble for the SR in at least one RA resource to the network, if the SR is triggered by second data of the second LC available for a second transmission.
A base station device includes: a processor circuitry configured to generate an indication signal; and a transmitter configured to transmit the indication signal to a terminal device. The indication signal indicates that there is no transmission of first data to be scheduled in a resource, and the resource may be assigned second data to be transmitted at low latency.
Apparatuses, methods, and systems are disclosed for determining a priority order based on an uplink transmission parameter. One apparatus includes a receiver that receives an uplink grant corresponding to an uplink transmission parameter. The apparatus includes a processor that determines a priority order of multiple logical channels based on an uplink transmission parameter priority corresponding to the uplink transmission parameter and a logical channel priority of the multiple logical channels. The processor assigns resources to logical channels of the multiple logical channels based on the priority order.
A reception processor receives the cell detection reference signals, each of the cell detection reference signals being transmitted from corresponding one of a plurality of cells. An RRM report generator generates measurement information indicating a measurement result of reception quality measured using the cell detection reference signal. A transmission processor transmits the measurement information. The cell detection reference signals are mapped to any one of a plurality of candidate resources, which is a part of a plurality of resources set for other reference signals in a subframe to which the cell detection reference signals are mapped.
Provided are a signal transmission method performed by a terminal in a wireless communication system and a terminal using the method. The method comprises: transmitting a second signal by using a second radio access technology (RAT); and transmitting a first signal by using a first RAT, wherein the first signal includes at least one of a sidelink synchronization signal (SLSS) and a physical sidelink broadcast channel (PSBCH) signal.
Provided are a method for transreceiving a vehicle-to-everything (V2X) signal of a terminal in a wireless communication system, and a terminal apparatus using the method. The method comprises: transreceiving a V2X control signal through a first carrier commonly configured to a first area and a second area; and transreceiving V2X data through a second carrier configured to the first area or a third carrier configured to the second area.
Embodiments of the present disclosure provide a beam identifier obtaining method and apparatus, a device, and a system. The method includes: determining, by a base station, a signal corresponding to a beam identifier; sending, by the base station, the signal by using a beam corresponding to the beam identifier, so that user equipment detecting the signal obtains the beam identifier according to the signal; and when receiving the beam identifier fed back by the user equipment, communicating, by the base station, with the user equipment by using the beam corresponding to the beam identifier.
Embodiments of the present disclosure provide a method for detecting downlink control information. The method includes: determine a parameter A(c), according to an index number c of a physical resource set; determine a search space associated with the physical resource set, according to the parameter A(c), wherein the parameter A(c)=39827 if the index number c is a first index number, the parameter A(c)=39829 if the index number c is a second index number; detecting in the search space, downlink control information from a base station.
Described is an apparatus of a User Equipment (UE). The apparatus may comprise a first circuitry and a second circuitry. The first circuitry may be operable to process a first Downlink Control Information (DCI) format 0A transmission indicating a semi-persistent scheduling (SPS) activation. The first circuitry may also be operable to process a second DCI format 0A transmission indicating an SPS release. The second circuitry may be operable to generate one or more Uplink (UL) transmissions for an unlicensed spectrum of the wireless network after the SPS activation and before the SPS release in accordance with a configured schedule.
Provided are a base station, user equipment and wireless communication methods related to DCI design for blind detection. A base station comprises: circuitry operative to align, for each DCI of a first group of DCIs, one of the size of the DCI of the first group and the size of a selected DCI of a second group of DCIs with the other, if the size of the DCI of the first group is different from the size of each DCI of the second group of DCIs, wherein the selected DCI of the second group is a DCI whose size is closest to the size of the DCI of the first group among DCIs of the second group having sizes larger than the size of the DCI of the first group or a DCI whose size is closest to the size of the DCI of the first group among DCIs of the second group having sizes smaller than the size of the DCI of the first group; and a transmitter operative to transmit the first group of DCIs and the second group of DCIs after the size alignment by the circuitry to a user equipment, wherein the size alignment is based on a rule which is known by the base station and the user equipment beforehand.
An apparatus of a user equipment (UE) may include a memory and one or more processors operatively coupled to the memory. The processors may process a scheduling trigger to provide channel state information (CSI) and beam information using extra-large physical uplink shared channel (xPUSCH). The processing device may also generate a reporting message comprising CSI and beam information. The processing device may then encode xPUSCH data to include the reporting message.
Various solutions for uplink control channel design for high reliability transmission with respect to user equipment and network apparatus in mobile communications are described. An apparatus may receive a downlink signal from a network node. The apparatus may determine a first configuration to transmit an acknowledgement (ACK). The apparatus may determine a second configuration to transmit a negative acknowledgement (NACK). The apparatus may transmit the NACK to the network node in response to unsuccessful detection of the downlink signal. The second configuration may be different from the first configuration.
Determining if a receiver is inside or outside a building or area. Particular systems and methods for determining if a receiver is inside or outside a building determine an estimate of a position of a receiver, and use the estimate of the position of the receiver and other data to determine if the position of the receiver is inside a first building. The other data may include locations of geo-fences inside buildings, heights of buildings, or other types of data.
According to certain aspects of the present disclosure, indicating which neighbor cells are synchronous or asynchronous with a serving cell may allow a UE to determine whether it can derive neighbor cell RS timing based on the serving cell timing.
A method and apparatus for performing cellular internet-of-things (CIoT) transmission in a wireless communication system is provided. A base station (BS) configures a frame in a CIoT carrier which is adjacent to a time division duplex (TDD) long-term evolution (LTE) carrier, and performs the CIoT transmission using the frame in the CIoT carrier. A downlink (DL) of the CIoT carrier may be adjacent to the TDD LTE carrier. Or, a DL and an uplink (UL) of the CIoT carrier may be adjacent to the TDD LTE carrier.
This application discloses a communications method and apparatus. The method includes: obtaining, by a terminal device, downlink synchronization signal block index information; receiving, by the terminal device, information used to indicate an association relationship between a random access resource RO and a synchronization signal block; and accessing, by the terminal device, a network device based on the information on an RO corresponding to the synchronization signal block index information. This application further discloses a corresponding apparatus. A time-frequency location of a random access resource associated with each downlink synchronization signal is indicated, so that the terminal device obtains, through downlink synchronization, a time-frequency location for sending an uplink random access signal, to avoid a blind attempt of the terminal device and a beam mismatch of the network device occurring when the network device receives a random access signal, thereby improving efficiency.
A Bluetooth device with a host system and a controller is disclosed. The host system supports a host stack of a Bluetooth protocol, and the controller supports a controller stack of the Bluetooth protocol. The device includes an interface for receiving, at the controller, a piconet-synchronized signal. The device also includes an interface for providing, by the controller to the host system, a derivative of the piconet-synchronized signal. The device also includes a circuit for determining a latency of the providing. The device also includes a circuit for synchronizing, at the host system of the Bluetooth device, a host clock with a timing reference of a master device of the Bluetooth piconet using said latency and the derivative of the piconet-synchronized signal.
Systems and methods for managing multiple network connections for user equipment (UE) are disclosed. The systems and methods can monitor power headroom (PHR) reports on one or more networks. When the PHR report for a UE approaches a first predetermined level on a first network, the system can evaluate the UE for a predetermined amount of time. If during the predetermined amount of time, the PHR on the first network increases to a second predetermined level—i.e., to a level where the transmission power used by the UE is closer to a maximum transmission power that the UE can provide—the UE can be instructed to disconnect from the network. This can enable the UE to disconnect in a controlled manner rather than simply letting the connection “drop” due to radio link failure.
The present disclosure provides a method and a device in a User Equipment (UE) and a base station used for power saving. The UE first determines a first time-frequency resource set and K1 signature sequences, and then monitors the K1 signature sequences in the first time-frequency resource set; if any one of the K1 signature sequences is found in the first time-frequency resource set, the UE is woken up; the K1 signature sequences are used for generating K1 radio signals respectively; the first time-frequency resource set is one of K2 candidate time-frequency resource sets; and at least one of K1 and K2 is greater than 1. According to the present disclosure, the design of the K1 signature sequences effectively reduces the complexity of the UE detecting a wakeup signal, meanwhile, the number of UEs associated with one wakeup signal is flexibly configured.
Embodiments of unscheduled peer power save systems, devices and methods are disclosed. For example, a method of saving power for nodes configured to communicate via a direct link is provided. In one embodiment, among others, the method comprises forming, at an access point node (AP node), a indication frame for a client node, when no service period has occurred for the client node for a period of time at least equal to an indication window; sending the formed indication frame from the AP node to the client node through an access point; receiving, at the client node, the peer traffic indication from the access point; and determining, at the client node, that the AP node has traffic to send to the client node based on the indication frame.
A wireless device receives cross carrier scheduling parameter(s). A first control channel of a first cell carries downlink scheduling information for packets received via a downlink data channel of the first cell. A second control channel of a second cell carries uplink scheduling information for second packets transmitted via an uplink data channel of the first cell. A first DCI for uplink transmission is received via the first cell. A first deactivation timer of the first cell and a second deactivation timer of the second cell are started in response to the first DCI. A second DCI for downlink transmission is received via the first cell. The first deactivation timer and not the second deactivation timer is restarted in response to the second DCI. The first cell is deactivated in response to the first deactivation timer expiring. The second cell is deactivated in response to the second deactivation timer expiring.
Power management for remote units in a distributed communication system. Power can be managed for a remote unit configured to power modules and devices that may require more power to operate than power available to the remote unit. For example, the remote unit may be configured to include power-consuming remote unit modules to provide distributed antenna system-related services. As another example, the remote unit may be configured to provide power through powered ports in the remote unit to external power-consuming devices. Depending on the configuration of the remote unit, the power-consuming remote unit modules and/or external power-consuming devices may demand more power than is available at the remote unit. In this instance, the power available at the remote unit can be distributed to the power-consuming modules and devices based on the priority of services desired to be provided by the remote unit.
Methods and systems for selective scanning of connection points are disclosed. In one aspect, a non-transitory computer readable storage medium comprises instructions that configure hardware processing circuitry to perform operations. The operations include determining a location of a mobile terminal, storing network capability information associated with one or more connection points within a defined proximity of the location of the mobile terminal, comparing network capabilities of an existing network connection of the mobile terminal to the stored network capabilities associated with the one or more connection points, selectively scanning for the one or more connection points based on the comparison to determine whether the one or more connection points are available; and switching from the existing network connection to one of the one or more connection points based on the availability of the one or more connection points.
A method and system for proactively managing a base station neighbor list. A base station or other network node tracks changes to the base station's neighbor list and identifies a recurring pattern of changes, in correspondence with a particular time of day for instance. The base station or other node then proactively changes the base station's neighbor list in anticipation of a recurrence of the identified pattern, such as in anticipation of recurrence of the time of day for instance. Advantageously, this method can help to reduce the extent to which the base station engages in an automatic neighbor relation process, and thus reduce the extent of signaling and other issues associated with engaging in that process.
Disclosed is a control method for controlling data return and energy optimization in a passive sensor network. The passive sensor network comprises an aggregation node and sensor nodes. The control method comprises an energy calculating step, an energy broadcasting step, an energy collecting step, a clustering step and a data transmitting step. By means of the control method in the embodiments of the present disclosure, data return and energy optimization in a passive sensor network are controlled, so that insofar as all sensor nodes can return data to an aggregation node, the aggregation node consumes the least amount of energy, thereby achieving the optimal energy usage efficiency. Also disclosed is a control device.
A controller 13 of a radio terminal 10 performs a first switching process of switching a standby target or a connection target from a mobile communication network to a wireless LAN. The controller 13 executes the first switching process in case that: a movement state of the radio terminal 10 is determined as a first state; and a condition for performing the first switching process is satisfied over a predetermined period. The controller 13 further executes the first switching process in case that: the movement state of the radio terminal 10 is determined as a second state; an access point 200 constituting the wireless LAN is a moving access point; and the condition for performing the first switching process is satisfied over the predetermined period.
Provided are methods and systems of managing vertical handoffs in a wireless communication network. Embodiments include analyzing wireless device usage to determine usage patterns, which may include locations and times at which the wireless device is typically accessing the network. The network may recognize points in the usage patterns at which signal quality parameters are typically reduced. Such reductions in signal quality parameters may lead to inefficient vertical handoffs. The network may decrease adverse effects of inefficient vertical handoffs by reducing ping ponging, selecting links between wireless devices and network nodes, or indicating to a user of the wireless device that delays and/or data loss may occur.
Methods and systems in which a UE can establish and maintain a data connection to a plurality of Radio Access Nodes for the creation of redundant data links is disclosed. Methods of implementing packet duplication as well as methods of determining when to activate or deactivate packet duplication are also disclosed.
Provided are a data packet sending method, a data packet receiving method, a data packet sending device and a data packet receiving device. The data packet sending method includes: determining a first data packet to be sent to a server; when there are two or more first data packets, aggregating the two or more first data packets into one second data packet; and sending the second data packet to the server.
The present specification relates to a communication method and a communication device, and a random access method of a user equipment (UE), according to one embodiment of the present specification, comprises the steps of: sensing a random access trigger in a connected state; determining the type of the random access trigger when the random access trigger is sensed; and performing congestion control if the type of the random access trigger is a preset type.
Method performed by a wireless device (130) operating in a wireless communications network (100) wherein a plurality of beams (121) is transmitted by one or more network nodes (111, 113, 114) in the wireless communications network (100). The wireless device (130) generates (602) a log over a period of time. The log comprises: a) information about a first set of beams (122) in the plurality of beams (121) detected by the wireless device (130), and b) a time of detection. The log comprises the information and the time of detection for both of: i) a first set of time periods when the wireless device (130) was in a connected state in the wireless communications network (100), and ii) a second set of time periods when the wireless device (130) lacked a connection in the wireless communications network (100). The wireless device (130) sends (605) the generated log to a first network node (111).
A wireless device selects a first unlicensed cell as an unlicensed pathloss reference. The wireless device may receive a plurality of downlink control information (DCIs) indicating a plurality of grants for transmission of uplink transport blocks on a second unlicensed cell. The wireless device may transmit the uplink transport blocks on the second unlicensed cell. A transmission power of the uplink transport blocks on the second unlicensed cell is calculated employing the received signal power of the first unlicensed cell.
A method for configuring a Minimization of Drive Test (MDT) information reporting format and a time-stamp is provided that supports MDT in a 3rd Generation Partnership Project (3GPP) system. The method defines a reporting format needed in a process where UE transmits MDT measurements to a serving base station, and sets the number of bits required to log time stamp and the unit of logging time.
A technique for collecting and reporting measurements related to Random Access, RA, attempts from a user equipment, UE, towards an evolved node B, eNB, is disclosed. In a first method aspect, the method is performed in the UE and comprises the steps of collecting at least one measurement from each single one of a plurality of the RA attempts, and reporting the collected measurements to one of the eNB and a management entity. In a second method aspect, the method is performed in the eNB and comprises the steps of collecting at least one measurement from each single one of a plurality of the RA attempts, and reporting the collected measurements to the management entity.
An apparatus comprises a plurality of transceiver circuits, a memory, and an interface circuit. The memory generally embodies a table associating a plurality of index values with corresponding gain and phase values for each channel of each of the transceiver circuits. In a first mode, the interface circuit may be configured to receive the corresponding gain and phase values associated with each of the plurality of index values and store the corresponding gain and phase values in the table. In a second mode, the interface circuit, in response to receiving one of the index values, configures each channel of each of the transceiver circuits with the corresponding gain and phase values from the table.
A method, an apparatus, and a platform for sharing a wireless local area network, so as to resolve a problem of low system security that exists in a process of currently implementing wireless local area network sharing. In the embodiments of the present invention, a wireless local area network sharing platform receives a wireless local area network sharing message generated by a first terminal based on locally saved wireless local area network sharing information and generates, according to the sharing information, identifier information corresponding to a wireless local area network sharing page; a second terminal accesses a wireless local area network according to the identifier information.
A subscriber identity element authenticates a communication device to a communication network. The subscriber identity element is assigned a subscriber identity identifier. The communication network comprises a subnetwork having a discovery server. The subscriber identity element comprises: a memory in which an initialization profile of the subscriber identity element is stored, wherein the initialization profile indicates a subnetwork identifier the subnetwork; and a communication interface, configured to establish a communication link to the discovery server using the subnetwork identifier and to transmit the subscriber identity identifier to the discovery server via the communication link.
The embodiments herein relate to a mobile terminal and a method for accessing a wireless network in a roaming environment, the mobile terminal being pre-provided with credentials to access the wireless network, the mobile terminal further being provided with an application, said application includes a service part and an application part. The mobile terminal is configured to: send a request to a EAP server, the request including the credentials of the mobile terminal; connect the service part of the application to an access control server which adds/creates an EAP account for the mobile terminal for a predetermined time period; and to access the wireless network when the EAP server validly authenticates the credentials of the mobile terminal. The embodiments also relate to a method in the access control server and to the server.
A basestation in a cellular communications network is operable to send a message to a Mobility Management Entity, relating to a suspension or resumption of a connection of a UE, wherein the message contains key renewal information. The Mobility Management Entity receives the message, and determines whether a key renewal condition is met. If the key renewal condition is met, the MME forwards a new NH, NCC pair to the base station. If a message received from the MME includes a NH, NCC pair, the basestation derives keying information using the NH, NCC pair for future use in deriving keys.
Embodiments herein provide a method and system for managing session across multiple electronic devices in a network system. The method includes receiving by a target electronic device a first message from a source electronic device which includes a request to transfer context associated with at least one ongoing session on the source electronic device. Further, the method includes sending a response message to the source electronic device which includes a confirmation for the context transfer to. Further, the method includes receiving a Carry Your Own Context (CYOC) container associated with the at least one ongoing session from the source electronic device, wherein the CYOC container consists of cellular parameter information required for seamless session transfer from the source electronic device to the target electronic device. Furthermore, the method includes completing the at least one session transfer using the cellular parameter information received in the CYOC container.
Methods, apparatus, systems and articles of manufacture to perform audio sensor selection in an audience metering device are disclosed. An example apparatus includes at least two audio sensors to receive audio at an audience metering device and a selection tester to identify a plurality of audio sensor configurations supported by the audience metering device, the plurality of audio sensor configurations identifying respective gain values to be applied to the plurality of audio sensors. The selection tester is further to select one of the first one of the audio sensor configurations or the second one of the audio sensor configurations based on a comparison of a first quality metric and a second quality metric. The example apparatus further includes a media identifier to identify audio received at the audience metering device using the selected one of the audio sensor configurations.
Disclosed is a system for connecting a beacon device and a gateway device. The system includes beacon devices and the gateway device. The beacon device belonging to the beacon devices is adapted to provide a bi-directional connection to the GW device and the GW device is adapted to provide a bi-directional connection to an application system. The beacon devices form a multi-hop wireless mesh network, the GW device provides a bi-directional mesh connection to the wireless mesh network, and the wireless mesh network is used for communicating data between the beacon device and the GW device.
A system that incorporates teachings of the present disclosure may include, for example, a device that determines a movement of a first communication device toward a local device until a presence of the first communication device is within a vicinity of the local device. In response to the presence of the first communication device being within the vicinity of the local device, a textual transcription of a voice call between the first communication device and a second communication device is presented on a display device communicatively coupled to the local device. Other embodiments are disclosed.
The embodiments herein relate to a method in a UE (201) and a method in an application server (205) for allowing a user of the UE (201) to control the type of service messages to receive and also control what type of content is of interest for the user. The method in the UE (201) comprises: establishing a session with the application server (205); transmitting a message to said application server (205), wherein the message includes user preferences relating to services or campaigns that the user of the UE (201) is interested in; and (107, 109) receiving at least one Application-to-Person, A2P, message including information on said services or campaigns that fulfil the requirements of the user in accordance with the user preferences.
A method, device, and system for creating a communication group among a plurality of mobile communication devices. The method includes creating a first trigger condition, at a first mobile communication device, the first trigger condition including detection of a second mobile communication device in an area. A context data message that includes the first trigger condition and the area definition is sent by the first mobile communication device to a communication beacon having a range that includes the area. When the first trigger condition occurs and when the first mobile communication device is outside the area, receive a group call at the first mobile communication device from the second mobile communication device.
A system includes a processor configured to detect a vehicle wireless signal at a first frequency-band. The processor is also configured to choose a second signal at a second frequency-band having a predefined relationship to a requested action. The processor is further configured to connect to the second signal and lower a signal data-transfer rate, responsive to the detection, and use the second signal to perform a time-of-flight based user-proximity detection, to determine if a user is within a vehicle proximity range associated with the requested action.
A method for using location-based services for service management is discussed. The method includes receiving, at a server, a user request from a user device at a geographical location. The method includes accessing a store search to determine a store reference based on the user request and a user location corresponding to the geographical location, the store reference indicating tenant(s) accessible to the user via a user interface (UI) of the user device. The method includes accessing location data for the user device based on the store reference and a user account associated with the user, the location data indicating a service accessible via the UI and associated with a certain tenant. The method includes providing, to the user device and based on the location data, an user experience for accessing the service via the UI.
Described herein is a method comprising (a) sending unmanned aircraft system (UAS) data providing a first UAS location indication on a map on a display of the computing device, wherein the first UAS location indication comprises an aggregate indication of a plurality of UASs located within a first area on the map, (b) receiving data comprising a request for additional information related to the first UAS location indication, (c) in response to receiving the request for additional information, sending additional location data related to the plurality of UASs, including a plurality of second UAS location indications at a plurality of locations within the first area on the map, wherein each second UAS indication corresponds to a subset of the plurality of UASs represented by the first UAS location indication, and (d) updating the display of the computing device to show the plurality of second UAS location indications.
A system for exchanging GPS or other position data between wireless devices for purposes of group activities, child location monitoring, work group coordination, dispatching of employees etc. Cell phones and other wireless devices with GPS receivers have loaded therein a Buddy Watch application and a TalkControl application. The Buddy Watch application communicates with the GPS receiver and other wireless devices operated by buddies registered in the users phone as part of buddy groups or individually. GPS position data and historical GPS position data can be exchanged between cell phones of buddies and instant buddies such as tow truck drivers via a buddy watch server. Emergency monitoring services can be set up with notifications to programmable individuals in case an individual does not respond. Positions and tracks can be displayed. TalkControl simplifies and automates the process of joining talk groups for walkie talkie services such as that provided by Nextel.
The present disclosure relates to reverberation generation for headphone virtualization. A method of generating one or more components of a binaural room impulse response (BRIR) for headphone virtualization is described. In the method, directionally-controlled reflections are generated, wherein directionally-controlled reflections impart a desired perceptual cue to an audio input signal corresponding to a sound source location. Then at least the generated reflections are combined to obtain the one or more components of the BRIR. Corresponding system and computer program products are described as well.
A method for processing a virtual reality (VR) audio and a corresponding equipment are provided. The method includes acquiring, by a transmitting terminal of a VR audio, an ambisonics signal rotation angle, wherein the ambisonics signal rotation angle is determined according to a first equipment rotation angle corresponding to a receiving terminal of the VR audio, rotating an ambisonics signal according to the acquired ambisonics signal rotation angle, and/or, acquiring, by the transmitting terminal of the VR audio, an order of a mixed order ambisonics (MOA) signal determined according to related information of the VR audio, and extracting an MOA signal from the ambisonics signal according to the order of the MOA signal. Accordingly, an ambisonics signal rotation angle according to a rotation angle of an equipment is determined, the rotation occurs, and an MOA signal is extracted.
Provided are a MEMS microphone chip and an MEMS microphone. The MEMS microphone chip comprises a substrate, a backplate and a vibration diaphragm, the backplate and the vibration diaphragm constituting two electrodes of a capacitor respectively, the backplate and the vibration diaphragm being suspended above the substrate, the backplate being located between the substrate and the vibration diaphragm, and the substrate being provided with a back chamber and a support column, the support column being connected to a side wall of the back chamber via a connection portion, a through hole or a notch being formed in the connection portion through its thickness direction, to allow spaces at opposite sides of the connection portion to communicate with each other; and the support column being configured to support the backplate.
An acoustic module, such as a microphone or speaker module, includes an acoustic membrane that vibrates to produce acoustic waves and an acoustic cavity through which acoustic waves produced by the membrane travel. A liquid removal mechanism removes liquid from the acoustic cavity. Such a liquid removal mechanism may include the acoustic membrane, heating elements, hydrophobic and/or hydrophilic surfaces, and so on. In some cases, the liquid removal mechanism may remove liquid from the acoustic cavity upon connection of the acoustic module and/or an associated electronic device to an external power source.
A speaker includes a frame, and a vibration system and a magnetic circuit system that are fixed on the frame. The vibration system includes a first vibration diaphragm fixed to the frame, a voice coil disposed on a side of the first vibration diaphragm and configured to drive the first vibration diaphragm to vibrate to produce sound, and an elastic support part for the elastic support coil. The elastic support part includes a flexible printed circuit board connecting the voice coil to an external circuit.
Attenuation of output levels is suppressed while interference due to a plurality of vibrators is reduced.An acoustic control device 30 performs correction processing of correcting phase delay characteristics including transmission systems from exciters 21L and 21R which are first and second vibrators connected with a rigid body, on acoustic signals SR and SL. Thereafter, the acoustic control device 30 controls the exciters 21L and 21R on the basis of the corrected acoustic signals SL1 and SR1.
A method of locating a microphone, a device of locating a microphone and a system of locating a microphone. The method includes: determining an initial position of the microphone located in front of a light outgoing surface of a display screen; determining a target position of the microphone; determining a first displacement of the microphone in a direction perpendicular to the light outgoing surface of the display screen based on the target position and the initial position; determining a second displacement of the microphone in a direction parallel with the light outgoing surface of the display screen based on the target position and the initial position; and controlling the microphone to move to the target position based on the first displacement and the second displacement.
A speaker box is provided in the present disclosure. The speaker box comprises a shell, a speaker, a sound guiding channel, an auxiliary sound cavity, a baffle, a cover plate and a sound absorber. The diaphragm of the speaker separates the receiving space into a front sound cavity and a rear cavity, the sound guiding channel communicates the front sound cavity with the outside. The auxiliary sound cavity is provided with the first through hole communicating with the front cavity and the second through hole communicating with the outside, and the baffle completely covers the first through hole. The baffle is provided with a channel, and the auxiliary sound cavity communicates with the front cavity through the channel. The cover plate covers the second through hole. Compared with the related art, the high frequency acoustic performance of the speaker box of the present disclosure is excellent.
Wireless headphones having a built-in flexible battery are provided. Wireless headphones having a built-in flexible battery according to an exemplary embodiment of the present invention comprise: a band part having at least one fastening portion; a pair of headset parts, each of which includes a speaker unit for receiving a wirelessly transmitted audio signal and outputting the audio signal to the outside, and is connected to the band part; and a plate-shaped flexible battery which is embedded in the band part so as to supply power to the headset parts, and has a to-be-fastened portion corresponding to the fastening portion so as to be fixed in position when coupled to the band part.
A speaker system is provided with a docking station, a removable housing mounted to the docking station, and a transducer supported by the removable housing. The speaker system is also provided with a processor supported by the removable housing and programmed to separate an audio signal into channels and provide at least one channel to the transducer based a location of the removable housing relative to the docking station.
It is difficult to improve the usage efficiency of an optical communication network due to the passband narrowing effect in a wavelength selection process in an optical communication network using a wavelength division multiplexing system; therefore, an optical network management apparatus according to an exemplary aspect of the present invention includes wavelength selection information generating means for generating wavelength selection information on a wavelength selection process through which an optical path accommodating an information signal goes, with respect to each optical path; and wavelength selection information notifying means for notifying an optical node device through which the optical path goes of the wavelength selection information.
Aspects of the disclosure involve a source node, having some predetermined knowledge of the optical network generating a list of nodes and/or optical links between nodes that form a route in the optical network from the source node to the destination node. The nodes in the optical network do not necessarily need to know the entire route from source node to destination node. Each node simply decodes the control information identifying the next hop in the route towards the destination node. By utilizing the decoded control information identifying the next hop, a switch in the node can be controlled to route the optical signal including the payload and some or all of the control information onto the next optical link toward the destination node.
An apparatus and method for remotely monitoring water usage in real time utilizes a sensor attached to a water meter. The sensor monitors water flowing through the meter by analyzing the water meter's magnetic coupling and processes the data to correlate it to real time flow rates. Data is transmitted through a base unit to remote storage and consumers may access the data with application software installed on electronics such as smartphones and tablets. Four components are combined to allow the real time monitoring of water utilization.
Suggestions for content are based on a habit of a user. As the user requests content, content selections are monitored for habitual selections according to channels, titles, or genres. A programming guide may then be customized based on the habitual selections.
A distribution device includes a segment filing unit configured to make a video stream of each of areas obtained by imaging an imaging range divided into plural of the areas into a segment file, a distribution unit configured to supply the segment file of the video stream of each of the areas to a reception side by at least one of net distribution or broadcast distribution, and a notification unit configured to notify, in a case an ROI including one or more of the areas is set to the imaging range, the reception side of an ROI identifier for identifying the belonging ROI as attribute information related to the segment file corresponding to the area included in the ROI. The device can be applied to streaming distribution using DASH and enables signaling of an ROI identifier of a video distributed by at least one of broadcast distribution or net distribution.
Roughly described, a system and method for delivering video content to a user's client device in a video-on-demand (VOD) system, which includes providing a collection of video segments, the segments having a predefined default sequence; establishing a streaming video session according to a session-oriented protocol; transmitting toward the client device a script executable by the client device, the script operable to transmit navigational codes toward the head-end equipment in response to and indicating user selection among navigational choices; beginning transmission of the video segments in the collection toward the client device in accordance with the default sequence of segments; and in response to receipt of one of the navigational codes, and without tearing down the streaming video session, altering the transmission sequence to jump to the segment that the user selected.
Disclosed is a server apparatus. The server apparatus comprises: a communication unit for receiving, from an external server, multiple first viewing log data for each of a plurality of first users using a first broadcast receiving apparatus and multiple user information of each of the plurality of first users; and a processor for updating a predictive model for predicting, from the viewing log data, the number of users using the broadcast receiving apparatus and user information of each of the users, on the basis of the received multiple first viewing log data and the received multiple user information, wherein, when second viewing log data is received from a second broadcast receiving apparatus through the communication unit, the processor predicts, using the updated predictive model, the number of users using the second broadcast receiving apparatus and user information of each of the users.
Systems and methods are operable to control operation of a portable media device based on machine readable information of a graphical artifact shown on a display concurrently with presentation of a video portion of a media content event. A portable media device, using a portable media device provisioned with an image capture device, captures at least one image that includes the display that is presenting the graphical artifact and the video portion of the media content event, identifies the graphical artifact in the captured at least one image, determines the machine readable data based on the identified graphical artifact, and operates the portable media device to perform at least one operation based on the determined machine readable data.
The present technology relates to a recording apparatus, a recording method, and a program capable of avoiding a buffer overflow at the time of reproduction.Each packet is separated from a packet string, and information indicating an arrival timing of each packet is output. The packet is divided into divided packets having a size which does not cause a buffer overflow, and a packet arrival time of each divided packet is embedded in a header of the divided packet. The present technology is applied to the recording apparatus.
The present disclosure provides a system, a method, and a device for displaying a content item. The system includes: a video playing terminal, configured to obtain a video and play the video; a content item displaying client, configured to send a content item obtaining request for requesting to obtain a content item related to the video being played by the video playing terminal; and a content item preparation platform, configured to determine a current playing moment of the video played by the video playing terminal, select, from one or more content items corresponding to the video, a content item with a marking moment nearest to the current playing moment, and push the selected content item to the content item displaying client, where the content item displaying client is further configured to display the received content item.
A system that incorporates teachings of the present disclosure may include, for example, wirelessly receiving adjustment information from a mobile communication device, wirelessly receiving a request for video content from the mobile communication device, generating multiple versions of the video content, wirelessly transmitting a second version to the mobile communication device for presentation on the display device according to the adjustment of the access plan, and transmitting a first version to the mobile communication device for presentation on the display device and ceasing transmitting the second version responsive to a determination of an undesired condition associated with the presentation of the second version on the display device. Other embodiments are disclosed.
An exemplary virtual reality system provides an experience selection data structure to a media player device. The experience selection data structure comprises a plurality of entries each corresponding to a different virtual reality dataset, and each virtual reality dataset is customized to a different virtual reality experience associated with a different virtual viewpoint positioned at a different location with respect to a three-dimensional (3D) scene. The virtual reality system detects that the media player device selects an entry from the plurality of entries by way of the experience selection data structure. The selected entry corresponds to a particular virtual reality dataset customized to a particular virtual reality experience. Thus, in response to the detecting, the virtual reality system provides the particular virtual reality dataset to the media player device. Corresponding methods and systems, including details regarding corresponding media player devices, are also disclosed.
Techniques and mechanisms described herein facilitate providing dynamic digital object placement in a video stream. An exchange network for engagements within video streaming content is maintained, and a number of engagement entities and content providers are connected to the exchange network. An engagement proposal is received from an engagement entity in the exchange network, containing media assets for an engagement and proposed engagement information. Content provider requirements are also received from a content provider in the exchange network, containing content provider requirements and one or more engagement surfaces associated with a video stream. The exchange network determines that the received engagement proposal matches the received content provider requirements. Once the exchange network matches the two entities, the media assets from the engagement entity are dynamically inserted into the video stream published by the content provider by mapping the media assets to the one or more engagement surfaces.
Summarization segments of an encoded video can be efficiently identified, without the need to decode the encoded video to obtain image data, by analyzing encoded-buffer-size deltas, each indicating an encoded-buffer-size difference between a pair of intra-coded frames of an encoded video.
The disclosure includes a method of generating and presenting digital streaming data to a viewer. The digital streaming data comprises streaming video data depicted from a live event and streaming audio data generated by a commentator, the streaming audio data related to the live event. In many embodiments, the method includes presenting the streaming video data to the commentator and the viewer and generating streaming audio data by the commentator related to the live event. Methods may also include transferring the streaming audio data via an Internet to the viewer and providing the viewer with synchronization means to synchronize the streaming video data with the streaming audio data.
A method for encoding at least one image split into blocks. The method includes, for a current block to be encoded from the image, at least one modification of two data points in the block via an operation of linear combinations operating on the two data points, at the end of which a modified block is obtained, application of a separable transform operation to the data points in the modified block, and encoding the data points obtained after application of the separable transform operation.
Disclosed are a method for inducing a prediction motion vector and an apparatus using the same. An image decoding method can include: a step of determining the information related to a plurality of spatial candidate prediction motion vectors from peripheral predicted blocks of a predicted target block; and a step of determining the information related to temporal candidate prediction motion vectors on the basis of the information related to the plurality of spatial candidate prediction motion vectors. Accordingly, the present invention can reduce complexity and can enhance coding efficiency when inducing the optimum prediction motion vector.
Disclosed is an intraframe prediction method, wherein for an intraframe predicted block in an interframe predicted frame, when an interframe predicted blocks exists on the lower right of the intraframe predicted block, a coding and decoding sequence of intraframe and interframe blocks is adjusted, and intraframe prediction is performed in a lower right intraframe prediction approach, i.e., performing prediction using the lower right reconstructed pixel value as the reference pixel point for the intraframe predicted block; at the coding procedure, each coded unit is first coded, and upon completion of the coding, information of all interframe predicted blocks is written into a code stream; next, two-pass coding is performed to the intraframe predicted block; lower right intraframe coding is performed during the two-pass coding process; after completion of the two-pass coding, the information of the intraframe predicted block is written into the code stream; at the decoding procedure, decoding of all interframe predicted blocks is first completed; then, lower right intraframe decoding is performed to the intraframe predicted blocks. The present disclosure may improve the intraframe prediction accuracy and enhance the coding efficiency of the intraframe predicted block in the interframe predicted frame.
An encoder/decoder is described using enhanced signaling mechanisms SAO parameters. The various parameters are signaled in various ways according to different embodiments of the invention. In a first embodiment (embodiment A), SAO on/off is decoupled form SAO type coding, with SAO on/off flags being jointly encoded for all color components. The second embodiment (embodiment B), is similar to embodiment A, but modified for application to JCTVC-J0268. In a third embodiment separate signaling is provided for SAO on/off, SAO types BO and EO, and for BO and EO side information (classes or band position). Each of these enhanced SAO signaling mechanisms provide enhanced coding efficiency.
An image processing apparatus divides a base image corresponding to a plurality of first images captured from different viewpoints, and a plurality of second images each corresponding to one or more of the plurality of first images, into a plurality of sub-bands including a sub-band that includes high-frequency components and a sub-band that does not include high-frequency components. As for the plurality of second images, the image processing apparatus then encodes the sub-band that includes high-frequency components. As for the base image, the image processing apparatus encodes the sub-band that does not include high-frequency components.
The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type, and the second type is “no_residual_data_flag”.
Computer processor hardware receives a first set of adjustment values. The first set of adjustment values specify adjustments to be made to a predicted rendition of a signal generated at a first level of quality to reconstruct a rendition of the signal at the first level of quality. The computer processor hardware processes the first set of adjustment values and derives a second set of adjustment values based on the first set of adjustment values and a rendition of the signal at a second level of quality. The second level of quality is lower than the first level of quality.
Provided are a method and a device for decoding a video signal to provide stereographic image content with high resolution. For decoding a video signal, an intra prediction mode of a current block is determined, and a prediction sample is obtained by performing intra prediction of the current block based on the intra prediction mode.
To have a much better usable pragmatic manner of HDR video encoding and decoding, the inventor invented a high dynamic range video decoder (500) arranged to receive an encoding (Im_COD) of a high dynamic range video and to decode and output a set of temporally successive images (Im_RHDR) comprising: An input (502) to receive three weight values (kRY, kGY, kBY); A video decoder (501) arranged to decode the encoding (Im_COD) into an intermediate image (Im_RLDR) being in a Y′CbCr color representation; A brightness index calculation unit (503) arranged to calculate for each pixel of the intermediate image (Im_RLDR) a brightness index (J′) being defined as J′=Y′+MAX{kRY*(R′−Y′), kGY*(G′−Y′), kBY*(B′−Y′)}; A brightness mapper (505) arranged to receive a specification of at least one one-dimensional function F_ct, and to apply it with the brightness index (J′) as input, to obtain an output brightness index (J*); A multiplication factor calculation unit (506) arranged to calculate a multiplicative factor (g) being equal to the output brightness index (J*) divided by the brightness index (J′); Three multipliers (509, 510, 511) to multiply the respective color components (Y, Cr, Cb) of each pixel of the intermediate image (Im_RLDR) with the multiplicative factor (g), to obtain an output color (Y′H, Cb′H, Cr′H) for that pixel in the output dynamic range image (Im_RHDR) of the set of temporally successive images being currently decoded.
Gaze is corrected by adjusting multi-view images of a head. Image patches containing the left and right eyes of the head are identified and a feature vector is derived from plural local image descriptors of the image patch in at least one image of the multi-view images. A displacement vector field representing a transformation of an image patch is derived, using the derived feature vector to look up reference data comprising reference displacement vector fields associated with possible values of the feature vector produced by machine learning. The multi-view images are adjusted by transforming the image patches containing the left and right eyes of the head in accordance with the derived displacement vector field.
An example method for determining three-dimensional coordinates of an object from a plurality of two-dimensional images may include: acquiring two-dimensional input frames via a camera, the camera being associated with one or more calibration parameters; isolating a contour of at least one object contained within each input frame; calculating coordinates of one or more visual rays corresponding to each contour in a direction specified by at least one of the calibration parameters; estimating a spatial tangent vector of each contour using finite differences; estimating a tangent space of the visual rays at each visual ray; calculating epipolar numbers based on basis vectors of the tangent space, the one or more calibration parameters, and the tangent vector; forming a line-based epipolar matrix using the epipolar numbers and line coordinates; and de-homogenizing the column space of the matrix into object points.
A method for generating a high dynamic range image (HDRI) includes acquiring a first illuminance diagram, generating a second illuminance diagram from the first illuminance diagram by modifying a dynamic range of at least a portion of the first illuminance diagram, and generating the HDRI based on the second illumination diagram. The first illuminance diagram is obtained based on a camera response function and an illuminance logarithm obtained based on a plurality of images having different exposure conditions.
One embodiment of the present invention sets forth a technique for correcting color values. The technique includes downsampling first color space values to generate downsampled color space values and upsampling the downsampled color space values to generate second color space values. The technique further includes modifying at least one component value included in the downsampled color space values based on a first component value included in the first color space values, a second component value included in the second color space values, and an approximation of a nonlinear transfer function.
An optical scanning device includes a light source component, a scanning component, an electrostatic driver, a controller, and a current sensor. The light source component emits light. The scanning component scans the light. The driver drives the scanning component. The controller controls emission of the light from the light source component. The current sensor senses current generated by a capacity change of the driver. The controller further controls the emission of the light from the light source component based on the sensed current sensed by the current sensor.
A backlight for a display comprises a plurality of independently controllable light sources and inclined surfaces inclining in a radially outward direction from each light source for shaping the distribution of emitted light. The light sources may each comprise a group of differently-colored light emitters. The backlight may include light integrators configured to mix light of the differently-colored light emitters. Inclined surfaces for shaping the distribution of emitted light may be arranged around exits of the light integrators.
A device (e.g., an image sensor, camera, etc.) may identify a camera lens and color filter array (CFA) sensor used to capture an image, and may determine filter parameters (e.g., a convolutional operator) based on the identified camera lens and CFA sensor. For example, a set of kernels (e.g., including a set of horizontal filters and a set of vertical filters) may be determined based on properties of a given lens and/or q-channel CFA sensor. Each kernel or filter may correspond to a row of a convolutional operator (e.g., of a restoration bit matrix) used by an image signal processor (ISP) of the device for non-linear filtering of the captured image. The corresponding outputs from the horizontal and vertical filters (e.g., two outputs of the horizontal and vertical filters corresponding to an input channel associated with the CFA sensor) may then be combined using a non-linear classification operation.
A surveillance system including a fixed camera and one or more temporary cameras and a control means coupled to the fixed camera and the one or more temporary cameras is disclosed. The control means is configured to extend coverage of the fixed camera using the one or more temporary cameras coupled to the fixed camera. Each of the one or more temporary cameras includes one or more sensors and is configured to be deployed and adjusted based on sensor data obtained from the one or more sensors of the one or more temporary cameras and from one or more fixed camera sensors co-located with the fixed camera.
The invention relates to a hospital video surveillance system comprising several cameras (2, 3, 4) for acquiring video data for surveilling several patient regions (5, 6, 7). The video data are transmitted from the cameras to a display device and are used to determine physiological properties of patients, wherein the physiological properties are vital signs. The bandwidths for the transmission of the video data are allocated depending on the determined physiological properties. Thus, the bandwidth allocation considers the physiological states of the patients, which can ensure that a sufficient bandwidth is provided where it is really required. This is especially useful, if the overall bandwidth is limited. Moreover, since the video data are used for fulfilling several functions, i.e. surveilling the several patient regions and determining the physiological properties, the overall system can be very compact and less or no additional physiological sensors might be required.
An orchestration server and a method of deploying a distributed videoconferencing system in cloud services are disclosed. The method including receiving, by an orchestration server, a proposed configuration of a distributed videoconferencing system, determining, by the orchestration server, a status of the proposed configuration of the distributed videoconferencing system, determining, by the orchestration server, based on the status of the proposed configuration of the distributed videoconferencing system, a determined configuration of the distributed videoconferencing system, initiating, by the orchestration server, according to the determined configuration of the distributed videoconferencing system at least one non-transcoding node at a first data center of a first cloud service provider, and initiating, by the orchestration server, according to the determined configuration of the distributed videoconferencing system at least one transcoding node at a second data center.
This invention disclosure relates to a community access television (CATV) signal distribution system which improves signal isolation issues for systems which are distributing both CATV signals and in-home entertainment (IHE) signals. The signal distribution system includes a signal input port, a first multi-port signal splitter and a second multi-port signal splitter. The first multi-port signal splitter is coupled to the signal input port through a first diplexer, and the second multi-port signal splitter is coupled to the signal input port through a second diplexer. In some embodiments the first diplexer high-pass node and the second diplexer high-pass node are coupled together. In some embodiment the signal distribution system includes a signal output port coupled to the signal input port through a third diplexer. The high-pass node of the third diplexer is coupled to the high-pass node of the first diplexer.
A method and system for transmitting and receiving an audio signal over a video signal in a single cable. The method and system including receiving an analog video signal, the analog video signal comprising one or more rows of video data, an audio header, and one or more quantized audio data. The method includes detecting, the audio header in a blank interval of the analog video and determining a reference level of the audio header. The method and system include extracting, in response to detecting the audio header, the one or more quantized audio data and converting the one or more quantized audio data to an original value of audio data based on the reference level of the audio header. The method and system are configured for storing the one or more quantized audio data in the original value in a First-in-First-Out (FIFO) buffer, and reconstructing, utilizing the FIFO buffer, a continuous audio signal from the one or more quantized audio data in the original value.
The present invention provides an image processing system, an image processing method, and a program capable of suppressing confusion that may arise in a case where a target person is identified when tracking a person. An image processing system includes: a camera control unit which accepts input video images captured by a plurality of video cameras; a tracked person registering unit capable of registering one or more persons appearing in the video images inputted from the camera control unit; and a display screen generating unit which displays switchable windows of the video images inputted from the video cameras for each person registered by the tracked person registering unit.
A substrate structure for an image sensor module includes a module substrate including a sensor mounting hole, a reinforcing plate on a lower surface of the module substrate, an image sensor chip on the reinforcing plate within the sensor mounting hole, and a reinforcing pattern in the module substrate. The reinforcing plate covers the sensor mounting hole. An upper surface of the image sensor chip may be exposed by the module substrate. The reinforcing pattern is adjacent to the sensor mounting hole and extends in at least one direction.
A semiconductor device for use in controlling a camera module performs position adjustment of a correction lens for use in optical camera shake correction, based on information representing a present position of the correction lens and position information of an output image of electronic camera shake correction with respect to a photographed image photographed by an imaging element. As a result, an operation margin of the correction lens is kept, while keeping a correction margin for the electronic camera shake correction.
Systems and methods for identifying comment clusters for panoramic content segments. A panoramic content segment of digital content may be hosted to client computing platforms. User comment information may be received. The user comment information may convey user comments, include time indications for a duration of a content segment, and/or include location indications for a panorama of the panoramic content segment. A comment distribution may be determined from the user comment information. A comment cluster may be identified based on the comment distribution. View information may be received from a client computing platform. Whether a view range associated with the comment cluster identified is located within or outside one or more visible ranges of viewing angles selected by the user may be determined. Alert information may be generated and/or transmitted for effectuating presentation of a notification on the client computing platform associated with the user.
An image processing system is provided that includes an image capturing apparatus configured to generate a plurality of captured images and at least one information processing apparatus connected to the image capturing apparatus. The information processing apparatus includes processing circuitry configured to input at least a first captured image and a second captured image from among the plurality of captured images, acquire first conversion data to be used for converting the first captured image and second conversion data to be used for converting the second captured image, and generate an output image by stitching converted images generated by converting the first captured image based on the first conversion data and the second captured image based on the second conversion data.
Systems and methods for processing digital image data representing multiple views of an object of interest use a sparse set of digital images along with object of interest profiling to provide a photo gallery for evidence-related workflows. Digital images are related to each other on the basis of common objects of interest represented in the images and their orientations within the views depicted in each image. Object of interest profile datasets, including spatial orientation data, enable efficient tracking of photography sessions in which a set of prescribed views of an object of interest are meant to be captured, as well as object-orientation-based photo gallery navigation. The systems recognize of a set of physical gestures that enable a user to intuitively navigate among digital images depicting different views of an object of interest based on how they were physically related to each other when captured.
An evaluation device includes a first display control unit that displays imaging data acquired by an imaging device on a display screen of a display device, and a second display control unit that displays on the display screen a guide display based on work vehicle data on a work vehicle imaged, to determine an imaging position of the imaging device.
[Object] To support a user such that the user can easily adjust installation states of a plurality of imaging devices.[Solution] Provided is an information processing device including an adjustment instruction specification unit configured to specify an instruction regarding adjustment by extracting or arranging elements of the adjustment in accordance with a level of priority of each of the elements for shifting current installation states of a plurality of imaging devices toward appropriate installation states of the plurality of imaging devices.
A focus adjustment device, comprising a processor having a focus region setting section, a focus detection section, a determination section and a control section, wherein the focus detection region setting section sets a first focus detection region, and a second focus detection region, that is contained in the first focus detection region and that is narrower than the first focus detection region, in an imaging region, the control section, when it is determined that that there is not a periodicity-containing subject for the first focus detection region, and it is determined that there is a periodicity-containing subject for the second focus detection region, performs a focus adjustment operation by selecting a phase difference that is closest to a phase difference that has been detected for the first focus detection region, among a plurality of phase differences that have been detected for the second focus detection region.
The image-capturing apparatus communicates with an accessory apparatus using a clock/communication request channel and first and second data communication channels. The camera controller switches its communication method between a first communication method in which data communication is performed while a clock signal is alternately switched between first and second levels and a second communication method in which data communication is performed in response to a communication request from the camera controller to the accessory apparatus, which is output by switching a signal level of the clock/communication request channel from the first level to the second level. The camera controller, in response to detecting a communication error in the first and second communication methods, transmits to the accessory apparatus through the second data communication channel a specific signal for restoring the communication while keeping the signal level of the clock/communication request channel at the first level.
A camera system is provided and includes a processor, a first camera, a second camera, and a data bus. The processor transmits a first trigger signal to the first camera to enable the first camera outputting first data to the processor through the data bus. The first camera transmits a second trigger signal to the second camera to enable the second camera outputting second data to the processor through the data bus.
In an example embodiment, an item listing process is run in an item listing application. Upon reaching a specified point in the item listing process, a camera application on the user device is triggered (or the camera directly accessed by the item listing application) to enable a user to capture images using the camera, wherein the triggering includes providing a wireframe overlay informing the user as to an angle at which to capture images from the camera.
A camera module and array camera module with circuit board unit and photosensitive unit and manufacturing method thereof is provided. The array camera module comprises two or more camera lenses and a circuit unit. The circuit unit comprises a circuit board portion for electrically connecting two or more photosensitive sensors of the array camera module, and a conjoined encapsulation portion integrally encapsulated on the circuit board portion. The camera lenses are respectively arranged along the photosensitive paths of the photosensitive sensors.
A camera module testing method is applied to a camera module including a camera lens and a photosensitive element. In a step (A), an original image is captured through the camera lens and the photosensitive element. In a step (B), the original image is converted into a gray scale image. In a step (C), the gray scale image is converted into a binary image according to a critical gray scale value. In a step (D), a boundary contour is obtained according to plural pixels of the binary image higher than or equal to the critical gray scale value. In a step (E), a contour center of the boundary contour is obtained. Then, a step (F) is performed to judge whether an optical axis of the camera lens is aligned with an imaging center of the photosensitive element according to the imaging center and the contour center.
A camera module for a vehicle according to the present invention includes a first Printed Circuit Board (PCB) configured to have an image sensor mounted on its surface; a second PCB configured to supply a power source to the first PCB; an outer shield installed to surround the side of the first and the second PCBs and to shield the first and the second PCBs from electromagnetic interference (EMI); and a plurality of support units disposed at positions where the supports units interfere with the first and the second PCBs of the outer shield and configured to support the first and the second PCBs.
Provided herein is an image focusing adjustment method, system, and module. A first image of a reference object is received in response to an input signal when the image focusing adjustment module is operating in a first state. The first image of the reference object is analyzed, based on which a plurality of adjustments to the image focusing adjustment module is controlled. The plurality of adjustments, performed by a plurality of actuators controlled by control module, include rotating a lens barrel assembly relative to a neck member along a first axis that causes a translational adjustment of the lens barrel assembly, rotating the neck member relative to a top member around the first axis that causes a rotational adjustment of the lens barrel assembly, and positioning a tilt adjustment member that causes tilt adjustment of the top member relative to a frame member along a second axis.
Provided are a lens driving device, a camera module, and a camera-mounted device for which the miniaturization and weight reduction can be achieved and the reliability can also be improved. The lens driving device includes auto-focusing and shake-correcting driving parts utilizing a voice coil motor. An autofocus fixing part includes a Hall element configured to detect a position of an autofocus movable part in the optical-axis direction, and the autofocus movable part includes a position-detecting magnet arranged near the Hall element. Both of an auto-focusing magnet part and the position-detecting magnet are radially magnetized.
An endoscope comprises a FPC (flexible printed circuit) having a first side and a second side, where the FPC comprises a first head part, a body part, and tail part. At least one solder pad is on the first side of the first head part, and at least one solder pad is on the first side of the body part. The endoscope further comprises a camera module mounted on the first side of the body part and a first LED (light emitting diode). A first side of the first LED is mounted on the first side of the first head part and a second side of the first LED is mounted on a first side of the camera module, while the first head part is bent. The second side of the body part is mounted on an end of a flexible fiber, and the tail part of the FPC is bent to mount on the flexible fiber.
First, second, and third line reading processing is processing of emitting light of each color to first, second, and third line of an original document in first, second, and third lighting order, respectively, and reading reflection light of the emitted light. A color that is first in the first lighting order, a color that is first in the second lighting order, and a color that is first in the third lighting order are different from each other. A color that is second in the first lighting order, a color that is second in the second lighting order, and a color that is second in the third lighting order is different from each other. A color that is third in the first lighting order, a color that is third in the second lighting order, and a color that is third in the third lighting order is different from each other.
An information processing apparatus requests, via one of networks, an apparatus to carry out process, the apparatus being connectable to the networks; receives identification information that is used to identify a user; acquires sets of the communications information that includes a first set of the communications information to be used to connect to the apparatus via a first network of the networks; determines, based on the identification information, whether to use the first network to request the apparatus to carry out the process; when determining to use the first network to request the apparatus to carry out the process, switch a second network of the networks used to carry out communications, to the first network to be used to carry out communications, the second network being different from the first network; and requests, via the first network, the apparatus to carry out the process.
An image processing apparatus receives a number of pages to be included in one file from a user, and reads an original. The image communication apparatus divides image data of the read original at each set of the received number of pages, and creates a file including the image data for each division of the divided image data.
An image processing apparatus capable of shifting to a power saving mode. The image processing apparatus includes a storing unit configured to store a document in a storage device, a notification unit configured to periodically notify an apparatus of a predetermined destination of information about a document that has been newly stored by the storing unit into the storage device, and a control unit configured to restrict shifting to a power saving mode in which the notification unit cannot make the notification after storage of a document by the storing unit has been completed and until the notification unit notifies at least information about the document.
On a touch-panel display of an image forming apparatus, a function selecting area and a preview area are displayed next to each other. On the function selecting area, a function setting menu is displayed in one display mode among an icon mode in which only a group of icons are displayed, a regular mode in which a group of icons and a group of texts are displayed, and an express mode in which a group of icons, a group of texts and a group of function setting buttons are displayed. In the icon mode, detailed preview information is displayed on a large preview area, and in the express mode, detailed function selecting information is displayed on a large function selecting area.
An electronic device includes: an operation receiving unit to receive operation from a user; a sensor to sense the user existing in a detection range of the electronic device to output detection information indicating that the user exists in the detection range; and processing circuitry to output content for assisting the user in operating the electronic device, when the processing circuitry has determined that the user exists in the detection range based on the detection information and when an elapsed time in which the operation of the user is not received at the operation receiving unit has exceeded a threshold time.
An image inspection apparatus includes a hardware processor that performs an image diagnosis on the basis of a read image obtained by reading images printed in both sides of a recording medium, wherein the hardware processor: acquires a read image obtained by reading an image on the recording medium to which at least a first chart and a second chart are output; and performs a diagnosis by determining a side to be used in the diagnosis depending on an image diagnosis item on the basis of the read image.
In a system in which a wireless access network and another network are connected to each other, an accurate fee is charged in a case where data held in an application server disposed in the wireless access network is used.The application server holds an application and data relating to the application. A usage mode information generating unit generates usage mode information which is information relating to a usage mode when the wireless terminal uses the held data. A network data usage amount measuring unit measures a network data usage amount when the wireless terminal uses data on another network via a wireless access network connected to the wireless terminal. A fee charging unit charges a fee on the basis of the measured network data usage amount and charge a fee on a basis of the generated usage mode information.
A mobile communications system includes switching between communication paths based on the quality of service. A VoIP service is coupled to a mobile network and a wireless local-area network (WLAN) via a wide-area IP network. A plurality of mobile communications devices are associated with VoIP telephone numbers. A public switched telephone network (PSTN) is coupled to the plurality of mobile communications devices and coupled to the VoIP service. A quality of service server is coupled to the plurality of mobile communications devices via the wide-area IP network for determining the quality of data channels to a mobile communications device via the mobile network and to the mobile communications device via the WLAN. A voice call is carried over one of the mobile network, the WLAN, and the PSTN depending on the quality of the data channels.
Disclosed is a method for providing information with a voice message to a subscriber A in response to a receipt of call connection attempt in a terminal device of a subscriber B, the method includes: detecting the call connection attempt from the subscriber A in the terminal device of the subscriber B; generating a message including data carrying a dedicated voice message to the subscriber A; outputting the generated message to the subscriber A. Also disclosed is relates to a system implementing the method and a computer program product.
To receive data in data field of a PHY Protocol Data Unit (PPDU), wherein the data field includes mid-ambles, a number of mid-ambles and a number of data symbols included in the data field is determined. The number of mid-ambles is determined according to information in an HE-SIG-A field of the PPDU, information in an L-SIG field of the PPDU, and one or more predetermined values prescribed by a standard. The number of data symbols may be determined using the number of the mid-ambles, and the data received according to the number of mid-ambles and the number of data symbols.
A method is provided in one example embodiment and may include receiving an Internet Protocol (IP) packet at a node; identifying a content semantic for the IP packet; determining whether the IP packet is an IP interest packet or an IP data packet; determining whether content identified in the IP packet is stored at the node based on a determination that the IP packet is an IP interest packet; forwarding the IP packet toward at least one other node based on a determination that the content is not stored at the node; and transmitting an IP data packet containing the content based on a determination that the content is stored at the node.
The present disclosure describes an exemplary hybrid client/server architecture that may be utilized leverage the unique capabilities of both remote and local services. Data may be processed in parallel by remote and local processes. Results generated during the parallel processing may be exchanged between remote and local services and used to update results generated by the separate services. The hybrid client/server architecture may be utilized to generate enhanced inferences, hybrid subscriptions base upon local and remote subscriptions, and enhance natural language expression evaluation services.
Interacting with a computing device can include registering a plurality of commands from a plurality of applications, wherein the plurality of commands specify entity types that are accepted as parameters, determining a first entity having a first entity type, wherein the first entity is independent of the plurality of applications, and determining a selected command from the plurality of commands registered by the plurality of applications that accepts the first entity type as a parameter. The first entity and the selected command can be provided, using a processor, to a first application of the plurality of applications that supports the selected command for execution.
A transaction processing server and associated clients which send requests to the server via client-server connections. The server has a transaction processing region operable to process requests and issue responses to the requesting client. The server maintains a record of historical processing times taken to process recent client requests. The server has a connection manager that is operable to monitor incoming client requests and extract from them a goal response time, which is a maximum time within which the client expects the request to be processed which is included in each request. The server accepts or rejects each incoming client request based on deciding whether it is likely to be processed within the goal response time. If a request is rejected, the server transmits a rejection message to the originating client.
Certain embodiments herein are directed to enabling service interoperability functionality for wireless fidelity (WiFi) Direct devices connected to a network via a wireless access point. A WiFi Direct device may identify various other WiFi Direct devices on a WiFi network for performing a requested service, such as printing content or displaying content to a screen. In so doing, the device may share information associated with an access point to which the device is connected with the other devices, which may also share information associated with an access point to which they are connected. In this way, WiFi Direct devices may discover their connectivity with respect to other devices to utilize a broader array of connection options for implementing a desired service, and hence, may leverage application programming interface (API) modules directed at providing service interoperability functionality between software applications and services requested by the software applications.
A method for managing a communication session includes receiving a request to perform a task. The task is divided into one or more steps. One or more user devices are identified that can be used to perform one or more of the steps. One or more communication channels are identified that are available to the one or more user devices. The communication session is permitted to switch from one or more of the user devices and communication channels to complete the one or more steps of the task while maintaining a continuity of the communication session.
A method is executed by a computing device to receive a request for a server via a known network access type, from a known application type, by a known user, or a known policy, instantiate a new unikernel with a differentiated communication protocol stack instance, in response to determining the request is not being serviced by a previously instantiated unikernel, and service the request by a previously instantiated unikernel, in response to determining the previously instantiated unikernel is available, where the new unikernel and the previously instantiated unikernel are separate from an operating system of the computing device.
A method and an apparatus for controlling internet of things devices. The method includes: receiving a control instruction configured to control the internet of things devices and sent by a control application, where the control instruction includes an identification number of the control application and identification numbers of a plurality of internet of things devices; determining, according to the control instruction, whether the control application has authority to access the internet of things devices; sending the control instruction to the internet of things devices to enable the internet of things devices to execute the control instruction when it is determined that the control application has the authority to access the internet of things devices. Compared to a case where each internet of things device is corresponding to a control application specific thereto, efficiency of control of an intelligent terminal over the internet of things devices is improved.
Among other things, techniques and systems are disclosed for providing sync server process. Processing data sync sessions includes processing a request to initiate a sync session from one or more clients to update one or more data records that include one or more data items. The one or more clients are selectively identified as one of a trusted client and an untrusted client based on one or more properties of the sync session, wherein the trusted client is configured to support all dataclasses defined by the server. The one or more clients are detected as being configured to support field level differencing that sends changed data items only for the one or data records or record level differencing that sends all of the data items included in the one or more data records.
A system and method for defragmentation of a VNF deployment in a virtual resource pool including implementing a VNF demand in an available VNF capacity, incorporating the implementation of the VNF demand in the deployed VNF capacity, obtaining improvement parameter data from the deployed VNF capacity, providing the improvement parameter data to a deployment improvement application; and redeploying the implementation of the VNF demand into the groomed VNF capacity, wherein the groomed VNF capacity comprises VNF capacity that improves network resource allocation.
A method is provided of using a set of servers to provide deferential services that have a pre-negotiated time for notice to release the servers. The method includes defining a virtual checkpoint frame interval that is constrained to a duration of up to half of the pre-negotiated time for notice to release the servers. The method includes collecting packets and transactions occurring during the interval that are processed by a current server. The method includes, responsive to an end of the interval, (i) writing, to a shared state database, a state of processing of the packets and transactions occurring during the interval, and (ii) releasing the packets and transactions occurring during the interval. The method includes copying the packets and transactions occurring during the interval, and the state, from the current server to another server for subsequent processing, responsive to an indication of an instance loss on the current server.
In some examples, a system comprises a memory device for storing instructions and a processor which executes instructions causing the system to perform operations comprising receiving an instruction to transfer a state of a first device to a second device, and packaging information relating to the state of the first device in a file. The packaging of the information relating to the state of the first device includes recording each application executing on the first device in a list maintained in the file, and transferring the file containing information relating to the state of the first device to the second device, either directly or indirectly based on an availability of connections between the first device and the second device. The file, when processed by the second device, causes the second device to reproduce the state of the first device. In some example, reproducing the state of the first device includes the second device downloading, from one or more of the locations, one or more of the applications.
A data collection system is configured with a management apparatus to define associations between data and metadata, design a method of displaying the data and the metadata related to the data, and generate methods of transmitting, receiving, and relaying the data and the metadata; a generation apparatus that generates the data and the metadata; a display apparatus that displays the data and the metadata; and a relay apparatus that relays the data and the metadata, the management apparatus distributing processing procedures related to the data and the metadata to be displayed on the display apparatus to one of or all of the generation apparatus, the relay apparatus, and the display apparatus, in accordance with a position of the data and an acquisition method contained in association information created using the function to design the associations.
The present application provides a webpage loading method, apparatus and system. The method includes: loading a webpage resource, wherein a JS file of each module resource is set behind the body resource, extracting a JS resource required for running of the JS file from each module resource, and registering the JS resource into a pre-established function running pool, and after the body resource loading is completed, injecting the JS resource of each module resource in the function running pool into the corresponding JS file.
A telecommunication system and a method for transferring media data from a first client over a QoS-sensitive network to a second client. The system and method can permit media data, which contain a first media type with a first traffic class and a second media type with a second traffic class to be bundled by the first client into second packets. In each second packet, the traffic class for each media type is marked in layer 4 and/or layer 5. The second packets can be transmitted toward the second client. Either before or during the transfer to the network, the second packets can be unbundled using the markings in layer 4 and/or layer 5 and then bundled into first packets, each of which has only one of the traffic classes. At least some of the first packets can then be transmitted over the network to the second client.
A base station is provided. The base station comprises a processor configured to receive beam related information from a user equipment (UE), determine a position of the UE in response to the beam related information and acquire a video stream from at least on video capturing device configured on the base station in response to the position.
An approach is provided in which an information handling system invokes a conferencing session over a computer network between a first user utilizing a headset and one or more second users. The information handling system detects an audible interruption from a third user proximate to the first user, while the headset inhibits the first user from detecting the audible interruption. Next, the information handling system sends an interruption notification to the first user in response to determining that the audible interruption matches at least one of a set of notification triggers corresponding to the first user. In turn, the information handling system captures a dialog between the one or more second users in the conferencing session in response to the first user accepting the interruption notification.
A communication system capable of enabling one or more communication devices to remotely execute one or more applications includes one or more communication devices that are coupled to a data connection. At least one of the one or more communication devices is operable to communicate a request to establish a communication session over the data connection. The system also includes one or more application servers that are coupled to the data connection. At least one of the one or more application servers is adapted to execute an application to establish the requested communication session with the at least one communication device. The at least one application server resides at a location remote from the at least one communication device. The at least one application server communicates a request for processing service to the at least one communication device. The request for processing service is communicated to the at least one communication device over the data connection.
To facilitate remote support, a live remote support tool providing versatile information exchange between an apparatus at a site and another apparatus in a remote support site is disclosed.
A method, a system, and a computer readable medium for determining a readiness of a computerized network against distributed denial of service (DDoS) attacks are provided herein. The system may include: an interface configured to obtain properties characterizing the computerized network; a knowledge base containing a plurality of rules taking into account DDoS risks and best practice related thereto; and a computer processor configured to: analyze the properties using the knowledge base to yield an analysis; and determine a readiness of the computerized network against DDoS attacks, based on the analysis. In some embodiments, the properties are obtained by analyzing a filled-in questionnaire relating to the computerized network under test. In other embodiments, these properties are automatically derived from databases containing data pertaining to the computerized network.
Examples relate to handling network threats. In one example, a computing device may: receive, from a threat detector, threat data associated with a particular network device included in a plurality of network devices; identify, based on the threat data, a particular analytics operation for assisting with remediation of a threat associated with the threat data; identify, based on the threat data, additional data for performing the particular analytics operation; cause reconfiguration of at least one of the plurality of network devices, the reconfiguration causing each of the reconfigured network devices to i) collect the additional data, and ii) provide the additional data to an analytics device; and receive, from the analytics device, particular analytics results of the particular analytics operation.
A computing system may include a database disposed within a computational instance of a remote network management platform that manages a managed network. Additionally, the computing system may include server device(s) disposed within the computational instance. The server device(s) may be configured to: compare, in order of priorities of assignment rules, a particular configuration item to the assignment rules until a matching condition is found, where the comparison includes consideration of one or more of: (i) particular item attributes of the particular configuration item or (ii) particular vulnerability attributes that apply to the particular configuration item; determine a particular remediator identifier related to the matching condition; based on a key and the particular remediator identifier, determine a particular group for the particular configuration item according to grouping rules; and store, in the database, a reference to the particular configuration item in the particular group.
Disclosed embodiments relate to systems and methods for automatically processing diversely structured operational policies. Techniques include identifying first and second operational policies, determining if the policies use different vocabulary or syntax, applying a language processing protocol to the policies, and normalizing the policies. Other techniques include making available the normalized policies to a computing resource, identifying a set of related rules based on the normalizing, identifying that one of the polices has an unnecessarily high level of privileges, and reducing the level of privileges according to a least-privileges policy.
Disclosed embodiments relate to systems and methods for automatically and transparently detecting potential compromises or unauthorized use of endpoint computing devices. Techniques include engaging, at a security server, in an agentless management session with an application running on an endpoint computing device; controlling, at the security server and through the agentless management session, a user-facing session of the application; receiving, at the security server, an indication of anomalous activity or loss of a proximity between at least one of: the one or more personal computing devices associated with the user and the endpoint computing device, or the one or more personal computing devices associated with the user and the user; and implementing a control action in the agentless management session, based on the received indication.
Aspects are generally directed to network security systems and methods of monitoring network activity. In one example, a network security system includes and interface to receive a Hypertext Transfer Protocol (HTTP) network log that includes a matrix of data, a feature extraction component configured to extract a connectivity matrix from the HTTP network log based on a recurring pattern within the matrix of data, and a training module configured to provide deep learning architecture training data based on the connectivity matrix. The system may include a deep learning architecture configured to receive and propagate the training data through one or more layers thereof to train the one or more layers, and being configured to generate a general data representation of the HTTP network log. The system may include a behavior analytics component to detect a discordant network activity within the HTTP network log based on the general data representation.
The present invention involves with a cloud tenant oriented method and system for protecting privacy data. The method comprises at least the following steps: analyzing event handler information and/or behavioral signature information of request information and determining an execution mode, selecting at least one node without a behavioral signature plot to execute the tenant request and recording an execution result, generating a behavioral signature plot based on the execution result, and dynamically detecting security-sensitive behavior based on the behavioral signature plot. The present invention ensures data security during processing of security-sensitive data for cloud services by adopting a technology based on behavioral signatures, and prevents attackers from exploiting vulnerabilities and bypassing security control to conduct malicious operations.
In response to a computing device of a user being reported as lost or stolen, various steps associated with security for the computing device are performed. In one approach, a database is marked to indicate that the computing device is lost or stolen. Applications that are installed on the lost or stolen computing device are determined, and a security action is selected based on this determination. In some cases, the selected security action reduces or denies service to the computing device, and/or blackholes traffic to or from the installed application. A service provider associated with the installed application is determined, and a notification is sent to the service provider. The notification indicates the installed application, and that the computing device of the user has been lost or stolen.
A method and system for improving efficiency and security of a role based access control (RBAC) identity management system. A service provider owner requests an addition of a service provider identity dataset to a role dataset in the RBAC identity management system. The role dataset includes permissions to the individual users within the service provider identity dataset to access a secured resource of the RBAC identity management system and to perform the service on the secured resource. Addition of the service provider identity dataset to the role dataset is granted and is periodically revalidated which includes receiving an instruction to maintain or delete the service provider identity dataset from the role dataset. Access to the secured resource is based on the service provider identity dataset in the role dataset, instead of being based on the individual users, which improves the efficiency and security of the RBAC identity management system.
A registration mediating server may send to a function mediating server a first authentication information request, receive from the function mediating server first authentication information, send to the function mediating server an execution information request, receive from the function mediating server specific execution information, and send to a specific server communication information including the first authentication information and the specific execution information. The specific server may register the communication information, receive from a sound input device a first function execution request, extract the first authentication information and the specific execution information, and send to the function mediating server a second function execution request including related information which is related to the extracted specific execution information by using the first authentication information. The function mediating server may send a function execution instruction to a function executing device by using the related information. The function executing device may execute a function.
A client (such as a PC, portable telephone, PDA, electrical appliances), to which a device such as a IC card is connected, starts a handshake protocol to request a server to start communication. When communication is established via the handshake protocol, the initiative of communication is transferred to the server, and the state changes into a neutral state. In this neutral state, a control packet including a particular number of messages and a finished message is transmitted from the server to the client. If the client receives the control packet, the client performs a process according to the messages included in the control packet. This makes it possible to remotely control a device via a network in a highly reliable and efficient manner.
In an aspect, the present disclosure provides an electronic device for OTP authentication of a present location, comprising: a power source, a processor, and a memory in a housing; a strap comprising first and second ends, and a first wire extending from the first end to the second end of the strap and forming an external loop, wherein the first wire establishes a first electrical connection between the power source and the processor; and a second electrical connection operatively connected to the processor and the memory, the processor configured to generate an OTP, only when the processor is connected to the power source by the first electrical connection without interruption once the first electrical connection is established. The OTP authentication may be time-based one-time password (TOTP) authentication, and the generated OTP may be a time-based one-time password (TOTP).
A system for network mapping includes an interface and a processor. The interface is configured to receive an indication to scan a set of addresses using a fingerprint. The processor is configured to for an address of the set of addresses: receive a response associated with the address; determine whether the response matches the fingerprint; and store the address in a client network database in the event the response matches the fingerprint.
An apparatus is provided for facilitating cross-platform authentication. The apparatus may include at least one memory and at least one processor configured to detect that a visual token includes data indicating one or more authentication credentials for accessing a communication device in response to scanning the visual token. The computer program code may further cause the apparatus to communicate the authentication credentials of the detected visual token to the communication device to request the communication device to determine whether the authentication credentials are valid for a user. The computer program code may further cause the apparatus to enable access to the communication device in response to receiving an indication from the communication device that the authentication credentials of the detected visual token are valid. Corresponding computer program products and methods are also provided.
A method for checking a confidence level associated with a first user account of an online service, each user account including associated user data and contact means, the method includes the steps of selecting at least one second user account, generating a first code, recording the first code in association with the first user account, sending a first message via a contact means associated with the second user account, the first message including the first code generated and, in subsequent steps, of receiving, from a first electronic device connected to the online service with the first user account, a second message including a second code and, when the second code is equal to the first code recorded in association with the first user account, then increasing the value of the parameter indicating the confidence level associated with the first user account of the online service.
Systems and methods for providing data privacy in a private distributed ledger are disclosed. According to another embodiment a distributed ledger network may include a first node comprising a first node computer processor and hosting a central ledger comprising a plurality of entries for public transactions and private transactions, wherein the entries for public transactions comprise transaction payloads for the respective public transaction, and the entries for private transactions comprise a cryptographic hash digest of a transaction payload for the respective private transaction; and a plurality of second nodes each comprising a second node computer processor and hosting a public database comprising the public transactions, and a private database comprising transaction payloads for the private transactions to which the node is a party.
Computer implemented systems and methods are presented comprising a platform coordinating data flows between data acquisition, data transformation and data delivery nodes, whilst protecting the identities of all entities whose data is being acquired, transformed, stored, and/or delivered. Metadata usage from different data transformation flows enables the platform to facilitate value distribution back to nodes and data subjects that contributed to output, enabling individual companies and/or data subjects subscribed to the platform to assess how and by whom their data is utilized in order to produce specific outputs, with the personal data of all entities being de-identified.
In an example, there is disclosed a monolithic reputation update on a data exchange layer (DXL). According to one embodiment, designating a set of objects as good or bad can be achieved via a single administrative action by leveraging persistent client initiated connections to the DXL framework. This may enable communication of the reputation updates across a heterogeneous infrastructure, including systems potentially unreachable by the server, such as those behind a firewall or NAT.
Aspects of the present disclosure relate to systems and methods for providing a preview of protected content in a user interface to an email client. An email client may receive an email message including a uniform resource locator (URL) linked to at least one item stored in a data service. The email client may send the URL to an email server to determine whether a recipient of the URL has permissions to the at least one item stored in the data service. When it is determined that the recipient of the URL has permissions to the at least one item stored in the data service, content for a permission protected preview of the at least one item may be received at the email client. The email client may render the permission protected preview of the at least one item in a user interface to the email client.
The present invention discloses a method for processing messages at a network node, wherein the network node has a plurality of SIM card slots. The network node first receives a message and determines whether the message matches any predefined pattern by performing a lookup on the first configuration database. If the message matches any predefined pattern, the network node processes the message. Alternatively, this can be done when the message is forwarded to a management server.
Example implementations described herein are directed to a configurable Network on Chip (NoC) element that can be configured with a bypass that permits messages to pass through the NoC without entering the queue or arbitration. The configurable NoC element can also be configured to provide a protocol alongside the valid-ready protocol to facilitate valid-ready functionality across virtual channels.
An upstream network device in a switching system processes packets an determines respective one or more egress ports of a downstream network device via which the packets are to be subsequently transmitted by the downstream network device. The upstream network device temporarily stores the packets in respective virtual output queues (VoQs) corresponding to the determined egress ports of the downstream network device. Responsively to receiving a flow control message indicating that particular one or more egress ports of the downstream network device are congested, the upstream network device modulates a flow of packets from particular one or more VoQs corresponding to the one or more particular congested egress ports of the downstream network device, to reduce congestion at the particular congested egress ports of the downstream network device, without modulating the flow of packets from other one or more VoQs corresponding to other egress ports of the downstream network device.
Some embodiments provide a method for a network controller operating on a host machine that hosts a particular one of multiple centralized routing components for a logical router. The method receives a routing table from a routing protocol application operating on the host machine. Each of the other centralized routing components operates on a different host machine and implements a different interface of the logical router that connects to at least one physical router external to the logical network. The routing protocol application operates as a router server for all of the centralized routing components. For each of the other centralized routing components, the method identifies a set of routes in the routing table to distribute to the centralized routing component. The method sends the identified routes for each centralized routing component to the centralized routing component.
Embodiments of the present invention relate to a Lookup and Decision Engine (LDE) for generating lookup keys for input tokens and modifying the input tokens based on contents of lookup results. The input tokens are parsed from network packet headers by a Parser, and the tokens are then modified by the LDE. The modified tokens guide how corresponding network packets will be modified or forwarded by other components in a software-defined networking (SDN) system. The design of the LDE is highly flexible and protocol independent. Conditions and rules for generating lookup keys and for modifying tokens are fully programmable such that the LDE can perform a wide variety of reconfigurable network features and protocols in the SDN system.
Described embodiments provide systems and methods for selecting communication paths for applications sensitive to bursty packet drops. A device intermediary to a client and a server may identify an application for which packets are to be communicated between the client and the server. The device may determine a sensitivity level of the application to a network disruption affecting the packets. The device may estimate, for each path between the client and the server for communicating the one or more packets, a path quality for the path indicating a likelihood that the network disruption affects the one or more packets. The device may select path for communicating the packets based on the sensitivity level of the application and the path quality. The device may communicate the packets between the client and the server via the path.
Embodiments of the present invention provide a system for rerouting electronic data transmissions based on generated solution data models. The system is typically configured for generating one or more solution data models comprising a plurality of asset systems and a plurality of users and storing the one or more solution data models in a model database, determine occurrence of an event associated with at least a first asset of the plurality of asset systems, extracting a first solution model associated with the first asset from the model database, determining one or more asset systems connected with the first asset based on the one or more relationships, identifying electronic data transfer jobs associated with the first asset and the one or more asset systems, and cancelling the electronic data transfer jobs associated with the first asset and the one or more asset systems.
In one embodiment, a traffic analysis service obtains telemetry data regarding network traffic associated with a device in a network. The traffic analysis service forms a histogram of frequencies of the traffic features from the telemetry data for the device. The traffic features are indicative of endpoints with which the device communicated. The traffic analysis service associates a device type with the device, by comparing the histogram of the traffic features from the telemetry data to histograms of traffic features associated with other devices. The traffic analysis service initiates, based on the device type associated with the device, an adjustment to treatment of the traffic associated with the device by the network.
Examples of identifying a cluster of servers and generating a graphical representation of the cluster of servers are disclosed. In one example implementation according to aspects of the present disclosure, a cluster of servers may be identified based on applying a social group analysis to network traffic related to a plurality of interconnected servers. A graphical representation of the identified cluster of servers may be generated.
A routing system is described herein for intelligently routing actions directed to any one of a collection of user devices that are associated with a user. In operation, the routing system receives a request from a source entity to perform an action. The routing system determines a mode of carrying out the action that involves use of one or more user devices, selected from the collection of user devices. It then instructs the selected user device(s) to carry out the action. In this manner of operation, requests that are directed to an individual user device are no longer necessarily carried out by that individual user device. The routing system chooses the user device(s) to carry out the action based on current context information together with relationship information extracted from a user graph.
A method for providing a dormant state for content management servers is provided. Client devices are allowed to conduct transactions with servers when the servers are active. However, in a dormant state, the servers are not allowed to accept new transactions. Thus, by utilizing the dormant state, software upgrades can be made to one server at a time. Alternatively, all servers can be taken down for major upgrades, with the servers still operated in a read-only mode based on a file image from a point in time just prior to the shutdown. When the upgrade is completed, the servers can be returned to the active state.
A method and system. A health and compliance check report for a network including two or more devices is received. The report includes a list of health and compliance check findings at a particular time. Each finding indicates a determination of non-compliance of a subject device of the two or more devices with a predetermined requirement and includes a severity value associated with the determination of non-compliance of the subject device. For each finding in the report, a ranking value is determined based on the associated severity value and an importance value of one or more devices connected to the subject device.
In one embodiment, a supervisory device in a network assigns different access points in the network to different access point groupings. Each of the different access point groupings uses a different network path to communicate with a given endpoint in the network. The supervisory device selects at least one of the access points in each of the different access point groupings for mapping to a virtual access point (VAP) for a node in the network as part of a VAP mapping. The supervisory device instructs the selected access points to form a VAP for the node. The node treats the access points in the VAP mapping as a single access point for purposes of communicating with the network.
Methods and apparatus for correlating event notifications between agents in a management network are provided. An agent constructs a network notification in response to receiving an event notification. If the received event notification is associated with a prior notification already received and stored by the agent, a correlation attribute is added to the constructed network notification. If the received notification matches a peer agent notification category that another agent in the management network is interested in receiving, the constructed network notification is sent to the other agent.
The present invention is directed to data communication. In certain embodiments, the present invention provides switching mechanism for choosing between redundant communication links. Data received from a first set of communication links are processed to have alignment markers removed, and first figure of merit value is determined based on the data without alignment markers. Similarly, a second figure of merit value is determined for the data received from the second set of communication links. A switch selects between the first set of communication links and the second set of communication links based on their respective figure of merit values. Alignment markers are inserted into the data transmitted through the selected set of data links. There are other embodiments as well.
It is presented a method for facilitating secure communication between a client device and an application server. The method comprises the steps of: receiving a client request from the client device, the client request comprising a first fully qualified domain name, FQDN, for the application server, and at least a portion being bound for the application server; forwarding the client request to the application server; receiving an application server response from the application server, the application server response indicating a need to provide authentication; obtaining an original context identifier from an authentication server; generating a modified context identifier based on the original context identifier and a client identifier, being an identifier of the client device; generating a client specific shared key based on the first FQDN, the client identifier and a shared key which is not specific to the client device; and providing the modified context identifier, the client specific shared key to the client device to use for authentication with the application server.
Various aspects directed towards generating a reference signal for pi/2-binary phase shift keying (BPSK) modulation are disclosed. In an example, a pi/2-BPSK sequence is selected from a plurality of candidate sequences. A reference signal is then generated based on the selected pi/2-BPSK sequence such that the reference signal is associated with a transmission of data modulated according to a π/2-BPSK modulation.
A distributed radio frequency communication system facilitates communication between a wireless terminal and a core network. The system includes a remote radio unit (RRU) coupled to at least one antenna to communicate with the wireless terminal. The RRU includes electronic circuitry to perform at least a first portion of a first-level protocol of a radio access network (RAN) for communicating between the wireless terminal and the core network. The system also includes a baseband unit (BBU) coupled to the core network, and configured to perform at least a second-level protocol of the RAN. A fronthaul link is coupled to the BBU and the RRU. The fronthaul link utilizes an adaptive fronthaul protocol for communication between the BBU and the RRU. The adaptive fronthaul protocol has provisions for adapting to conditions of the fronthaul link and radio network by changing the way data is communicated over the fronthaul link.
A demodulator for pulse-width modulated clock signals is disclosed. In one aspect, the demodulator includes an edge detector configured to detect transitions in a reference clock and output a signal indicative of timing of the detected transitions. The demodulator may also include a modulation detection circuit configured to identify modulation events of at least one pulse-width modulated pulse in the reference clock based on the signal output from the edge detector and output a signal indicative of the at least one pulse-width modulated pulse modulation event being identified. The demodulator may further include a retiming circuit configured to generate an output clock synchronized with the at least one pulse-width modulated pulse modulation event based on the signal output from the modulation detection circuit.
Disclosed herein are related to a system and a method for high speed communication. In one aspect, the system includes a set of slicers configured to generate a slicer output signal digitally indicating a level of an input signal received by the set of slicers. The system includes a speculative tap coupled to the set of slicers, where the speculative tap is configured to select bits of the slicer output signal based on selected bits of a prior slicer output signal. The system includes a decoder coupled to the speculative tap, where the decoder is configured to decode the selected bits of the slicer output signal in a first digital representation into a second digital representation. The system includes a feedback generator coupled to the decoder, where the feedback generator is configured to generate a feedback signal according to the decoded bits of the slicer output signal.
A bandwidth detection device comprises a receiving circuit, for receiving a first plurality of frequency-domain signals on a first subchannel; a filter circuit, coupled to the receiving circuit, for transferring the first plurality of frequency-domain signals to a first plurality of filtered frequency-domain signals according to a filter function; and a processing circuit, coupled to the filter circuit, for comparing the first plurality of frequency-domain signals with the first plurality of filtered frequency-domain signals, to determine whether the first subchannel comprises first transmitted data.
A method for operating a first communication node connected to an in-vehicle network is provided. The method comprises generating a header including a count field indicating a wraparound count for a presentation time of contents and a timestamp field indicating the presentation time, generating a payload field including the contents, and transmitting a frame including the header and the payload field to a second communication node connected to the in-vehicle network.
The present invention relates to an integrated circuit device for controlling LIN slave nodes based on a control signal transmitted by a LIN master control device. The IC device comprises a slave node circuit for processing the control signal when received in the form of a LIN message frame via a first data line terminal. The IC device also comprises a master node circuit for processing further control signals to be transmitted in the form of LIN message frames via a second data line terminal to the LIN slave nodes. The IC device also comprises a processing unit for controlling the LIN slave nodes based on the control signal by composing the further control signals.
Techniques are described for multicast service translation. A router can provide access to a particular source for an Internet Protocol Television (IPTV) channel that is most appropriate for the subscriber despite the subscriber requesting the IPTV channel from a different source. The most appropriate source can be identified based upon a bit rate or quality of service associated with the subscriber and/or a bit rate or quality of service associated with each of one or more alternate sources of the IPTV channel. The router can receive a request to join a multicast stream from a client device of the subscriber that identifies a source associated with an IPTV channel, identify a different source of the IPTV channel for that subscriber, and transmit a different join request destined to the different source.
An approach is disclosed for metering usage of cloud computing services at a feature level. In one embodiment, a metering application receives feature status information indicating which features of a cloud computing service are enabled through an event-driven process, in which events are generated and reported to the metering application when features are enabled or disabled, as well as a polling process, in which the metering application periodically queries the statuses of features. Feature status information gathered by the metering application is persisted in a database as collective feature statuses, with each collective feature status being associated with an interval of time during which feature statuses are unchanged. The feature status information obtained and persisted in the database may then be used to, for example, determine licensing fees based on feature usage or report feature usage to facilitate quantitative studies of the usefulness of features.
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for managing blockchain-based centralized ledger systems. One of the methods includes transmitting a timestamp request for a to-be-timestamped block of a blockchain at a time point to a trust time server by a ledger server in a blockchain-based centralized ledger system that stores data in the blockchain, the trust time server being associated with a trust time authority and independent from the blockchain-based centralized ledger system, the blockchain including a plurality of blocks storing transaction data, and disregarding the timestamp request in response to determining that a predetermined time period has lapsed after the time point and that there has been no reply to the timestamp request from the trust time server.
This application describes systems and methods for using a physical unclonable function (PUF) to authenticate a device, which may include circuitry for generating PUF values that may uniquely identify the device. According to one aspect, the device may provide enrollment PUF values to an authentication device. The device may later be authenticated if PUF values generated by the device are within a threshold distance of the enrollment PUF values. Since the PUF values are compared using a distance, it may not necessary to apply an error correcting code to the PUF values. The enrollment values and/or the calculated distance may be adjusted to compensate for time variations in the PUF values due to circuit aging. Systems and methods are also described herein for authenticating the device without revealing new PUF values to any second party, for example using a cryptographic technique known as a garbled circuit.
A method includes receiving, from a device, (i) a certificate request for a certification authority and (ii) a first digital certificate. The certificate request is digitally signed by the first device, and the first digital certificate is stored in the device. The method also includes verifying, at the certification authority, the first digital certificate using a second digital certificate of another certification authority. The method further includes verifying a digital signature of the certificate request using the first digital certificate. In addition, the method includes, after verifying the first digital certificate and the digital signature, transmitting a second digital certificate to the device.
An example system receives certificate requests from clients. Each request can indicate a number of computerized devices needing certificates; a timestamp indicating when the request was transmitted; and a client identifier. The system includes a Quality of Service (QoS) manager that: distributes the requests from the clients across client queues, each of the client queues corresponding to a particular client; and divides requests into smaller subgroups of entries corresponding to a subset of the computerized devices needing certificates. The system can also transmit retrieved entries from the client queues to a certificate management service.
A method for access control on an electronic device includes the step of generating, by an electronic device, a certificate signed by a keymaster, the electronic device running an operating system, the operating system capable of distinguishing between applications and application processes and providing an execution environment. The method also includes the steps of indicating, by the certificate, an access privilege for an approved accessor and receiving from an application, a request subject to the access privilege indicated by the certificate. The method further includes the steps of identifying the application from which the request subject to the access privilege was received and determining, using the certificate, whether the application is an approved accessor.
A method and apparatus provides a blockchain that includes one or more blocks that contain a cryptographic binding of a signature-verification public key and/or a data encryption public key to the identity of the holder of the corresponding private key. The binding is performed by one or more key binding entities, referred to herein as a blockchain identity binder. Originators and recipients use the identity binding data to secure block chain transactions.
The present disclosure includes secure communication between a vehicle and a remote device. An embodiment includes a processing resource, memory, and a vehicular communication component configured to, in response to receiving a request from a remote communication component to switch a state of a lock, calculate a challenge count for the request, generate a vehicular private key and a vehicular public key, perform a number of verification iterations, each respective verification iteration including providing the public key to the remote communication component, receiving, from the remote communication component, code for switching the lock state, verifying the remote communication component's identity, and incrementing a counter in response to verifying the remote communication component's identity, and decrypt the code using the private key and switch the lock state in response to the counter being incremented to a value equal to or greater than the challenge count.
Non-limiting examples of the present disclosure relate to generation and implementation of a new security protocol that is used to secure common data access transactions across distributed network examples. An exemplary proof of verification protocol is disclosed that implements consensus security mechanisms across a plurality of distributed nodes, which may be utilized to validate owners of data in common data access transactions. Extending principles of blockchain security to common data access transactions and Internet of Things (IOT) networking requires a solution that: improves speed in transactional processing; reduces computational complexity; and presents efficient, secure and repeatable validation for owners of data in distributed networking environments. An exemplary proof of verification protocol provides such technical advantages by validating both user-specific data for a subscriber of an application/service and session data for user activity (past and present) within the application/service.
A data statistics method and an apparatus thereof, the method comprises: receiving, by a first processor of the cooperative data party, data identifiers corresponding to pieces of first data for the data statistics and corresponding encrypted data from the statistical data party; determining, by the first processor, an identifier intersection according to data identifiers corresponding to pieces of second data of the cooperative data party and the received data identifiers corresponding to the pieces of first data; performing, by the first processor, statistical processing on encrypted data corresponding to common data identifiers in the identifier intersection to obtain encrypted statistical values; and sending, by the first processor, the encrypted statistical values to a second processor of the statistical data party to enable the second processor to perform decryption on the encrypted statistical values and obtain the statistical values.
An apparatus includes a slicer circuit, a frequency acquisition circuit, a phase acquisition circuit and an oscillator circuit. The slicer circuit may be configured to (i) generate an output signal by slicing a data signal in response to a clock signal and (ii) generate a crossing signal in response to the data signal and the clock signal. The frequency acquisition circuit may be configured to generate a first control signal and a second control signal in response to the data signal and the clock signal. The phase acquisition circuit may be configured to generate a third control signal in response to the first control signal and the data crossing signal. The oscillator circuit may be configured to generate the clock signal in response to the second control signal and the third control signal. The second control signal may shift an adjustable frequency range of the clock signal.
In an embodiment, a computer implemented method of an online course, includes receiving a server quantity via a browser interface, the server quantity being the number of servers to be loaded with an operating system and a course application to provide a computer-based teaching environment to a student user, wherein the browser interface operates within a database. The method further includes receiving a server-student allocation via the browser interface, the server-student allocation being a number that determines the proportion of students in the computer-based teaching environment to the servers providing the computer-based teaching environment. The method also includes determining a reservation permission for the computer-based teaching environment during a timeslot based on the server quantity, the server-student allocation, and available assets, wherein the available assets includes an unreserved server, and providing, via the browser interface, the reservation permission for the computer-based teaching environment during the timeslot.
Provided are a method for reporting channel state information (CSI) and a device using the same. The device determines a CSI payload size in a CSI triggering subframe on which a CSI report is triggered. The device selects one of a plurality of physical uplink control channel (PUCCH) formats according to the CSI payload size.
Provided is a device and method for transmitting or receiving an uplink channel or a downlink channel. In a wireless communication system, a user equipment: receives a physical downlink control channel (PDCCH) for the user equipment in subframe n; and repeatedly transmits a physical uplink shared channel (PUSCH) corresponding to the PDCCH within D subframe(s) out of every P subframes from subframe n+k, wherein each of k, D, and P is a positive integer, and P may be a predefined value greater than D.
A waveform observation system includes two communication nodes, a waveform observation apparatus, and a signal generation portion. The two communication nodes execute a full-duplex communication by a differential signal through a transmission line. The waveform observation apparatus observes a communication signal waveform in the transmission line in response to an input of a trigger signal. The signal generation portion outputs the trigger signal. One of the two communication nodes generates a clock signal, and transmits a signal in synchronization with the clock signal. Remaining one of the two communication nodes reproduces the clock signal included in the signal received from the one of the two communication nodes, and transmits a signal in synchronization with the clock signal that is reproduced. The signal generation portion outputs the trigger signal when equal to or more than two symbols indicated by the signal output to the transmission line consecutively coincide with one another.
An operation method of a terminal in a communication system may comprise receiving a downlink data channel from a base station in a slot # n or a slot # (n−l); receiving a slot format indicator (SFI) indicating a format of a slot # (n+k) in which an uplink control information (UCI) is to be transmitted, from the base station in the slot # n; and transmitting the UCI including a hybrid automatic repeat request (HARQ) response for the downlink data channel to the base station in the slot # (n+k). Here, each of n and k may be an integer equal to or greater than 0, and l may be an integer equal to or greater than 1.
A method for a user equipment (UE) is disclosed. The method includes receiving, by the UE, downlink control information (DCI) for a downlink (DL) scheduling assignment (DL-DCI), the DL-DCI indicating a first uplink (UL) carrier associated with a Physical Uplink Control Channel (PUCCH) resource configuration for transmitting an aperiodic UL transmission for uplink control information (UCI), and transmitting, by the UE, the aperiodic UL transmission for UCI in a second UL carrier without a PUCCH resource configuration, where the UE determines a resource allocation of the second UL carrier based on the DL-DCI. The DL-DCI includes at least one of: a UL/supplementary UL (SUL) carrier indicator, a Hybrid Automatic Repeat reQuest (HARQ)-ACK resource indicator (ARI), a sounding reference signal (SRS) request field, a HARQ timing indicator, or a channel station information (CSI) request.
Embodiments of a system and method for random access and scheduling request for new radio things sidelink are generally described herein. In some embodiments, a nUE (network user equipment) schedules a RA (random access) resource in a control channel. The nUE decodes a TAS (transmitter resource acquisition and sounding) payload, received from a wUE (wearable user equipment) in a PRB (physical resource block) addressed to a RA-ID (random access identifier) associated with the nUE. The nUE encodes, in response to decoding the TAS payload, a RAS (receiver resource acknowledgement and sounding) payload in the PRB. The nUE decodes initial access content received via a data channel from the wUE, the initial access content including a pro posed temp ID (temporary identifier) for addressing the wUE. The nUE encode, in response to the initial access content, an ACK (acknowledgement), addressed to the wUE, to accept initial access of the wUE.
A transmission device includes, a receiver that receives availability information of each of a plurality of first transmission paths, and a transmitter that divides data into a plurality of transmission blocks, groups the plurality of transmission blocks into a plurality of slices, each of the plurality of slices include a distinct subset of the plurality of transmission blocks, when the availability information indicates that each of the plurality of first transmission paths has an error occurrence below a threshold value, transmits a different one of the plurality of slices to each of the plurality of first transmission paths.
An apparatus for smart integrated cyclic data transport is provided. The apparatus may preserve the consistency and integrity of a file during the transfer of the file from a source system to a target system. The apparatus includes an orchestration subsystem. The orchestration subsystem includes an analyzer/generator module. The analyzer/generator module executes an algorithm on the file at the source location. An output is generated from the executed algorithm. The apparatus includes a consistency module. The consistency module pre-checks the output at the source location for pretransfer validation and creates a copy of the output. The copy may preserve the consistency and the integrity of the file. The apparatus includes a data transfer subsystem which transfers the file and the output from the source system to the target system. The apparatus may also include a validation subsystem for validating the integrity and consistency of the file.
In the field of wireless communication, a method and an apparatus for transmitting Uplink Control Information (UCI) are provided. The method includes: determining a codeword corresponding to the UCI among multiple codewords according to a preset rule when the UCI is transmitted on a Physical Uplink Shared Channel (PUSCH) with the multiple codewords (101); and transmitting the UCI by mapping the UCI onto the corresponding codeword (102). The apparatus includes a determining unit and a transmitting unit. The method and the apparatus provide a solution to transmitting UCI on a PUSCH with multiple codewords. This solution can be implemented easily based on LTE R8, without involving too much additional work of standardization.
A method for managing a telecommunication network comprising the steps of identification, by the central controller, of an updated condition of availability of resources of the network, and association of a plurality of updated sequences of instructions, comparison of the plurality of updated sequences of instructions with a plurality of not updated sequences of instructions associated with the last condition of availability. In case that the plurality of updated sequences of instructions is different from the plurality of not updated sequences of instructions, a step is provided of sending an updated sequence of instructions to each nodal device, on the basis of the service class of the data traffic of the device. A step is furthermore provided of checking, by the local controller, a condition of service of the data traffic at time ranges δ, said updated sequence of instructions associating to each condition of service an optimal working status to be attributed to the data traffic. A step is then provided of comparison of the condition of service with an optimal condition of service and, in case that the condition of service is different, a step is provided of starting, by the local controller, the updated sequence of instructions for changing a status of the data traffic. It is further provided a step of sending to the central controller data concerning the change of the working status.
Embodiments of a controller device and methods of control for a radio frequency (RF) test environment are generally described herein. The RF test environment may include the controller device, an RF generator, and a device under test (DUT). The DUT may be configurable to switch between multiple configurations. The controller device may receive feedback from the DUT that indicates a current configuration of the DUT. The controller device may use a machine learning rule to determine a set of candidate future configurations of the DUT based on the current configuration of the DUT. The controller device may generate a set of RF waveforms corresponding to the set of candidate future configurations of the DUT, and may transfer the set of RF waveforms to the RF generator.
A single line converter module comprises a housing; an environmentally hardened fiber optic connector located in the housing and configured to be optically coupled to a service terminal for receiving downstream optical frames; a single electrical connector located in the housing and coupled over a metallic medium to a network terminal providing a service to respective customer premise equipment (CPE); and an optical-to-electrical (O/E) converter located in the housing and configured to convert the downstream optical frames to an electrical signal for transmission over the metallic medium to the network terminal.
An optical transceiver according to an exemplary aspect of the invention includes an interferometer including an input-side optical coupler, an output-side optical coupler, and two arms through which to propagate light and disposed between the input-side optical coupler and the output-side optical coupler, adding a bias phase difference of approximately π/2+2nπ, n representing an integer, between light beams propagating through the two arms; an optical phase modulator generating an optical signal obtained by modulating a phase of continuous wave light to be inputted depending on an electrical signal to be inputted; and an optical delay device making a difference in time for which the optical signal modulated by the optical phase modulator reaching the output-side optical coupler, wherein the optical phase modulator operates by changing carrier density in a silicon optical waveguide.
An optical communication method is an optical communication method for performing optical communication with a light-emitting device serving as a communication target. The optical communication method includes: a first step of reading information relating to a distance to the light-emitting device and information relating to a size of a light-emitting region included in the light-emitting device, the information relating to the distance and the information relating to the size being stored in advance; a second step of controlling an imaging range of a camera based on the information relating to the distance and the information relating to the size, the camera capturing an image of light from the light-emitting device; and a third step of extracting a signal from light emitted from the light-emitting device based on image data that the camera has captured in the imaging range.
Systems, methods, and processing nodes for scheduling resources for relay nodes in a wireless network include identifying a relay node attached to an access node in the wireless network, determining a transmit power associated with the relay node, and prioritizing resources allocated towards the relay node based on the transmit power. The transmit power includes a transmit power of a radio air interface deployed by the relay node.
Certain features relate to a digital multichannel interface between a base station and a repeater in a telecommunications system, such as a distributed antenna system. The digital multichannel interface can provide streams of I/Q samples that carry information from multiple carriers of a wideband communications signal as well as semi-static control information for the telecommunications system. The digital multichannel interface can also transport frame timing information between the base station and the repeater. The frame timing information can maintain synchronization between the uplink transmit frames carrying uplink I/Q samples and the downlink transmit frames carrying downlink I/Q samples.
A method of a user equipment (UE) for a beam management in a wireless communication system/The method comprises receiving, from a base station (BS), configuration information including information of receive (Rx) beam identifications (IDs) associated with Rx beams, receiving, from the BS, reference signals for determining the Rx beams, wherein the Rx beams include different Rx beam IDs, respectively, measuring, based on the Rx beams, a beam reference signal (BRS) and a channel state information-reference signal (CSI-RS) received from the BS, and performing, based on the configuration information, an Rx beam cycling operation for the Rx beams to receive downlink channels.
Methods and apparatuses for a codebook for uplink MIMO in advanced wireless communication systems. A user equipment (UE) includes a processor and a transceiver operably connected to the processor. The transceiver is configured to transmit, to a base station (BS), a message reporting a coherence capability of the UE for an indication of a transmit precoding matrix indicator (TPMI) and a number of layers. The transceiver is configured to receive, from the BS, the indication of the TPMI and the number of layers via downlink control information (DCI) signaling. The transceiver is configured to transmit, to the BS, uplink (UL) data via a physical uplink shared channel (PUSCH) based on the received indication of the TPMI and the number of layers. A number of bits in the DCI signaling for the indication of the TPMI and the number of layers is determined by a coherence state that depends on the coherence capability reported by the UE.
The disclosed systems, methods, and structures are directed to LoS MIMO communications that optimize spectral efficiency and include a precoding module to multiply an input transmit data vector with a precoding matrix to generate a precoded transmit data vector, a gain matrix calculation module to generate a gain matrix having optimal gain values that maximize the spectral efficiency, a transmit signal processing unit to convert the precoded transmit data vector into an analog signal, a receive signal processing unit to receive the analog signal and convert the analog signal into a receive data vector, an equalization module, a channel estimation module to estimate channel information to generate an estimated channel, and a singular value decomposition module to decompose the estimated channel matrix. The gain matrix calculation module calculates the optimal gain values of the gain matrix by maximizing an objective function encompassing the channel information provided by a fed-back diagonal matrix.
Provided are a device and method for performing authentication in a wireless power transfer system. Provided is an authentication method in a wireless power transfer system including receiving a first packet including indication information on whether a target device supports an authentication function from the target device; transmitting, when the target device supports an authentication function, an authentication request message to the target device; receiving an authentication response message including a certificate on wireless charging from the target device in response to the authentication request message; and confirming authentication of the target device based on the authentication response message.
A system and method for inferring the feeder and phase of a transmitter on a plurality of electrical distribution lines. The system may include a low-voltage electrical distribution grid having one or more phases and one or more lines, a mechanism for transmitting a measuring data, a mechanism for receiving the measuring data, and a mechanism that analyzes the transmitted data to infer the phase and feed on which the transmission is injected.
A module for a programmable controller includes a plurality of analog input channels, a control and evaluation device, and input terminals, where for each input channel, the module includes two analog to digital converters, at least four coupling elements and a switchover device, where for each input channel, where an input side of one analog to digital converter is directly or indirectly connected with the input terminals and an output side is connected with the evaluation circuit via a coupling element, where a control input of the switchover device is connected with the switching signal generator via a further coupling element, a signal output of the switchover device is connected with an input side of the other analog-to-digital converter, and where an output side of the other analog-to-digital converter is connected with the evaluation circuit via a further coupling element, where the coupling elements cause electrical isolation.
A terminal includes: a radio receiver, which, in operation receives a plurality of data signals transmitted from a base station by a multi user-multiple input multiple output (MU-MIMO) scheme, the plurality of data signals being spatially multiplexed; an inter-user interference power estimator, which, in operation estimates inter-user interference power based on a transmission weight of another terminal with which the MU-MIMO scheme is performed; and a signal separator, which, in operation generates a reception weight based on the inter-user interference power and separates the plurality of data signals from each other based on the reception weight.
A data storage system performs partial compression and decompression of a set of memory items. The memory items each include a data block and a tag with a prefix making up at least part of the tag. The memory items are ordered based on the prefixes. A code word is created containing compressed information representing values of the prefixes for the set of memory items. The code word and block data for each of the memory items are stored in a memory. The code word is decompressed to recover the prefixes.
Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
The power circuit includes: a main substrate; a first electrode pattern disposed on the main substrate and connected to a positive-side power terminal P; a second electrode pattern disposed on a main substrate and connected to a negative-side power terminal N; a third electrode pattern disposed on the main substrate and connected to an output terminal O; a first MISFET Q1 of which a first drain is disposed on the first electrode pattern; a second MISFET Q4 of which a second drain is disposed on the third electrode pattern; a first control circuit (DG1) connected between a first gate G1 and a first source S1 of the first MISFET, and configured to control a current path conducted from the first source towards the first gate.
A stacked field-effect transistor (FET) switch is disclosed. The stacked FET switch has a first FET device stack that is operable in an on-state and in an off-state and is made up of a first plurality of FET devices coupled in series between a first port and a second port, wherein the first FET device stack has a conductance that decreases with increasing voltage between the first port and the second port. The stacked FET switch also includes a second FET device stack that is operable in the on-state and in the off-state and is made up of a second plurality of FET devices coupled in series between the first port and the second port, wherein the second FET device stack has a conductance that increases with increasing voltage between the first port and the second port.
Systems and methods are disclosed for a two lead electronic switch adapted to replace a mechanical switch. In one embodiment, a device is provided that includes a sensor and an electronic circuit having a voltage limiting circuit. The electronic circuit is configured to deactivate/activate the voltage limiting circuit to operate the electronic circuit in a first/second state in response to determining that an output of the sensor is less/more than a threshold voltage. The circuit includes first and second terminals configured to receive a switch voltage used to provide power for the device. The device sets the switch voltage to a first voltage level operative to power the electronic circuit and the sensor while the electronic circuit is operating in the first state and to a second voltage level operative to power the electronic circuit and the sensor while the electronic circuit is operating in the second state.
A capacitive-coupled level shifter includes: an input having a positive input terminal and a negative input terminal, the input configured to receive a modulated signal in a first voltage domain; a comparator circuit configured to shift the modulated signal to a second voltage domain higher than the first voltage domain; and a capacitive divider circuit comprising a first capacitive divider branch coupling the positive input terminal of the input to a positive input terminal of the comparator circuit and a second capacitive divider branch coupling the negative input terminal of the input to a negative input terminal of the comparator circuit. The first capacitive divider branch and the second capacitive divider branch are symmetric so as to cancel out a common mode voltage of the modulated signal. A level shifter system which includes the capacitive-coupled level shifter is also described.
A discrete time filter network with an input signal connection and an output signal connection and comprising a capacitor bank with a plurality of history capacitors, and at least one sampling capacitor which operates at a predetermined cycling rate to couple to at least one history capacitor at a time, which history capacitor is selected from the capacitor bank so as to share electrical charge between such selected history capacitor and the sampling capacitor, wherein there is a plurality of sampling capacitors that are provided in the capacitor bank, and the discrete time filter network is provided with at least one switch network comprising a plurality of clock driven switches for making selected cyclical connections between the sampling capacitors and the history capacitors in the capacitor bank at the predetermined cycling rate.
A resonator is provided having a first electrode and a second electrode; and a piezoelectric film that is disposed between the first and second electrodes, has an upper surface opposing the first electrode, and that vibrates in a predetermined vibration mode when a voltage is applied between the first and second electrodes. Moreover, the resonator includes a protective film made of an insulator and disposed opposing the upper surface of the piezoelectric film with the first electrode interposed therebetween. Furthermore, a conductive film made of a conductor is provided that is disposed opposing the upper surface of the piezoelectric film with the protective film interposed therebetween, where the conductive film is electrically connected to any one of the first and second electrodes.
An amplifier device (14) is adapted for an antenna-like transducer for MRI applications, especially for an RF coil. The amplifier device (14) includes at least one amplifier channel (16) including: an input connection device (18) for connecting an RF signal source (12); an output connection device (20) for connecting the antenna-like RF transducer; an RF amplifier unit (22); and an impedance matching circuit (24) configured to adapt the coupling of the RF amplifier unit (22) to the actually connected antenna-like RF transducer with regard to an actual load of the amplifier device (14). The load results from the combination of the antenna-like RF transducer and a person or sample interacting with the antenna-like RF transducer. The impedance matching circuit (24) establishes an electric line (34) between the RF amplifier unit (22) and the antenna-like transducer with an adjustable line length.
A transmitter includes: a transmission circuit that outputs, via a transmission amplifier, transmission signals of a same frequency band; and a feedback circuit that feeds back, to the transmission circuit, a distortion compensation coefficient that is used to compensate for distortion of the transmission signals. The feedback circuit includes: a delay circuit that delays each of the transmission signals by a different amount of time; a combining unit that combines the delayed transmission signals to generate a combined signal; a signal conversion unit that converts a frequency of the combined signal to a different frequency using a local signal that is common among the transmission signals, and generates a demodulated digital signal from the combined signal of which the frequency has been converted; and a distortion compensation calculation unit that calculates the distortion compensation coefficient based on the demodulated digital signal.
Methods and systems for modulating an amplifier power supply to efficiently attain amplified RF output power with much lower power dissipation than existing amplifiers. In a cable television (CATV) network, a processor receives a signal to be amplified by an amplifier at a location remote from the processor. A bias point of the amplifier may be variably modulated based on peaks of an input signal to reduce amplifier dissipation.
A switching circuit includes a switching circuit stage configured to supply a load via filter networks. Control circuitry is provided to control alternate switching sequences of transistors in the half-bridges of the switching circuit stage. A current flow line is provided between the output nodes of the half-bridges including an inductance between two switches. First and second capacitances are coupled with the output nodes of the half-bridges. The control circuitry switches first and second switches to the conductive state at intervals in the alternate switching sequences of the transistors in the half-bridges between switching the first pair of transistors to a non-conductive state and switching the second pair of transistors to a conductive state.
A system having a plurality of solar panel mounting clamps for mounting a plurality of solar panels including a plurality of threaded projections fixed in a mounting surface; a plurality of the solar panel mounting clamps, each respectively disposed upon one of the plurality of threaded projections such that the threaded receiving portion of each solar panel mounting clamp receives each respective threaded projection, such that the plurality of solar panel mounting clamps are capable of securing a plurality of solar panels to the mounting surface such that each clamp makes a conductive bond with one or more panels such that each panel shares a common ground. The system may include one or more mounting plates to rest upon the mounting surface that has one or more retainer clip to ease in cable management.
A mobile washing system and methods for washing photovoltaic panels. The mobile washing system includes a vehicle, a fluid tank coupled to the vehicle, and a washing apparatus mounted to a side of the vehicle. The washing apparatus includes two generally longitudinal spray pipes that are configured to be rotated and vertically adjusted with respect to the vehicle to position the spray pipes generally parallel to a top surface of the photovoltaic panels.
A photovoltaic system or installation, for generating electricity, which includes auxiliary charging modules for each solar tracker of the photovoltaic system to charge or supply energy to an auxiliary power supply device such as a battery, in order to power the photovoltaic system during the initial stages of the set-up process of the electric energy generation plant or during incidences in the normal operation of the photovoltaic system or installation.In addition to the auxiliary charging modules, the photovoltaic system comprises: one or more solar trackers, wherein each solar tracker comprises a plurality of photovoltaic panels, a DC/AC inverter to transform the DC electricity generated into AC electricity which is then supplied to an electric grid or an electric power distribution system, and a solar tracker controller, for each solar tracker, which controls several aspects of the one or more solar trackers of the photovoltaic system.
A glass roof shingle includes a shingle cover layer made of a glass. A shingle base layer is disposed underneath the shingle cover layer. The shingle base layer and shingle cover layer define a cavity. A seal area formed between the shingle base layer and shingle cover layer and around the cavity controls ingress of moisture into the cavity. A photovoltaic module may be disposed within the cavity.
A solar tracker comprises a support frame, a panel assembly comprising one or more solar panels, and an actuator to rotate the panel assembly to track the movement of the sun. The panel assembly comprises a central spine and one or more panel carriers extending transversely over the top of the central spine for supporting solar panels. The panel carriers are secured to the central spine by respective support brackets. The support brackets comprise a top surface, side walls extending downwardly from opposing sides of the top surface, and a slot with a downwardly facing opening extending transversely through the sidewalls. The slot is configured to receive the central spine.
An ohmic-inductive electrical load, such as an electric motor, for example, for a hard-disk drive, is driven by supplying thereto a load current via a switching power stage supplied with a source current delivered by a supply source. The driving action may include sensing the load current; estimating the source current starting from the load current sensed; generating a feedback signal that assumes different values as a function of the result of the comparison between the source current estimated and a source-current threshold value; and driving the switching power stage via the feedback signal, increasing or decreasing, respectively, as a function of the different values assumed by the feedback signal, the load current, thereby controlling the source current.
The drive device measures an open-phase voltage in an energization period in pulse width modulation control, and estimates position information of a rotor based on the measured voltage value, to drive the three-phase brushless motor. This drive device is configured so that, when a voltage pulse width of a set duty cycle is less than or equal to a predetermined value, energization with a voltage pulse width of a minimum duty cycle is performed twice in one period of pulse width modulation, and energization with a voltage pulse width of a correction duty cycle is performed twice in next one period of the pulse width modulation, so that energization with a voltage pulse width of a drive duty cycle corresponding to the set duty cycle is performed, on average in two periods.
An embodiment of this invention relates to a motor driving control apparatus for a moto-assisted vehicle, which includes a driving unit configured to drive a motor, and a controller configured to determine a regeneration amount based on a first speed of a vehicle that moves by the motor driven by the driving unit, and control the driving unit according to the regeneration amount, wherein the first speed is a speed at a first timing when it is detected that a brake of the vehicle is changed to OFF, or is determined based on temporal change in an acceleration of the vehicle.
A virtual synchronous generator device disclosed. The device includes an inverter and inverter controller having a power control portion, a power reserve portion, a power point tracking control portion, and a virtual inertia control portion. The power reserve portion determines an amount of power to be reserved and sends a signal, indicative of the determined amount of power to the power point tracking controller. The power point tracking controller determines a power point that is less than a MPP, and provides a signal to the power control portion indicative of the determined power point. The inertia control portion determines a virtual inertia and provides a signal indicative of the virtual inertia to the power control portion. The power control portion provides a power control signal to the inverter based on the power point tracking signal and the inertia command signal.
A method for regulating an AC output current of a converter having a DC voltage intermediate circuit and a semiconductor switch in a bridge circuit for converting a DC voltage of the DC voltage intermediate circuit into an AC output current. The AC output current is regulated by way of a direct hysteresis current regulation, in which an actual value of the AC output current is maintained within a hysteresis window around a set point value. Furthermore, a hysteresis width of the hysteresis window is modulated in order to adjust a frequency spectrum of the AC output current.
A switched-mode power converter and a method for operation is presented. The switched-mode power converter has a high side switching element, a low side switching element, and an inductor. Both the high side switching element and the low side switching element are coupled to an input terminal of the inductor. A zero cross comparator generates a trigger signal for opening the low side switching element. A sampling unit samples, at a time when the low side switching element is switching, an inductor voltage at the input terminal of the inductor. An integrating unit determines an offset voltage by integrating the sampled inductor voltage. Finally, an input voltage of the zero cross comparator is adjusted by subtracting the determined offset voltage from the inductor voltage. As a result, the switching behavior of the switched-mode power converter is optimized.
A converter circuit and related technique for providing high power density power conversion includes a reconfigurable switched capacitor transformation stage coupled to a magnetic converter (or regulation) stage. The circuits and techniques achieve high performance over a wide input voltage range or a wide output voltage range. The converter can be used, for example, to power logic devices in portable battery operated devices.
A solution is provided for a current balance feedback method to improve stability in a multi-phase DC-DC switching converter, where the current balance feedback signal is added to the PWM duty signal, after the PWM comparator. Using this feedback method, current balance oscillation issues caused by the non-linearity of the main control loop can be solved, and provide better current balance stability in the switching converter. Advantages include improving the stability of the current balance feedback loop by introducing the correction post PW modulation in the time domain, effectively bypassing interaction with the PW modulator. The current balance feedback loop stability improvement reduces PCB design effort and iteration.
Apparatus and associated methods relate to providing safe electrical power to electrical equipment operating in a hazardous location. Safe electrical power is power that is both current limited and voltage limited so as to provide insufficient energy to ignite flammable gas or dust of a hazardous location. Safe electrical power is provided by first limiting voltage of operating power provided by a power source. Then the voltage-limited operating power is current limited by a current-limiting device. The current and voltage limited operating power is then converted to a step-down power via a current-limiting network. The step-down power is then voltage limited by a second voltage-limiting device. In some embodiments, the current-limiting network is a current mode step-down regulator.
A motor assembly of the present disclosure improves a combined structure between an impeller and a rotor to more firmly combine them. Furthermore, the impeller is combined with a rotor shaft without deformation, so the durability of the respective components may be improved.
A motor includes a stator, a rotor, and a first bearing. A housing of the stator has a top wall, a bottom wall opposite, a side wall and a first opening in the top wall. A rotating shaft of the rotor has a first magnetic unit having a first outer surface. The first outer surface includes first and second magnetic pole surfaces alternately arranged. The first and second magnetic pole surfaces have different magnetic poles. The first bearing having a first groove is disposed in the first opening. The first magnetic unit is located in the first groove having a first inner surface facing the first outer surface. The first inner surface includes third and fourth magnetic pole surfaces alternately arranged. The third and fourth magnetic pole surfaces have different magnetic pole. The first and third as well as second and fourth magnetic pole surfaces have the same magnetic poles.
A connecting element for connecting a motor shaft of a motor to an encoder shaft of a rotary encoder which is designed to detect a rotational position and/or a rotational speed of the motor shaft has a connecting region which runs in an annular shape around a connecting axis and has two end sides which lie axially opposite one another, an outer side facing away from the connecting axis and an inner side facing the connecting axis. In addition, the connecting element has at least one fan blade which protrudes radially from the outer side of the connecting region.
A blower device includes: a fan; a motor rotating the fan; a cover covering a stator and a coil of the motor; a terminal electrically connected to the coil and protruding from the cover; a printed circuit board electrically connected to the terminal; a housing including a receiving hole receiving the terminal and supporting the stator; and an elastic body sandwiched between the cover and the housing and formed into an annular shape, wherein the elastic body includes a first seal portion surrounding the terminal within the receiving hole, the cover includes a protruding portion, a protruding height of the protruding portion from the cover is lower than that of the terminal from the cover, and the protruding portion supports the first seal portion.
A motor includes a housing that has a bottom with a first bearing accommodation and a cylindrical side surface portion which extends from the bottom; a rotor assembly with a rotation shaft, and a rotor mounted on the rotation shaft and accommodated inside the housing; a stator assembly accommodated inside the housing and surrounding the rotor; a housing cover coupled to an upper end of the housing and having a second bearing accommodation; a flow guide on the housing cover; an impeller connected to the rotation shaft over the flow guide; an impeller cover; a first bearing accommodated in the first bearing accommodation and receiving the rotation shaft; and a second bearing accommodated in the second bearing accommodation and receiving the rotation shaft, the housing cover having a cover body with an opening, connection arms between the second bearing accommodation and the opening portion, and a guide rib.
A bus bar unit is provided with a plurality of bus bars and an insulating holder. The insulating holder holds the bus bars in a parallel arrangement and insulates between the bus bars. The insulating holder includes a molded portion, a wall portion and a groove portion. The molded portion covers an entire periphery of at least one bus bar from among the plurality of the bus bars. The wall portion is provided at a position spaced apart from a side surface of the molded portion to insulate the bus bars. The groove portion holds a remaining bus bar between the molded portion and the wall portion.
A stator includes a first core including a plurality of non-oriented electromagnetic steel sheets that is stacked and having an insertion hole penetrating the plurality of non-oriented electromagnetic steel sheets in an axial direction of the stator and a second core arranged in the insertion hole and including a plurality of oriented electromagnetic steel sheets that is stacked. The first core has a thin-wall part adjoining the second core, and a conditional expression of 0.5tm≤ta≤2tm is satisfied, where ta denotes a thickness of the thin-wall part when the first core is viewed in the axial direction and tm denotes a sheet thickness of one non-oriented electromagnetic steel sheet in the plurality of non-oriented electromagnetic steel sheets.
An AC electric machine that includes a dual magnetic phase material ring is disclosed. The AC electric machine includes a stator assembly and a rotor assembly positioned within the stator assembly and configured to rotate relative thereto, the rotor assembly comprising a rotor core including a stack of rotor laminations that collectively form the rotor core, the rotor core including a plurality of rotor poles separated by gaps therebetween. The AC electric machine also includes a dual magnetic phase material ring positioned about the stack of rotor laminations, the dual magnetic phase material ring comprising a first ring portion comprising a magnetic portion and a second ring portion comprising a non-magnetic portion.
A power transmitting unit transmits electric power. A power transmission control unit detects one or more power receiving units that receive the electric power and controls the power transmitting unit so that more electric power is transmitted to a power receiving unit with a higher priority. One aspect of the present invention may be realized as a transmission device; a power supply system including a power receiving unit and the transmission device; or a power supply system further including an electronic device which consumes electric power received by the power receiving unit.
A wireless power transmission device including a resonant circuit magnetically coupled to a wireless power reception device and being configured to wirelessly transmit power, an alternating current (AC) generator including switches and being configured to receive a direct current (DC) voltage and to generate an AC current, according to a switching operation of the switches, to be supplied to the resonant circuit, and a variable capacitor connected to an output terminal of the AC generator and having a first capacitance, when a load state of the wireless power reception device is provided as a full load state and a second capacitance lower than the first capacitance, when the load state is provided as a light load state.
A resonance power transmission system for controlling a supply voltage of a power converter based on power transmission efficiency is provided. According to an aspect, a resonance power transmitter configured to transmit resonance power to one or more resonance power receivers may include: a voltage controller configured to receive an input signal and to output voltage of a predetermined level; a source controller configured to control a signal level of the DC voltage based the number of resonance power receivers.
An electric vehicle service equipment (EVSE) system includes an EVSE case having a front plug face, a rear face, and left and right gripping sides that collectively define a trapezoidal prism cross section, the left and right gripping sides further having left and right convex gripping portions, respectively, a relay positioned within the EVSE case, and a controller positioned within the EVSE case and in communication with the relay, the controller responsive to a pilot duty signal, when a pilot duty signal is present.
An example battery, a terminal, or a charging system can include a battery charging port, a battery discharging port, a battery negative port, an overcurrent protection element, a protection integrated circuit, a control switch, and an electrochemical cell. The battery charging port is connected to a positive electrode of the electrochemical cell, the control switch is connected in series between a negative electrode of the electrochemical cell and the battery negative port, the protection integrated circuit is connected in parallel to two ends of the electrochemical cell, and the protection integrated circuit is further connected to the control switch, so as to send a control signal to the control switch. In addition, the overcurrent protection element is connected in series between the battery discharging port and the positive electrode of the electrochemical cell.
An electric work machine (2) includes a motor (M) and a control unit (36) that controls rotation of the motor. The control unit (36) is configured such that an operating mode is switchable between a normal mode, in which the motor is rotated within a prescribed output range, and a power mode, in which the motor is rotatable with energy greater than in the normal mode. Furthermore, the control unit (36) is configured to restrict use of the power mode.
A direct current power system. The direct current power system includes a direct current bus system, a solar power system, an energy storage system, a wind power system, a rectifier system and an inverter system. The solar power system includes a plurality of solar panels, is electrically coupled to the energy storage system and is configured to supply a first direct current power at 48 volts. The energy storage system includes a plurality of battery stacks and is configured to supply a second direct current power at 380 volts to the direct current bus system. The wind power system includes at least one wind turbine assembly and is configured to supply a third direct current power at 380 volts to the direct current bus system. The rectifier system is configured to supply a fourth direct current power at 380 volts to the direct current bus system.
A method and apparatus for power allocation across multiple loads. The method comprising the steps of: allocating available power between two or more power load elements, wherein a ratio of power allocated to a load element is based on a priority and measured parameters; and dynamically updating the power allocated to a load element as power requirements change.
Disclosed examples include an ESD protection circuit, including a transistor operative according to a control voltage signal at a control node to selectively conduct current from a protected node to a reference node during an ESD event, as well as a resistor connected between the control node and the reference node, a capacitor connected between the control node and an internal node, and a diode with an anode connected to the protected node and a cathode connected to the internal node to allow charging current to flow from the protected node to charge the capacitor and to provide a high impedance to the internal node to prevent or mitigate flow of leakage current from the internal node to the protected node to raise a trigger voltage of the protection circuit during normal operation.
There is provided a method of operating a reconfigurable differential protection scheme for carrying out differential protection of an electrical power network, the electrical power network comprising terminals, each of the terminals configured to be in communication with each other within a communications network. The method includes controlling the differential protection scheme to deactivate the differential protection, and selecting a terminal to be configured out of or into the differential protection scheme. The method also includes communicating reconfiguration information among the terminals, the reconfiguration information including the selection of the terminal to be configured out of or into the differential protection scheme. The method also includes modifying a respective differential protection algorithm at each of the non-selected terminals so as to configure the selected terminal out of or into the differential protection scheme, and controlling the differential protection scheme to reactivate the differential protection.
A method of preventing disjunctions in a power distribution unit having a plurality of output connectors is disclosed. A power level of each of the output connectors is sensed. It is detected that the power level of a given output connector exceeds a fixed power limit. In response to the detection, a delivery of power by the given output connector is stopped while maintaining a delivery of power by a remainder of the output connectors. Power delivery may be resumed in response to receiving a user command to rearm the given output connector. A power distribution unit adapted to prevent disjunctions is also disclosed.
A connection assembly includes an adapter to be mounted to a rear part of a subsea sensor, a sensor port being located in the adapter, through which at least a first and a second sensor connection are led to the subsea sensor; a first port for providing a connection to a first of the subsea cables; and a second port for providing a connection to a second of the subsea cables. A first penetrator is arranged in the first port to provide a liquid tight seal between an interior space of the adapter and a duct connected to the first port leading the first sensor connection through the first port, and a second penetrator is arranged in the second port providing a liquid tight seal between the interior space of the adapter and a duct connected to the second port and leading the second sensor connection through the second port.
A utility pole assembly includes an elongated structure and sensors mounted on the elongated structure for detecting and determining deflection and/or tilt. The elongated structure has a first end configured to be fixed into a ground and a second end that is free and located opposite the first end. A first sensor is positioned on the elongated body at or near the second end, and a second sensor is positioned on the elongated body between the first tilt sensor and the first end of the elongated body. The first and second sensors each include sensor circuitry configured for measuring movements in tilt values in at least two axes, which can be converted to tilt angles. The first and second tilt sensors, in combination, are configured for determining and distinguishing between elastic deflection of the elongated body and tilt of the elongated body.
A mounting device includes a panel portion, and a fastener receiving structure provided within a perimeter of the panel portion. The fastener receiving structure can include an aperture to receive an insertive fastener, and a flexure mechanism to enable at least a portion of the fastener receiving structure that includes the aperture to flex with insertion of the fastener in the aperture that attaches the panel portion against an underlying surface.
An ignition coil for internal combustion engines is provided which includes a primary coil, a secondary coil, a case, a high-voltage terminal, a resistor, and a filled resin. The case has a case body and a high-voltage terminal extending downward from the case body. The high-voltage terminal is press-fit in the high-voltage tower to close the inside thereof. The resistor is fit in the high-voltage terminal. The high-voltage terminal includes a pressed wall and a non-pressed wall. The pressed wall is pressed against the high-voltage tower. The non-pressed wall is not pressed against the high-voltage tower. The resistor is fit in the non-pressed wall. This structure minimizes pressure exerted on the resistor and the high-voltage tower to secure a desired degree of durability of the resistor and the high-voltage tower.
A segmented VCSEL array having a plurality of individually addressable segments, each segment comprising one or more VCSELs. In some cases, at least two of the plurality of individually addressable segments may be driven in combination. The plurality of individually addressable segments, in some embodiments, may be centered around the same central point. An optical element may be used in conjunction with the segmented VCSEL array, and in some cases may be aligned to the central point. The optical element may be configured such that light passing therethrough may be directed according to which of the plurality of individually addressable segments is activated. In some embodiments, the optical element is a grating or diffractive optical element. The grating or diffractive optical element could be patterned with optical segments that each correspond to at least one the plurality of individually addressable segments.
An example apparatus may include a first plate having a first side. A first plurality of fins may be integral with the first side of the first plate and protruding perpendicularly therefrom. The first plurality of fins may be arranged in first concentric circles separated radially by a first distance. The apparatus may also include a second plate having a first side. The second plate may be rotatably coupled to the first plate. A second plurality of fins may be integral with the first side of the second plate and protruding perpendicularly therefrom. The second plurality of fins may be arranged in second concentric circles separated radially by the first distance. Each fin of the second plurality of fins may interpose between adjacent fins of the first plurality of fins to transfer heat between the second plate and the first plate.
An adapter plate alignment gauge system includes an adapter plate for holding a crimping tool in different positions and an alignment gauge for aligning the crimping tool in a predetermined set crimping tool position relative to the alignment gauge. The adapter plate is immovably arrangeable in a predetermined set adapter plate position in a crimping press which, in order to create a crimp connection, connects one conductor end of a cable to a crimp contact. The alignment gauge can be fastened to the adapter plate whereby the alignment gauge is arranged in a predetermined set alignment gauge position relative to the adapter plate.
A lamp device with changeable lamp socket includes a light tube, a light source plate received in the light tube, and two lamp sockets locked with two ends of the light tube. The lamp socket includes a first tubular body, a first covering plate, and two conductive plugs. The lamp device further includes two adapter covers detachably locked on the lamp sockets. Each adapter cover includes a second tubular body, a second covering plate, and a conductive component. For each of the lamp sockets and the corresponding adapter cover, the conductive plugs are inserted into insertion holes of the second covering plate, and the conductive component is electrically connected to the conductive plugs, passes through an opening of the second covering plate, and exposed from the second covering plate.
A connector includes a plurality of contacts having a first pair of contacts and a second pair of contacts, and a housing configured to hold the plurality of contacts, the plurality of contacts each including a contact portion to be in contact with a contact of a mating connector, a connection portion to be connected to a connection target object, and a held portion disposed between the contact portion and the connection portion and embedded in the housing, the first pair of contacts each including, in the held portion, a deformed portion partially separated from the second pair of contacts.
An electrical plug-in connection (1) for data transmission, including a plug (2) and a socket (3), the plug (2) has a plug housing (4) and a plug-in extension (5) which projects beyond the plug housing (4) and has electrical contacts (6), and the socket (3) has a socket housing (7) with a receiving channel (8) for the plug housing (4). A plug-in extension receptacle (9) with electrical mating contacts (10) is provided, and in a fully inserted state, the plug-in extension (5) is inserted into the plug-in extension receptacle (9) for connecting the electrical contacts (6) to the electrical mating contacts (10). The plug housing (4), at least in regions, is arranged within the receiving channel (8). The socket (3) has a locking device (11) for locking the plug housing (4) in the receiving channel (8) in the fully inserted state and an operating element (12), which projects beyond the socket housing (7), for releasing this locking arrangement.
A waterproof assembly includes a casing, a gasket, and a cap. The casing has an opening. The gasket includes a main body and a protruding portion. The main body has a first circular raised structure configured to abut against an inner surface of the casing. The protruding portion is connected to the main body and is configured to at least partially protrude out of the casing through the opening. The cap is configured to abut against a side of the main body away from the opening. The cap has a through hole configured to be aligned with the protruding portion. The casing further has a plurality of fixing members configured to abut against a side of the cap away from the gasket.
A vehicular device has a device main body, a device box housing the device main body, a terminal block attached to a wall of the device box, and a wire harness electrically connected to the device main body via the terminal block. The terminal block includes an O-ring. The O-ring has a ring-shaped O-ring main body and a lock target portion which is continuous with the O-ring main body. The lock target portion has a connection portion which is continuous with the O-ring main body at one end and a lock target portion main body which is continuous with the other end of the connection portion and projects perpendicularly to an extension direction of the connection portion. The lock target portion main body has a hollow portion in a base portion which is continuous with the other end of the connection portion, and thereby assumes a tubular shape.
Even when a connection board has a large thickness tolerance, a stable connection is achieved by absorbing the tolerance so as to stabilize a contact pressure between the connection board and contacts. In a unit in which electrode groups of a connection board are in pressure contact with elastic contacts formed integrally with an inner housing to connect thereto, the inner housing is provided inside an outer case of a card edge connector through an elastic member to be freely movable forward and backward in a thickness direction of the connection board. The positions of the elastic contacts are adjusted by forward or backward moving the inner housing in accordance with the thickness of the connection board inserted into board insertion slots, so a pressure contact force with the elastic contacts is substantially equalized, irrespective of the size of the thickness of the connection board.
The grounding clamp system is for use with an electrically insulated pole and for attachment to an electrical conductor in angled configurations. The grounding clamp system includes a clamping mechanism having an actuatable clamp and an associated ground conductor connector. An attachment coupler is configured to attach to the electrically insulated pole, and an angular adjustment mechanism is coupled between the clamping mechanism and the attachment coupler. The adjustment mechanism is configured to provide angular adjustment between the clamping mechanism and the attachment coupler in at least one axis while also transferring force to actuate the actuatable clamp when attaching the clamping mechanism to the electrical conductor at a selected angular position. The clamping mechanism is configured to create a path to pass ground fault current from the electrical conductor to a ground conductor coupled to the ground conductor connector without including the angular adjustment mechanism in the path.
Provided is an intermediate connection system for an ultra-high-voltage direct-current (DC) power cable. Specifically, the present invention relates to an intermediate connection system, for an ultra-high-voltage DC power cable, which is capable of simultaneously preventing or minimizing electric field distortion, a decrease of DC dielectric strength, and a decrease of impulse breakdown strength due to the accumulation of space charges in an insulating layer of a cable and an insulating material of an intermediate connection part.
A wireless communication system that communicates by an electromagnetic wave includes a first wireless device that includes a transmission rotationally polarized wave frequency generator for giving a rotation period to a polarized wave of the electromagnetic wave to be transmitted, transmits a synchronization code by the electromagnetic wave of the polarized wave rotated using the transmission rotationally polarized wave frequency generator, and transmits data by the electromagnetic wave, and a second wireless device that includes a reception rotationally polarized wave frequency generator for giving a rotation period to the polarized wave received in a reception of the electromagnetic wave, calculates transmission timing of the synchronization code included in the received electromagnetic wave of the polarized wave rotated using the reception rotationally polarized wave frequency generator, and sets a signal included in the received electromagnetic wave, as data based on the calculated transmission timing.
A dual-polarized millimeter-wave antenna system applicable to 5G communications and a mobile terminal are disclosed. Each antenna element comprises a radiating body and a director, wherein the radiating body comprises a first dielectric layer, a main radiating part, a first feeding branch, a second feeding branch, a third feeding branch and a fourth branch, and the director comprises a second dielectric layer, a first director part and a second director part. The director has the same effect on a +45° polarization pattern and a −45° polarization pattern of the radiating body, so that wide-angle coverage is realized, and the consistency of the two polarization patterns is good; and the antenna system occupies a small area does not need a clearance area and can be placed on a complete metal ground plate, there by being suitable for full-screen equipment.
An antenna transmission system includes a dual-feedline tapered slot antenna configured to generate a radiated output signal in response to a radio frequency (RF) signal. A power divider is configured to split a source RF signal into a plurality of RF feed signals. A plurality of transmitting amplifiers convert the plurality RF feed signals into a plurality of amplified RF feed signals; and a plurality of feedlines deliver the plurality of amplified RF feed signals to the dual-feedline tapered slot antenna. The dual-feedline tapered slot antenna generates the radiated output signal in response to the plurality of amplified RF feed signals.
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) may use transmissions causing power density exposure (PDE) to nearby users. To reduce the PDE of an antenna module (e.g., below a maximum PDE threshold), the UE may implement a shielding strip around the antenna module. For example, the antenna module may include a substrate having a first surface and a set of antenna elements on the first surface. The shielding strip may enclose the set of antenna elements of the antenna module and extend away from the first surface above the antenna elements. The shielding strip may reduce PDE outside a field of view of the antenna module. Additionally, in some cases, the placement of the antenna module in the UE and the materials used for constructing the UE may further reduce PDE.
Antenna assembly, electronic device and method for switching antenna are provided. The antenna assembly includes a first antenna structure, second antenna structure and third antenna structure, the first antenna structure is used as a diversity antenna, the second antenna structure is in an idle state, and the third antenna structure is used as a main antenna; a radio frequency module coupled to each of the first antenna structure, the second antenna structure and the third antenna structure through a switch assembly; and the switch assembly arranged to, according to signal quality of the first antenna structure, the second antenna structure and the third antenna structure, switch one of the first antenna structure or the second antenna structure to the main antenna, switch the other of the first antenna structure or the second antenna structure to the idle state and switch the third antenna structure to the diversity antenna.
A non-pneumatic tire and radio frequency identification tag combination is provided. The combination includes a ground-contacting annular tread, a central rim and at least one spoke disk disposed between the rim and the tread. The at least one spoke disk includes an inner ring mounted on the central rim, an outer ring, and a plurality of spokes extending radially between the inner ring and the outer ring. A shear band is disposed between the outer ring of the at least one spoke disk and the tread. A radio frequency identification tag is attached to the inner ring or the outer ring of the at least one spoke disk.
A transmission antenna system may include an elongate upstanding main pole, an antenna support assembly extending upwardly from the main pole, at least one antenna mounted on the antenna support assembly, and a concealment assembly mounted on the antenna support assembly and configured to conceal from view the antenna support assembly and the at least one antenna.
A transmission line includes a laminated insulating body including insulating base material layers that are laminated, signal conductors provided inside the laminated insulating body and extending in a transmission direction along the insulating base material layer, and ground conductors sandwiching the signal conductors in a lamination direction via the insulating base material layers. The transmission line includes at least one curved portion that is bent along a plane orthogonal to the lamination direction. The signal conductors are separated from each other in a direction orthogonal to the transmission direction when viewed in the lamination direction and include a first signal conductor on an inner side and a second signal conductor on an outer side in the curved portion. An interval between the ground conductors sandwiching the first signal conductor is narrower than an interval between the ground conductors sandwiching the second signal conductor.
A microstrip that is usable in a quantum application (q-microstrip) includes a ground plane, a polyimide film disposed over the ground plane at a first surface of the polyimide film, and a conductor formed on a second side of the polyimide film such that the first surface is substantially opposite to the second surface. A material of the conductor provides greater than a threshold thermal conductivity (TH) with a structure of a dilution fridge stage (stage). The stage is maintained at a cryogenic temperature, and the material of the conductor bonds at the cryogenic temperature with a second material of a part of a connector of a microwave line.
A band-pass filter includes five resonators. The five resonators are configured so that capacitive coupling is established between every two of the resonators adjacent to each other in circuit configuration. The first stage resonator and the fifth stage resonator are magnetically coupled to each other. The second stage resonator and the fourth stage resonator are capacitively coupled to each other. Each of the five resonators includes a resonator conductor portion. The respective resonator conductor portions of the first and fifth stage resonators are physically adjacent to each other. The respective resonator conductor portions of the second and fourth stage resonators are physically adjacent to each other. The respective resonator conductor portions of the first and second stage resonators are physically adjacent to each other. The respective resonator conductor portions of the fourth and fifth stage resonators are physically adjacent to each other.
A metal-air battery including: a negative electrode metal layer; a negative electrode electrolyte layer disposed on the negative electrode metal layer; a positive electrode layer disposed on the negative electrode electrolyte layer, the positive electrode layer comprising a positive electrode material which is capable of using oxygen as an active material; and a gas diffusion layer disposed on the positive electrode layer, wherein the negative electrode electrolyte layer is between the negative electrode metal layer and the positive electrode layer; wherein the negative electrode metal layer, the negative electrode electrolyte layer, and the positive electrode layer are disposed on the gas diffusion layer so that the positive electrode layer contacts a lower surface and an opposite upper surface of the gas diffusion layer, and wherein one side surface of the gas diffusion layer is exposed to an outside.
Disclosed is a battery module, as well as a battery pack and a vehicle comprising the same. The battery module includes a plurality of battery cells, each having an accommodation portion in which an electrode assembly is accommodated and a sealing portion for sealing the accommodation portion, thermal-conductive sheets configured to surround at least a part of the battery cells in surface contact with the battery cells, side cooling fins located at an inner side of the thermal-conductive sheets and at least partially in contact with the accommodation portions of the battery cells, and a cooling plate in contact with the thermal-conductive sheet.
A thermal battery including a storage vessel as well as an inlet pipe and an outlet pipe for a fluid that are connected to a circulation circuit is disclosed. The thermal battery also has at least two shut-off valves placed on the inlet pipe and the fluid outlet pipe, respectively, to isolate the fluid contained in the storage vessel when the circulation circuit of the fluid is shut off. The shut-off valves are automatic and include an enclosure containing the fluid and including an inlet and an outlet for the fluid, and a float that is moveable between: an upper position in which the float floats and obstructs at least the outlet when the circulation circuit is shut off, and a lower position in which the float is submerged and allows the fluid to flow between the inlet and the outlet when the circulation circuit is operational.
A secondary battery including, an anode including a metal; a cathode; an electrolyte provided between the anode and the cathode; and a separator membrane, and further comprising an auxiliary electrode interposed in the separator membrane, for inhibiting dendrite growth of the metal to a predetermined state or less and detecting an internal short circuit of the secondary battery in advance, is provided.
A solid electrolyte interface is grown on a silicon monoxide electrode in a battery cell, including by charging the battery cell up to a first voltage while the battery cell is uncompressed in order to partially grow the solid electrolyte interface. After partially growing the partial solid electrolyte interface, the battery cell is rested. After resting the battery cell, the battery cell is charged to a second, higher voltage while the battery cell is compressed in order to further grow the partially grown solid electrolyte interface. After the solid electrolyte interface is grown on the silicon monoxide electrode, the battery cell is charged for one or more cycles while the battery cell is compressed.
Process for fabrication of all-solid-state thin film batteries, said batteries comprising a film of anode materials, a film of solid electrolyte materials and a film of cathode materials, in which: each of these three films is deposited using an electrophoresis process, the anode film and the cathode film are each deposited on a conducting substrate, preferably a thin metal sheet or band, or a metalized insulating sheet or band or film, said conducting substrates or their conducting elements being useable as battery current collectors, the electrolyte film is deposited on the anode and/or cathode film, and in which said process also comprises at least one step in which said sheets or bands are stacked so as to form at least one battery with a “collector/anode/electrolyte/cathode/collector” type of stacked structure.
An electric power storage device includes a case body with an opening, the opening formed at an upper portion of the case body; an electrode body housed in the case body; a tab portion; and a current collecting terminal. The tab portion protrudes from part of the electrode body toward the opening of the case body. The tab portion has a side surface not facing the electrode body. The current collecting terminal is welded to the side surface of the tab portion.
A solid-state rechargeable 3D microbattery is provided that has improved power density, energy density, and cycle lifetimes. These improvements are afforded by providing a solid-state electrolyte that is composed of crystalline Li1+xAlxTi2−x(PO4)3, wherein x is from 0 to 2. The solid-state electrolyte that is composed of crystalline Li1+xAlxTi2−x(PO4) has a high ionic conductivity (which is greater than 10−4 Siemens/cm) as well as high chemical stability.
An electrochemical cell system and a method for operating an electrochemical cell is provided. The method including determining one of a power level, current level or a voltage level of the electrochemical cell, the electrochemical cell including at least one cell having an anode side and a cathode side, the electrochemical cell further having a water transport plate operably coupled to the cathode side. An oxidant pressure level is determined in the cathode side. A water pressure level is determined in the water transport plate. The active area of the at least one cell is changed by adjusting at least one of the oxidant pressure level or the water pressure level based at least in part on the determined power level, current level or voltage level.
A vehicle system includes a voltage sensing circuit configured to detect voltages across cells in a fuel cell stack, and powered by a power supply sharing a voltage reference with the cells and having a voltage magnitude greater than a sum of voltage magnitudes of the cells. The system further includes a controller configured to, responsive to a change in polarity in at least one of the voltages indicative of freezing of the cells, issue an alert notification.
A fuel cell comprises a membrane electrode assembly configured such that electrode catalyst layers are formed on respective surfaces of an electrolyte membrane; gas diffusion layers placed on respective surfaces of the membrane electrode assembly; and a frame placed around periphery of the membrane electrode assembly. The membrane electrode assembly has a protruding portion that is configured by protruding outside of the gas diffusion layer in a state that the membrane electrode assembly is combined with the gas diffusion layers. The frame has an engagement portion that is configured to engage with the protruding portion. An adhesive layer is formed from an ultraviolet curable adhesive between the protruding portion and the engagement portion.
A solid oxide fuel cell (SOFC) includes a solid oxide electrolyte with a zirconia-based ceramic, an anode electrode, and a cathode electrode that includes a ceria-based ceramic component and an electrically conductive component. Another SOFC includes a solid oxide electrolyte containing a zirconia-based ceramic, an anode electrode, and a cathode electrode that includes an electrically conductive component and an ionically conductive component, in which the ionically conductive component includes a zirconia-based ceramic containing scandia and at least one of ceria, ytterbia and yttria.
A battery is provided in the present disclosure. The battery includes: a positive electrode plate including a positive current collector and a positive active material layer; a negative electrode plate including a positive current collector and a negative active material layer; and an electrolyte. The positive current collector includes an insulation layer used to support a conductive layer and the conductive layer used to support the positive active material layer and located above at least one surface of the insulation layer. The conductive layer has a thickness of D2 which satisfies: 300 nm≤D2≤2 μm. A protective layer is arranged on at least one surface of the conductive layer. The negative current collector is a copper foil current collector having a thickness of 1 μm to 5.9 μm.
Provided is an electrode for energy storage devices, which is provided with: a collector substrate; an undercoat layer that is formed on at least one surface of the collector substrate and contains carbon nanotubes; and an active material layer that is formed on the surface of the undercoat layer and contains an active material which contains a titanium-containing oxide.
Provided are excellent coated lithium-nickel composite oxide particles which are capable of suppressing the occurrence of impurities produced by absorbing water and carbonic acid gas as a result of the high environmental stability thereof, have strong adhesion properties, do not result in easy coating layer detachment, and also exhibit lithium ion conductivity. The surfaces of the lithium-nickel composite oxide particles are coated with a polymer or copolymer comprising one or more types selected from a group consisting of a modified polyolefin resin, a polyester resin, a polyphenol resin, a polyurethane resin, an epoxy resin, a silane-modified polyether resin, a silane-modified polyester resin, a silane-modified polyphenol resin, a silane-modified polyurethane resin, a silane-modified epoxy resin, and a silane-modified polyamide resin. As a result, the coated lithium-nickel composite oxide particles exhibit conductivity, and said compound is capable of suppressing the transmission of water and carbonic acid gas. Consequently, it is possible to provide coated lithium-nickel composite oxide particles for use in a lithium-ion battery positive electrode active material which is excellent for use in a lithium-ion battery.
An energy storage device may provide a positive electrode, an electrolyte, and a negative electrode. The energy storage device may utilize an aqueous alkaline electrolyte, which may be nonflammable. The energy storage device may utilize organic material(s) as the negative electrode, such as, but not limited to, poly(anthraquinonyl sulfide) (PAQS), organic carbonyl compounds, organosulfur compounds, redox polymers, or radical polymers.
A graphite-based negative electrode active material including a first graphite particle being spheroidized and a second graphite particle having a roundness lower than the roundness of the first graphite particle, wherein the content of the second graphite particle based on the sum of the first graphite particle and the second graphite particle is in the range of 1 to 30% by mass, the ratio of a median particle diameter (D50) to a particle diameter at 5 cumulative % (D5), D50/D5, in a cumulative distribution of the first graphite particle is smaller than the ratio of a median particle diameter (D50) to a particle diameter at 5 cumulative % (D5), D50/D5, in a cumulative distribution of the second graphite particle, and the tap density in saturation of the particle mixture of the first graphite particle and the second graphite particle is higher than both the tap density in saturation of the first graphite particle and the tap density in saturation of the second graphite particle.
Disclosed herein are graphene-coated lithium manganese oxide spinels cathodes for high-performance batteries Li-ion batteries and methods for making thereof. A single-layer graphene coating is shown to significantly reduce manganese loss in the cathodes while concurrently promoting the formation of a well-defined solid electrolyte interphase layer.
The present invention relates to a process for the preparation of a composite material comprising a vinylidene difluoride (VDF)-containing copolymer and an electrically non-conductive polymeric material, to a composite material obtainable via said process, to its use in electrochemical cells and to an electrochemical cell comprising said composite.
The present invention provides a battery pack including: a battery module assembly including a plurality of battery cells; a tray assembly having an upper surface on which the battery module assembly is mounted; a cover member having an outer periphery coupled to face an outer periphery of the tray assembly while the battery module assembly is accommodated therein; and a sealing gasket interposed between the mutually facing outer peripheries of the tray assembly and the cover member.
The present invention relates to a sealing apparatus for a secondary battery, which seals a sealing part of a case in which an electrode assembly and an electrolyte are accommodated, and the sealing apparatus comprises a sealing member comprising a first sealing piece and a second sealing piece, which thermally fuse a surface of the sealing part to seal the sealing part, wherein the first sealing piece and the second sealing piece comprise a plurality of thermal fusion parts, which are disposed from an outer end of a surface of the sealing part toward an inner end that is opposite to the outer end to thermally fuse the surface of the sealing part, and non-thermal fusion parts, which are disposed between the plurality of thermal fusion parts and do not seal the surface of the sealing part.
A screen plate, a packaging method, a display panel and a display device are provided. The screen plate includes a frame, a mesh fixed onto the frame and a masking film arranged on the mesh. A printing area is formed in a portion of the mesh that is not masked by the masking film. At least one masking line is arranged in the printing area. The at least one masking line is arranged along an edge of the masking film respectively. A width of the masking line is greater than a width of each mesh line of the mesh.
A method of manufacturing an organic light-emitting display apparatus includes: forming a pixel electrode on a substrate; forming a pixel-defining layer (PDL) having an opening exposing at least a part of the pixel electrode; forming an intermediate layer including a central portion disposed on the pixel electrode, an edge portion that extends from the central portion and contacts the PDL, at least one common layer, and an organic emission layer; forming a protective layer including a central portion disposed on the central portion of the intermediate layer and an edge portion that extends from the central portion of the protective layer and contacts the PDL; and forming an opposite electrode on the PDL, the opposite electrode having an opening exposing at least a part of the protective layer and electrically connected to the protective layer.
Disclosed herein is an organic light-emitting display (OLED) device including: a substrate comprising an active area and an inactive area surrounding the active area; a first planarization layer; a second planarization layer; an organic light-emitting element; an encapsulation layer comprising a first inorganic layer, a second inorganic layer and a first organic member; a first structure in the inactive area and comprising a first support layer made of the same material as the first planarization layer or the second planarization layer, a second structure in the inactive area and comprising a second support layer made of the same material as the first planarization layer or the second planarization layer.
A method of manufacturing a display device includes preparing a base substrate including a first area, a second area, and a bending area disposed between the first and second areas, the base substrate having a coating film pattern formed on a first surface thereof in the bending area; disposing a support plate, which includes an adhesive film and a support film, on the first surface of the base substrate to cover the coating film pattern; and separating the support plate and the coating film pattern, which overlap with each other in a thickness direction, from the base substrate, wherein the disposing the support plate includes disposing the support plate in such a manner that the adhesive film is in contact with the coating film pattern and the first surface of the base substrate.
The pixels of an organic EL display panel each include an anode electrode layer, an organic layer, and a cathode electrode layer. Each of the organic layer and the cathode electrode layer is shared by the plurality of pixels. An organic EL element in each of the pixels includes an anode section, a cathode section, and a light emitting section. A conductor layer having a recess is provided in a region outside a region of the organic EL element in a view from a light exiting direction in which the organic EL element emits light. The recess includes a coated section that is covered with the organic layer and a conductor exposed section where the conductor layer is exposed. The cathode electrode layer is connected to part of the conductor exposed section.
An anode structure of an organic light emitting diode display device, includes an insulating interlayer disposed on a silicon substrate, a first metal layer pattern disposed on the insulating interlayer comprising a first metal to be configured to upwardly reflect light, a second metal layer pattern formed on the first metal layer pattern comprising a second metal having a work function of 4.0 eV or more, and a diffusion barrier layer pattern interposed between the first metal layer pattern and the second metal layer pattern for preventing elements of the first metal or the second metal from diffusing between the first metal layer and the second metal layer.
An electroluminescent device comprising a first electrode; a hole transport layer disposed on the first electrode; an emission layer disposed on the hole transport layer and comprising a plurality of light emitting particles; an electron transport layer disposed on the emission layer and comprising a metal oxide particle-organic polymer composite comprising a plurality of metal oxide particles and an organic polymer; and a second electrode disposed on the electron transport layer, wherein the organic polymer is present in the metal oxide particle-organic polymer composition in an amount of about 7 weight percent to about 30 weight percent based on a total weight of the electron transport layer.
The present disclosure discloses a white OLED device, which includes a substrate, an anode, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer that are disposed to be sequentially laminated; the white OLED device further includes a reflective layer disposed on the electron injection layer or a reflective layer interposed between the substrate and the anode, wherein a material of the reflective layer has a selective reflection function on light having different wavelengths. The white OLED device according to the present disclosure adjusts a spectrum of the device by utilizing the reflective layers of different materials, to optimize the luminous efficiencies of the respective light-emitting materials in the white OLED device during a light-emitting period, thereby overcoming the defect in the prior art that in order to match the light-emitting materials having low luminous efficiencies, actual luminous efficiencies of other light-emitting materials having higher specified luminous efficiencies are artificially reduced, which causes the light-emitting materials having the higher specified luminous efficiencies to generate more heat, so as to avoid problems of mismatching of concentration of carriers, high heat, accumulation of charges and heat and so on in the device.
The present disclosure relates to a plurality of host materials and organic electroluminescent device comprising the same. By comprising a specific combination of a plurality of host materials, the organic electroluminescent device of the present disclosure can show long lifespan while maintaining high luminous efficiency.
The present invention relates to compounds of the formula (I), to the use of compounds of the formula (I) in electronic devices and electronic devices comprising one or more compounds of the formula (I). The invention furthermore relates to the preparation of the compounds of the formula (I) and to formulations comprising one or more compounds of the formula (I).
A compound is represented by the formula, R1 to R8 are each a hydrogen atom, aliphatic hydrocarbon group, aromatic group, heterocyclic group, a halogen atom, or the like. One of X1 to X3 is a sulfur atom, and the remaining two are carbon atoms having one R0. One of X4 to X6 is a sulfur atom, and the other two are carbon atoms having one R0. R0 is a hydrogen atom, aliphatic hydrocarbon group, aromatic group, heterocyclic group, a halogen atom, or the like. When X1 and X2 are each R0C, X2 and X3 are each R0C, X4 and X5 are each R0C, or X5 and X6 are each R0C, the adjacent R0s may be bounded to each other to form a cyclic structure.
A light-emitting element with a lower voltage and higher emission efficiency is provided. The light-emitting element includes a first organic compound, a second organic compound, and a guest material. The LUMO level of the first organic compound is lower than the LUMO level of the second organic compound, and a difference between them is larger than 0 eV and smaller than or equal to 0.5 eV. Furthermore, the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound. The guest material has a function of converting triplet excitation energy into light emission. The first organic compound and the second organic compound form an exciplex.
There is disclosed a compound having Formula I In Formula I: R1 and R2 are the same or different and are H or D; R3 is the same or different at each occurrence and D, CN, halogen, alkyl, alkoxy, silyl, germyl, deuterated alkyl, deuterated alkoxy, deuterated silyl, or deuterated germyl; a is an integer from 0-4; Q1 and Q2 are the same or different and are H, D, alkyl, deuterated alkyl, aryl, deuterated aryl, or a group having Formula II *-(L1)b-HT (II) At least one of Q1 and Q2 is a group having Formula II. In Formula II: HT is the same or different at each occurrence and is a hole transport group; L1 is the same or different at each occurrence and is alkyl, aryl, substituted derivatives thereof, deuterated analogs thereof, or combinations thereof; b is the same or different at each occurrence and is 0 or 1; and * indicates a point of attachment.
A memory cell and method including a first electrode formed through a first opening in a first dielectric layer, a resistive layer formed on the first electrode, a spacing layer formed on the resistive layer, a second electrode formed on the resistive layer, and a second dielectric layer formed on the second electrode, the second dielectric layer including a second opening. The first dielectric layer formed on a substrate including a first metal layer. The first electrode and the resistive layer collectively include a first lip region that extends a first distance beyond the first opening. The second electrode and the second dielectric layer collectively include a second lip region that extends a second distance beyond the first opening. The spacing layer extends from the second distance to the first distance. The second electrode is coupled to a second metal layer using a via that extends through the second opening.
To provide a key monocrystalline magnetoresistance element necessary for accomplishing mass production and cost reduction for applying a monocrystalline giant magnetoresistance element using a Heusler alloy to practical devices. A monocrystalline magnetoresistance element of the present invention includes a silicon substrate 11, a base layer 12 having a B2 structure laminated on the silicon substrate 11, a first non-magnetic layer 13 laminated on the base layer 12 having a B2 structure, and a giant magnetoresistance effect layer 17 having at least one laminate layer including a lower ferromagnetic layer 14, an upper ferromagnetic layer 16, and a second non-magnetic layer 15 disposed between the lower ferromagnetic layer 14 and the upper ferromagnetic layer 16.
Apparatuses for etching metal by depositing a material reactive with a metal to be etched and a halogen to form a volatile species and exposing the substrate to a halogen-containing gas and activation gas to etch the substrate are provided. Deposited materials may include silicon, germanium, titanium, carbon, tin, and combinations thereof. Apparatuses are suitable for fabricating MRAM structures and may be used to integrate ALD and ALE processes without breaking vacuum.
A display device is provided. The display device includes a substrate, a driving circuit disposed on the substrate, and a light-emitting unit disposed on the driving circuit and electrically connected to the driving circuit. The light-emitting unit includes a first semiconductor layer, a quantum well layer disposed on the first semiconductor layer and a second semiconductor layer disposed on the quantum well layer. The second semiconductor layer includes a first top surface. The display device also includes a first protective layer disposed on the driving circuit and adjacent to the light-emitting unit. The first protective layer includes a second top surface and a plurality of conductive elements formed therein. The elevation of the first top surface is higher than the elevation of the second top surface.
A light emitting device package according to an embodiment includes: a package body; a light emitting device disposed on the package body; and an adhesive disposed between the package body and the light emitting device. The package body includes first and second openings passing through the package body on an upper surface of the package body and a recess provided to concave in a direction of a lower surface of the package body from the upper surface of the package body. The light emitting device includes a first bonding part disposed on the first opening and a second bonding part disposed on the second opening. The adhesive is provided at the recess.
An asymmetrically shaped chip-scale packaging (CSP) light-emitting device (LED) includes an LED chip, a photoluminescent structure (or a light-transmitting structure), and a reflective structure. The photoluminescent structure covers the upper surface and/or the edge surface of the LED chip; and the reflective structure at least partially covers the edge surface of the photoluminescent structure. The reflective structure partially reflects the primary light emitted from the edge surface of the LED chip or the converted secondary light radiated from the edge surface of the photoluminescent structure, therefore shaping the radiation pattern asymmetrically.
A display module comprises a circuit board having a front face, a plurality of light-emitting elements electrically coupled to the front face of the circuit board, a polymer encapsulating member adhered to the front face of the circuit board, the polymer encapsulating member substantially covering at least a portion of the circuit board and a portion of the plurality of light-emitting elements, the polymer encapsulating member substantially sealing the portion of the circuit board and the portion of the plurality of light-emitting elements, and an ultraviolet-radiation diminishing component in the polymer encapsulating member or on one or more of at least a portion of the circuit board or at least a portion of each of the light-emitting elements, wherein the ultraviolet-radiation diminishing component filters, blocks, or reflects more ultraviolet radiation than would be filtered, blocked, or reflected by the polymer encapsulating member without the ultraviolet-radiation diminishing component.
A semiconductor light-emitting device includes a semiconductor stack including a first semiconductor layer, a second semiconductor layer, and an active layer; a plurality of first trenches penetrating the second semiconductor layer and the active layer to expose the first semiconductor layer; a second trench penetrating the second semiconductor layer and the active layer to expose the first semiconductor layer, wherein the second trench is disposed near an outmost edge of the active layer, and surrounds the active layer and the plurality of first trenches; a patterned metal layer formed on the second semiconductor layer and formed in one of the plurality of first trenches or the second trench; and a first pad portion and a second pad portion both formed on the second semiconductor layer and electrically connecting the second semiconductor layer and the first semiconductor layer respectively.
A method for producing light-emitting UV column structures using the epitaxy of the organometallic compounds of the gaseous phase on a PSS plate having a surface for epitaxy provided with protrusions with a regular shape, having a tip and a side surface, in particular protrusions with a conical shape. The present disclosure also includes structures produced using this method.
An improved feeder system and method for continuous vapor transport deposition that includes at least two vaporizers couple to a common distributor through an improved seal for separately vaporizing and collecting at least any two vaporizable materials for deposition as a material layer on a substrate. Multiple vaporizer provide redundancy and allow for continuous deposition during vaporizer maintenance and repair.
A light-responsive LED (Light Emitting Diode) based on a GaN/CsPbBrxI3-x heterojunction, a preparation method and an application thereof are provided. The light-responsive LED consists of a GaN base layer on a sapphire substrate, an all-inorganic perovskite CsPbBrxI3-x film, an indium electrode and a carbon electrode, forming an In/GaN/CsPbBrxI3-x/C structure, wherein: in the CsPbBrxI3-x film, 0
A method of growing a FE material thin film using physical vapor deposition by pulsed laser deposition or RF sputtering is disclosed. The method involves creating a target to be used for the pulsed laser deposition in order to create a KBNNO thin film. The resultant KBNNO thin film is able to be used in photovoltaic cells.
A method of producing sensors includes providing a carrier plate; arranging semiconductor chips on the carrier plate, wherein the semiconductor chips include at least radiation-detecting semiconductor chips; providing radiation-transmissive optical elements on the carrier plate provided with the semiconductor chips, wherein a plurality of radiation-transmissive optical elements are provided jointly on the carrier plate provided with the semiconductor chips; and singulating the carrier plate provided with the semiconductor chips and the radiation-transmissive optical elements, thereby forming separate sensors including a section of the carrier plate, at least one radiation-detecting semiconductor chip and at least one radiation-transmissive optical element.
There is provided a semiconductor device including: a first electrode; a second electrode; and a semiconductor layer in contact with the first electrode and the second electrode, in which the semiconductor layer is a spinel-type oxide containing zinc (Zn) and gallium (Ga).
A large area electrical contact for use in integrated circuits features a non-planar, sloped bottom profile. The sloped bottom profile provides a larger electrical contact area, thus reducing the contact resistance, while maintaining a small contact footprint. The sloped bottom profile can be formed by recessing an underlying layer, wherein the bottom profile can be crafted to have a V-shape, U-shape, crescent shape, or other profile shape that includes at least a substantially sloped portion in the vertical direction. In one embodiment, the underlying layer is an epitaxial fin of a FinFET. A method of fabricating the low-resistance electrical contact employs a thin etch stop liner for use as a hard mask. The etch stop liner, e.g., HfO2, prevents erosion of an adjacent gate structure during the formation of the contact.
Disclosed herein is a conductive structure that serves as both a control terminal and a field plate for a transistor. The transistor includes a channel region including a portion located in a vertical sidewall of semiconductor material that separates an upper level portion and a lower level portion of the semiconductor material. An extended drain region includes a portion located in the lower portion of the semiconductor material. The conductive structure is laterally adjacent to the vertical sidewall and includes a first vertical side and an opposite second vertical side with the first vertical side being closer to the vertical component sidewall. The first side is vertically closer to the lower level portion of the semiconductor material than the second vertical side.
A semiconductor device having a contact trench is provided. The semiconductor device including: a semiconductor substrate; a drift region of the first conductivity type provided on an upper surface side of the semiconductor substrate; a base region of the second conductivity type provided above the drift region; a source region of the first conductivity type provided above the base region; two or more trench portions provided penetrating through the source region and the base region from an upper end side of the source region; a contact trench provided in direct contact with the source region between adjacent trench portions; and a contact layer of the second conductivity type provided below the contact trench, is provided. A peak of a doping concentration of the contact layer is positioned shallower than a position of a lower end of the source region.
Each of the first and second switching modules may include first through (n+1)th cooling plates stacked along a vertical direction with respect to the support module; first through nth switches respectively disposed between the first through (n+1)th cooling plates; a first electrode plate disposed on the (n+1)th cooling plate; a first supporting member disposed on the first electrode plate; a first pressing member disposed between the first electrode plate and the first supporting member; a second electrode plate disposed below the first cooling plate; a second supporting member disposed below the second electrode plate; and a second pressing member disposed between the second electrode plate and the second supporting member.
A method of fabricating a semiconductor device includes forming a fin on a substrate. Source/drain regions are arranged on the substrate on opposing sides of the fin. The method includes depositing a semiconductor layer on the source/drain regions. The method includes depositing a germanium containing layer on the fin and the semiconductor layer. The method further includes applying an anneal operation configured to chemically react the semiconductor layer with the germanium containing layer and form a silicon oxide layer.
A method of evaluating an insulated-gate semiconductor device having an insulated-gate structure including a channel formation layer made of a wide-bandgap semiconductor and a gate insulating film formed contacting the channel formation layer includes removing the gate insulating film in order to expose a surface of the channel formation layer; taking a phase image of the exposed surface of the channel formation layer using a phase mode of an atomic force microscope; evaluating a surface condition of the exposed surface of the channel formation layer by calculating an evaluation metric from phase shift values in the phase image and by determining whether the evaluation metric satisfies a prescribed condition; and determining that the insulated-gate semiconductor device is acceptable when the evaluation metric satisfied the prescribed condition.
A semiconductor device, a field effect transistor, and a fin field effect transistor are provided. The semiconductor device may include a channel layer, a source/drain layer, and a gate electrode. The channel layer is provided on a substrate and extends in a direction perpendicular to a top surface of the substrate. The source/drain layer is disposed at a side of the channel layer and is electrically connected to the channel layer. The gate electrode is provided adjacent to at least one of surfaces of the channel layer. The channel layer includes a two-dimensional atomic layer made of a first material.
A transistor device includes a semiconductor structure, a plurality of gate fingers extending on the semiconductor structure in a first direction, a plurality of gate interconnects that each have a first end and a second end extending on the semiconductor structure in the first direction, wherein each gate interconnect is connected to a respective gate finger by a plurality of first conductive vias, and a plurality of gate runners extending on the semiconductor structure in the first direction. At least one gate interconnect of the gate interconnects is connected to one of the gate runners by a second conductive via at an interior position of the at least one gate interconnect that is remote from the first end and the second end of the at least one gate interconnect.
A semiconductor structure is provided that includes a pFET device including a first functional gate structure containing at least a p-type work function metal and present on physically exposed surfaces, and between, each Si channel material nanosheet of a first set of vertically stacked and suspended Si channel material nanosheets. The structure further includes an nFET device stacked vertically above the pFET device. The nFET device includes a second functional gate structure containing at least an n-type work function metal present on physically exposed surfaces, and between, each Si channel material nanosheet of a second set of vertically stacked and suspended Si channel material nanosheets.
A semiconductor element includes a semiconductor structure, a carbon nanotube and a conductive film. The semiconductor structure includes a P-type semiconductor layer and an N-type semiconductor layer and defines a first surface and a second surface. A thickness of the semiconductor structure ranges from 1 nanometer to 100 nanometers. The carbon nanotube is located on the first surface of the semiconductor. The conductive film is located on the second surface of the semiconductor. The conductive film is formed on the second surface by a depositing method or a coating method. The carbon nanotube, the semiconductor structure and the conductive film are stacked with each other to form a multi-layered stereoscopic structure.
A method of forming a nanosheet semiconductor device that includes epitaxially forming a stack of at least two repeating nanosheets, the at least two repeating nanosheets including a first nanosheet layer of a first III-V semiconductor material and a second nanosheet layer of a second III-V semiconductor material. A sacrificial gate structure is formed on the stack of the at least two repeating nanosheets. Source and drain regions are epitaxially formed on the second nanosheet layer. The sacrificial gate structure is removed to provide a gate opening. An etch process removes the first nanosheet layer selectively to the second nanosheet layer, wherein the etch process is selective to facets of the material for the first nanosheet layer to provide an inverted apex at the base of the stack. A dielectric layer is deposited filling the inverted apex. A functional gate structure is formed in the gate opening.
An insulating layer structure for a semiconductor product. The insulating layer structure includes a device substrate, a supporting substrate and a thin film layer. The device substrate and the supporting substrate are silicon wafers. The thin film layer(s) is/are arranged on the device substrate or/and the supporting substrate. The device substrate and the supporting substrate are bonded together through the thin film layer arranged on at least one of the device substrate and the supporting substrate to form an integral multilayer SOI structure. The insulating layer structure formed by the present invention solves problems of serious spontaneous heating of an existing SOI device, severe warpage of an existing SOI structure caused by high-temperature annealing, a poor radio frequency characteristic and the like, and has a predictable relatively higher economic and social value.
The present inventive concept relates to a display device.A display device according to an exemplary embodiment of the present inventive concept include: a base layer including a plurality of islands in which a pixel is disposed, a plurality of bridges disposed around each of the plurality of islands, a plurality of first wires disposed in a bridge of the plurality of bridges connected to the pixel is disposed; an inorganic insulating layer disposed on the base layer and having an opening exposing a portion of the bridge; and an organic material layer covering the opening, wherein adjacent islands of the plurality of islands are connected to each other through at least the bridge of the plurality of bridges, and the plurality of first wires are disposed on the organic material layer.
The display device according to the present disclosure includes a substrate which includes a display area having an irregularly shaped side and a non-display area which includes a notch area defined by a shape of the irregularly shaped side of the display area and is disposed to enclose the display area. A connecting metal line which electrically connects a plurality of gate lines disposed to be divided due to formation of the irregularly shaped side is formed so that a scan load amount due to a length difference of the plurality of gate lines may be compensated.
Embodiments of forming an image sensor with organic photodiodes are provided. Trenches are formed in the organic photodiodes to increase the PN junction interfacial area, which improves the quantum efficiency (QE) of the photodiodes. The organic P-type material is applied in liquid form to fill the trenches. A mixture of P-type materials with different work function values and thickness can be used to meet the desired work function value for the photodiodes.
A memory device includes first conductive rails laterally extending along a first horizontal direction over a substrate, where the first conductive rails include a fill portion, and a first cobalt-containing cap liner contacting a top surface of the fill portion, a rectangular array of first memory pillar structures overlying top surfaces of the first conductive rails, where each first memory pillar structure includes a respective first resistive memory element, and second conductive rails laterally extending along a second horizontal direction and overlying top surfaces of the rectangular array of first memory pillar structures.
There is provided a light receiving element including; an on-chip lens; a wiring layer; and a semiconductor layer disposed between the on-chip lens and the wiring layer. The semiconductor layer includes a first voltage applying unit to which a first voltage is applied, a second voltage applying unit to which a second voltage different from the first voltage is applied, a first charge detection unit disposed in a vicinity of the first voltage applying unit, and a second charge detection unit disposed in a vicinity of the second voltage applying unit, and the wiring layer includes a reflection suppressing structure that suppresses reflection of light in a plane region corresponding to the first charge detection unit and the second charge detection unit.
A system and method for forming pixels in an image sensor is provided. In an embodiment, a semiconductor device includes an image sensor including a first pixel region and a second pixel region in a substrate, the first pixel region being adjacent to the second pixel region. A first anti-reflection coating is over the first pixel region, the first anti-reflection coating reducing reflection for a first wavelength range of incident light. A second anti-reflection coating is over the second pixel region, the second anti-reflection coating reducing reflection for a second wavelength range of incident light that is different from the first wavelength range.
A lens module includes a circuit board, a hollow mounting bracket, a photosensitive chip, a lens base, and a lens. The photosensitive chip is mounted within the hollow mounting bracket on a surface of the circuit board. The lens base is mounted on a surface of the mounting bracket opposite to the circuit board. The lens base axially defines a through hole. The lens is mounted within the lens base. The lens base includes a screw thread formed along an inner wall of the through hole. The lens includes mating threads formed along a periphery of the lens contacting the inner wall of the through hole. The mating threads define at least one thread slot which defines a gap with the screw threads of the inner wall of the through hole.
A display device includes: a substrate; first and second transistors provided on the substrate to be spaced apart from each other, the first and second transistors being electrically connected to each other; and a display unit electrically connected to the first transistor, wherein the first transistor includes a first semiconductor layer including crystalline silicon, a first gate electrode, a first source electrode, and a first drain electrode, wherein the second transistor includes a second semiconductor layer including an oxide semiconductor, a second gate electrode, a second source electrode, and a second drain electrode, wherein each of the second source electrode and the second drain electrode includes a first layer that includes molybdenum and is provided on the second semiconductor layer, a second layer that includes aluminum and is provided on the first layer, and a third layer that includes titanium and is provided on the second layer.
Inventive concepts describe a method for high performance standard cell design techniques in FinFET based library using LLE. Inventive concepts describe a fabrication process using a standard FinFET cell layout having double diffusion breaks (DDBs) and single diffusion breaks (SDBs). According to one example embodiment, the method comprises of removing one or more fingers of a P-type FinFet (PFET) from a standard FinFET cell layout. After removing the one or more fingers, a Half-Double Diffusion Break (Half-DDB) is introduced on a N-type FinFET (NFET) side inside a cell boundary using a cut-poly layer. The cut-poly layer not only isolates the PFET and NFET gates and also becomes an integral part of hybrid structure. Further, the removed one or more fingers of PFET gates are converted to two floating PFET gates by shorting a drain terminal and a source terminal of the PFET gate to a common power net.
A three-dimensional semiconductor device includes an upper structure on a lower structure, the upper structure including conductive patterns, a semiconductor pattern connected to the lower structure through the upper structure, and an insulating spacer between the semiconductor pattern and the upper structure, a bottom surface of the insulating spacer being positioned at a vertical level equivalent to or higher than an uppermost surface of the lower structure.
An annular dielectric spacer can be formed at a level of a joint-level dielectric material layer between vertically neighboring pairs of alternating stacks of insulating layers and spacer material layers. After formation of a memory opening through multiple alternating stacks and formation of a memory film therein, an anisotropic etch can be performed to remove a horizontal bottom portion of the memory film. The annular dielectric spacer can protect underlying portions of the memory film during the anisotropic etch. In addition, a silicon nitride barrier may be employed to suppress hydrogen diffusion at an edge region of peripheral devices.
An integrated circuit structure includes a semiconductor substrate, an active area, a gate electrode, and a butted contact. The active area is oriented in a first direction and has at least one tooth portion extending in a second direction in the semiconductor substrate. The gate electrode overlies the active area and extends in the second direction. The butted contact has a first portion above the gate electrode and a second portion above the active area. A portion of the second portion of the butted contact lands on the tooth portion.
A semiconductor device includes a substrate that includes a cell region and a peripheral circuit region, a cell insulating pattern disposed in the cell region of the substrate that defines a cell active region, and a peripheral insulating pattern disposed in the peripheral circuit region of the substrate that defines a peripheral active region. The peripheral insulating pattern includes a first peripheral insulating pattern having a first width and a second peripheral insulating pattern having a second width greater than the first width. A topmost surface of at least one of the first peripheral insulating pattern and the second peripheral insulating pattern is positioned higher than a topmost surface of the cell insulating pattern.
A method of fabricating a semiconductor device includes forming an interlayer insulating structure on a substrate, forming a contact hole that penetrates the interlayer insulating structure to expose the substrate, forming an amorphous silicon layer including a first portion and a second portion, the first portion covering a top surface of the substrate exposed by the contact hole, the second portion covering a sidewall of the contact hole, providing hydrogen atoms into the amorphous silicon layer, and crystallizing the first portion using the substrate as a seed.
An embedded transistor for an electrical device, such as a DRAM memory cell, and a method of manufacture thereof is provided. A trench is formed in a substrate and a gate dielectric and a gate electrode formed in the trench of the substrate. Source/drain regions are formed in the substrate on opposing sides of the trench. In an embodiment, one of the source/drain regions is coupled to a storage node and the other source/drain region is coupled to a bit line. In this embodiment, the gate electrode may be coupled to a word line to form a DRAM memory cell. A dielectric growth modifier may be implanted into sidewalls of the trench in order to tune the thickness of the gate dielectric.
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device may include a semiconductor substrate including a first region and a second region, a dummy separation pattern provided on the second region of the semiconductor substrate to have a recessed region at its upper portion, a first electrode provided on the first region of the semiconductor substrate, a dielectric layer covering the first electrode, a second electrode provided on the dielectric layer, and a remaining electrode pattern provided in the recessed region. The second electrode and the remaining electrode pattern may be formed of a same material.
A semiconductor structure for a DRAM is described having multiple layers of arrays of memory cells. Memory cells in a vertical string extending through the layers have an electrical connection to one terminal of the memory cells in that string. Word lines couple the strings together. Each layer of the array also includes bit line connections to memory cells on that layer. Select transistors enable the use of folded bit lines. The memory cells preferably are thyristors. Methods of fabricating the array are described.
The present disclosure provides a semiconductor structure comprising one or more fins formed on a substrate and extending along a first direction; one or more gates formed on the one or more fins and extending along a second direction substantially perpendicular to the first direction, the one or more gates including an first isolation gate and at least one functional gate; source/drain features formed on two sides of each of the one or more gates; an interlayer dielectric (ILD) layer formed on the source/drain features and forming a coplanar top surface with the first isolation gate. A first height of the first isolation gate is greater than a second height of each of the at least one functional gate.
Embodiments of the invention include a semiconductor structure and a method of making such a structure. In one embodiment, the semiconductor structure comprises a first fin and a second fin formed over a substrate. The first fin may comprise a first semiconductor material and the second fin may comprise a second semiconductor material. In an embodiment, a first cage structure is formed adjacent to the first fin, and a second cage structure is formed adjacent to the second fin. Additionally, embodiments may include a first gate electrode formed over the first fin, where the first cage structure directly contacts the first gate electrode, and a second gate electrode formed over the second fin, where the second cage structure directly contacts the second gate electrode.
Provided is a metal gate structure and related methods that include performing a metal gate cut process. The metal gate cut process includes a plurality of etching steps. For example, a first anisotropic dry etch is performed, a second isotropic dry etch is performed, and a third wet etch is performed. In some embodiments, the second isotropic etch removes a residual portion of a metal gate layer including a metal containing layer. In some embodiments, the third etch removes a residual portion of a dielectric layer.
Disclosed herein is an electronic device including an IO node, with a receiver coupled to receive input from the IO node. A transmitter driver has a first n-channel DMOS with a source coupled to the IO node. A pass gate circuit decouples the IO node from the receiver based upon presence of a negative voltage at the IO node and couples the IO node to the receiver based upon lack of presence of the negative voltage at the IO node. A transmit protection circuit applies the negative voltage from the IO node to the gate and bulk of the first n-channel DMOS based upon the presence of the negative voltage at the IO node.
An encapsulation cover for an electronic package includes a cover body having a frontal wall provided with at least one optical element allowing light to pass through. The optical element is inserted into the encapsulation cover by overmolding into a through-passage of the frontal wall. A front face of the optical element is set back with respect to a front face of the frontal wall. The process for fabricating the encapsulation cover includes forming a stack of a sacrificial spacer on top of an optical element, with the stack placed into a cavity of a mold.
A three-dimensional stacked integrated circuit (3D SIC) having a non-volatile memory die, a volatile memory die, a logic die, and a thermal management component. The non-volatile memory die, the volatile memory die, the logic die, and the thermal management component are stacked. The thermal management component can be stacked in between the non-volatile memory die and the logic die, stacked in between the volatile memory die and the logic die, or both.
Substrates, assemblies, and techniques for enabling multi-chip flip chip packages are disclosed herein. For example, in some embodiments, a package substrate may include a first side face; a second side face, wherein the second side face is opposite to the first side face along an axis; a portion of insulating material extending from the first side face to the second side face; wherein a cross-section of the portion of insulating material taken perpendicular to the axis has a stairstep profile. Solder pads may be disposed at base and step surfaces of the portion of insulating material. One or more dies may be coupled to the package substrate (e.g., to form a multi-chip flip chip package), and in some embodiments, additional IC packages may be coupled to the package substrate. In some embodiments, the package substrate may be reciprocally symmetric or approximately reciprocally symmetric.
A semiconductor package may include a package substrate, a first semiconductor chip on the package substrate, and a second semiconductor chip on the first semiconductor chip. The first semiconductor chip comprises a chip substrate including a first surface and a second surface opposite to the first surface, a plurality of first chip pads between the package substrate and the chip substrate, and electrically connecting the first semiconductor chip to the package substrate, a plurality of second chip pads disposed on the second surface and between the second semiconductor chip and the second surface, and a plurality of redistribution lines on the second surface, the redistribution lines electrically connecting to the second semiconductor chip, and a plurality of bonding wires electrically connecting the redistribution lines to the package substrate.
A package includes an Integrated Voltage Regulator (IVR) die, wherein the IVR die includes metal pillars at a top surface of the first IVR die. The package further includes a first encapsulating material encapsulating the first IVR die therein, wherein the first encapsulating material has a top surface coplanar with top surfaces of the metal pillars. A plurality of redistribution lines is over the first encapsulating material and the IVR die. The plurality of redistribution lines is electrically coupled to the metal pillars. A core chip overlaps and is bonded to the plurality of redistribution lines. A second encapsulating material encapsulates the core chip therein, wherein edges of the first encapsulating material and respective edges of the second encapsulating material are vertically aligned to each other. An interposer or a package substrate is underlying and bonded to the IVR die.
A method includes providing a die having a contact pad on a top surface and forming a conductive protective layer over the die and covering the contact pad. A molding compound is formed over the die and the conductive protective layer. The conductive protective layer is exposed using a laser drilling process. A redistribution layer (RDL) is formed over the die. The RDL is electrically connected to the contact pad through the conductive protective layer.
A method of fabricating a semiconductor package using a laminating device is provided. The method includes placing a substrate on a substrate stand; providing a pressurizing unit which is expandable and includes a convex surface facing an upper surface of the substrate stand, on the substrate stand; injecting air into the pressurizing unit using a plate which is connected to the pressurizing unit; and supplying a film by a film supply unit which supplies the film between the substrate stand and the pressurizing unit, wherein the pressurizing unit attaches the film onto the substrate, while expanding.
Embodiments of bonded semiconductor structures and fabrication methods thereof are disclosed. In an example, a semiconductor device includes a first and a second semiconductor structures. The first semiconductor structure includes a first interconnect layer including first interconnects. At least one first interconnect is a first dummy interconnect. The first semiconductor structure further includes a first bonding layer including first bonding contacts. Each first interconnect is in contact with a respective first bonding contact. The second semiconductor structure includes a second interconnect layer including second interconnects. At least one second interconnect is a second dummy interconnect. The second semiconductor structure further includes a second bonding layer including second bonding contacts. Each second interconnect is in contact with a respective second bonding contact. The semiconductor device further includes a bonding interface between the first and second bonding layers. Each first bonding contact is in contact with a respective second bonding contact at the bonding interface.
A discrete tapering interconnection is disclosed that forms an interconnection between a first electronic circuit and a second electronic circuit within an integrated circuit. The discrete tapering interconnection includes a first set of multiple parallel conductors situated in a first metal layer of the metal layers of a semiconductor layer stack and a second set of multiple parallel conductors situated in a second metal layer of the metal layers of the semiconductor layer stack. The first set of multiple parallel conductors effectively taper the discrete tapering interconnection as the discrete tapering interconnection traverse between the first electronic circuit and/or the second electronic circuit. This tapering of the discrete tapering interconnection can be an asymmetric tapering or a symmetric tapering. The second set of multiple parallel conductors is arranged to form various interconnections between various parallel conductors from among the first set of multiple parallel conductors.
A fan-out semiconductor package includes a semiconductor chip having an active surface on which connection pads are disposed and an inactive surface opposing the active surface, a heat dissipation member attached to the inactive surface of the semiconductor chip and having a thickness greater than a thickness of the semiconductor chip, an encapsulant encapsulating at least a portion of each of the semiconductor chip and the heat dissipation member, and a connection member disposed on the active surface of the semiconductor chip and including redistribution layers electrically connected to the connection pads, wherein the heat dissipation member is a complex of carbon and a metal.
A semiconductor device and fabrication method thereof are provided. The method includes: providing a base substrate with first gate structures on the base substrate; forming a spacer covering sidewalls of each first gate structure; forming sacrificial layers on sides of each first gate structure to cover corresponding spacers; forming a bottom dielectric layer covering sidewalls of the sacrificial layers; after forming the bottom dielectric layer, removing the sacrificial layers by etching to form first openings between the bottom dielectric layer and the spacer; and forming a plug in each first opening.
A structure with micro device including a substrate, at least one micro device and at least one holding structure is provided. The micro device is disposed on the substrate and has a top surface away from the substrate, a bottom surface opposite to the top surface, and a circumferential surface connecting the top surface and the bottom surface. The holding structure is disposed on the substrate. From the cross-sectional view, a thickness of the holding structure is not fixed from the boundary of the top surface and the circumferential surface to the substrate. The micro device is connected to the substrate through the holding structure.
A method and apparatus for bonding semiconductor devices are disclosed. In an embodiment, the method may include attaching a first die to a flip head of a flip module, flipping the first die with the flip module, removing the first die from the flip module after flipping the first die, inspecting the flip head of the flip module for contamination after removing the first die, cleaning the flip head with an in situ cleaning module after inspecting the flip head, and attaching a second die to the flip head after cleaning the flip head.
There is provided a substrate processing apparatus that includes: a polygonal transfer chamber; a process chamber connected to the polygonal transfer chamber via a transfer port through which a substrate is transferred; and a transfer mechanism provided in the polygonal transfer chamber and configured to transfer the substrate between the polygonal transfer chamber and the process chamber via the transfer port, wherein the polygonal transfer chamber and the process chamber have regions overlapping each other when viewed from the top.
A substrate processing apparatus including a plurality of baking chambers stacked in a prescribed direction, each baking chamber carrying out heat treatment of a substrate in its interior, a processing unit having a liquid processing chamber separate from the baking chambers and carrying out liquid processing of the substrate using the processing liquid, and an enclosing isolating space that encloses the sides of the plurality of baking chambers and isolates the baking chambers from the surrounding area.
The present disclosure relates to high pressure processing apparatus for semiconductor processing. The apparatus described herein include a high pressure process chamber and a containment chamber surrounding the process chamber. A high pressure fluid delivery module is in fluid communication with the high pressure process chamber and is configured to deliver a high pressure fluid to the process chamber.
There is provided a method of manufacturing a semiconductor device by processing a substrate, which includes: embedding a polymer having a urea bond in a recess formed in the substrate by supplying a material for polymerization from above a sacrificial film to the substrate and forming a polymer film made of the polymer having the urea bond, wherein a surface of the substrate is covered with the sacrificial film, the recess including an opening of the sacrificial film that is formed by a patterning; removing the polymer film formed on the sacrificial film while leaving the polymer embedded in the recess; removing the sacrificial film in a state in which the polymer is embedded in the recess; and subsequently, removing the polymer embedded in the recess.
Provided is an etching delay element for forming a protruding portion at an object by shielding part of the object against etching, the etching delay element being attached to a non-etching section of the object corresponding to the protruding portion and being made of a material that is etchable by an etchant.
A method for bonding a first substrate with a second substrate at respective contact faces of the substrates with the following steps: holding the first substrate to a first sample holder surface of a first sample holder with a holding force FH1 and holding the second substrate to a second sample holder surface of a second sample holder with a holding force FH2; contacting the contact faces at a bond initiation point and heating at least the second sample holder surface to a heating temperature TH; bonding of the first substrate with the second substrate along a bonding wave running from the bond initiation point to the side edges of the substrates, wherein the heating temperature TH is reduced at the second sample holder surface during the bonding.
A method includes forming mandrel patterns over a substrate; depositing a spacer layer over the mandrel patterns and onto sidewalls of the mandrel patterns; trimming the spacer layer to reduce a thickness of the spacer layer along a pattern width direction; and etching the spacer layer to expose the mandrel patterns, resulting in a patterned spacer layer on the sidewalls of the mandrel patterns. The trimming of the spacer layer and the etching of the spacer layer are performed in separate processes. After the trimming of the spacer layer and the etching of the spacer layer, the method further includes removing the mandrel patterns.
A method for manufacturing a semiconductor device includes epitaxially growing a carrier-transport layer of a first conductivity type on a substrate of silicon carbide; irradiating the carrier-transport layer with a first light having a wavelength equal to or less than an absorption-edge wavelength of silicon carbide at a temperature of less than 400 degrees Celsius so as to expand a stacking fault originating from a basal plane dislocation which are propagated from the substrate to the carrier-transport layer; heating the carrier-transport layer in which the stacking fault has expanded so as to shrink the stacking fault, at a shrinking temperature of 400 degrees Celsius or more and 1000 degrees Celsius or less; and forming a carrier-injection region of a second conductivity type on the carrier-transport layer, the carrier-injection region injects carriers into the carrier-transport layer.
Semiconductor device structures having dielectric features and methods of forming dielectric features are described herein. In some examples, the dielectric features are formed by an ALD process followed by a varying temperature anneal process. The dielectric features can have high density, low carbon concentration, and lower k-value. The dielectric features formed according to the present disclosure has improved resistance against etching chemistry, plasma damage, and physical bombardment in subsequent processes while maintaining a lower k-value for target capacitance efficiency.
A system comprises an electrostatic trapping mass analyzer and an information processor configured to receive a transient signal from the electrostatic trapping mass analyzer at a maximum resolution, the information processor comprising instructions operable to: partition the transient signal into segments and, while a quality metric is either less than a pre-determined minimum threshold or greater than a pre-determined maximum threshold value, to perform the steps of: (i) defining a test transient as being equal to either a first one of the segments or a previously defined transient with an appended signal segment; (ii) generating a spectrum of component frequencies by calculating a mathematical transform of the test transient; and (iii) determining the quality metric from the spectrum of component frequencies; and set an instrumental resolution to be employed for subsequent mass spectral data acquisitions in accordance with a length of the most-recently-defined test transient.
In a simultaneous multicomponent analysis for a number of target compounds, an MRM transition which does not give the highest signal intensity but gives a lower signal intensity is selected for a compound having a high measurement sensitivity or a compound having a high measurement target concentration. If the signal intensity is still high, the level of collision energy (CE) is changed from an optimum level. The MRM transition, CE level and other measurement conditions determined for each compound in this manner are stored in a compound-related information storage 41. In the process of preparing a control sequence for the simultaneous multicomponent analysis, the measurement conditions stored in the storage section 41 are used. The use of those conditions prevents the saturation of the signal for a high-concentration compound while ensuring a sufficiently high level of sensitivity for a low-concentration compound.
A system for controlling a size of an edge exclusion region is described. The system includes an upper electrode, an upper plasma exclusion zone (PEZ) ring located beside the upper electrode, an upper electrode extension located beside the upper PEZ ring, and a system controller configured to generate signals regarding a first position and a second position of the upper PEZ ring. The system further includes an actuator and a position controller coupled to the system controller and the actuator. The position controller is configured to receive the signals from the system controller, and to control the actuator based on the signals to achieve the first position and the second position The first and second positions are achieved independent of any movement of the upper electrode.
An X-ray analyzer includes: an X-ray detector that detects an X-ray emitted from a specimen and outputs a signal having a step that has a height corresponding to energy of the X-ray; a pulse generation circuit that converts the signal output from the X-ray detector into a first pulse signal; a pulse-width setting circuit that sets a pulse width; a pulse-width conversion circuit that converts a pulse width of the first pulse signal into the pulse width set by the pulse-width setting circuit to form a second pulse signal; a pulse-height discriminator that discriminates the second pulse signal according to a pulse height of the second pulse signal; a counting circuit that calculates a counting rate of the discriminated second pulse signal; and a counting-loss correction processing unit that corrects the counting rate. The counting-loss correction processing unit corrects the counting rate based on the pulse width.
An x-ray shield for improved vacuum conductivity is disclosed herein. An example x-ray shield includes at least one elongate member formed from high atomic weight material shaped into a twist with at least 180° of twist.
An electrical switch has a casing, fixed contacts and at least one moving contact located in the casing, and a rotor supported in the casing for rotation about an axis of rotation to move the moving contact into and out of contact with at least one of the fixed contacts. There is also an operating mechanism for rotating the rotor. The fixed contacts are arranged on one side of the rotor with respect to the axis of rotation.
A multilayer ceramic electronic component includes: a ceramic body including a dielectric layer and first and second internal electrodes stacked to be alternately exposed to first and second outer surfaces with the dielectric layer interposed therebetween; and first and second external electrodes disposed on the first and second outer surfaces of the ceramic body to be electrically connected to the first and second internal electrodes, respectively. The ceramic body further includes a protective layer disposed on at least one of upper and lower portions of the first and second internal electrodes, the protective layer includes a plurality of dummy electrode cells each having the plurality of dummy electrodes stacked thereon, and a thickness from the uppermost dummy electrode to the lowermost dummy electrode of each of the plurality of dummy electrode cells is greater than a length of each of the plurality of dummy electrode cells.
A magnetic element, comprising: a coil having two terminal-ends, a core pressed and molded around the coil, and two terminal units connecting to the two terminal-ends of the coil, wherein a first concave portions is formed on a side surface of the core, a second concave portion for accommodating one of the two terminal-ends of the coil, is formed at a upper boundary of the first concave portion, and a third concave portion for accommodating one of the two terminal units, is formed at a upper boundary of the first concave portion and near the second concave portion.
An inductor device includes a first and a second inductor unit. The first inductor unit includes a first and a second wire. The first wire is winded to form circles. The second wire is winded with the first wire to form circles. The first and/or the second wire are winded in an interlaced manner at a first terminal, a second terminal, a first side, and a second side. The second inductor unit includes a third and a fourth wire. The third wire is winded to form circles. The fourth wire is winded with the third wire to form circles. The third and/or the fourth wire are winded in an interlaced manner at a third terminal, a fourth terminal, a third side, and a fourth side. The first wired is coupled to the fourth wired, and the second wired is coupled to the third wired.
A coil device of solenoid type includes a coil portion having a bobbin and a conductive wire wound around the bobbin, a housing for accommodating the coil portion, and at least one fastener for fastening the bobbin and the housing. The conductive wire includes a plurality of extending portions extending along a wound wire direction on the bobbin and having gaps in a winding axis direction, and the coil portion includes an enlarged portion in which a gap between extending portions adjacent to each other in the winding axis direction is wider than a gap between other extending portions. The fastener is provided in the enlarged portion.
An electronic component having a main body includes a plurality of insulator layers laminated in a lamination direction. A primary coil is disposed in the main body and includes one or more primary coil conductor layers. A secondary coil is disposed in the main body and includes one or more secondary coil conductor layers. A tertiary coil is disposed in the main body and includes one or more tertiary coil conductor layers. The plurality of insulator layers includes a first insulator layer including a portion interposed between the primary coil conductor layer and the secondary coil conductor layer, a second insulator layer including a portion interposed between the secondary coil conductor layer and the tertiary coil conductor layer, and a third insulator layer including a portion interposed between the tertiary coil conductor layer and the primary coil conductor layer.
A resonant power converter for operation in the radio frequency range, preferably in the VHF, comprises at least one PCB-embedded transformer. The transformer is configured for radio frequency operation and comprises a printed circuit board defining a horizontal plane, the printed circuit board comprising at least two horizontal conductive layers separated by an isolating layer, a first embedded solenoid forming a primary winding of the transformer and a second embedded solenoid being arranged parallel to the first solenoid and forming a secondary winding of the transformer, wherein the first and second embedded solenoids are formed in the conductive layers of the printed circuit board, wherein each full turn of an embedded solenoid has a horizontal top portion formed in an upper conductive layer, a horizontal bottom portion formed in a lower conductive layer, and two vertical side portions formed by vias extending between the upper and the lower conducting layers.
A coil component is constituted by a composite magnetic material containing alloy grains whose oxygen atom concentration in their surfaces is 50 percent or less, and resin, and also by a coil. The alloy grains are comprised of first alloy grains and second alloy grains which have different compositions and different average grain sizes. The coil component using the composite magnetic material does not require high pressure when formed.
A magnet apparatus for generating a high gradient and/or high strength magnetic field, comprises: two main permanent magnets 2, 4 located side-by-side with oppositely oriented magnetic field polarities and end surfaces of opposite polarities next to one another, wherein the magnetic anisotropy of the magnets 2, 4 exceeds the magnetic induction of the material of the magnets 2, 4; and at least one mask 6 on a first end of each of the adjacent permanent magnets 2, 4, the masks 6 comprising a permanent magnet material covering adjacent end surfaces of the two permanent magnets 2, 4 with a gap 8 in the masks along a joining line between the two permanent magnets 2, 4 to form a zone of high-gradient magnetic field above the joining line; wherein the permanent magnet of each mask 6 is oriented with an opposite polarity to the main permanent magnet 2, 4 that it is attached to.
Provided are a slim-type stator using a multilayer printed circuit board (PCB) in which a coil pattern is patterned on an uppermost PCB layer and a sensing coil pattern for detecting a rotor rotation position is integrally formed in a margin of the uppermost PCB layer, to thereby realize sensorless driving simply, and a sensorless single-phase motor using the slim-type stator, and a cooling fan using the sensorless single-phase motor. The slim-type stator includes: a multilayer PCB; a coil pattern patterned on respective PCB layers of the multilayer PCB and connected through throughholes; and a sensing coil pattern formed on an uppermost PCB layer to detect a rotor rotation position, wherein the sensing coil pattern is positioned and set at a position deviated from a magnetic pole interface of a rotor that is positioned and set by a dead point prevention yoke when the rotor is in an initial state.
To provide a rare earth magnet ensuring excellent magnetic anisotropy while reducing the amount of Nd, etc., and a manufacturing method thereof.A rare earth magnet comprising a crystal grain having an overall composition of (R2(1-x)R1x)yFe100-y-w-z-vCowBzTMv (wherein R2 is at least one of Nd, Pr, Dy and Tb, R1 is an alloy of at least one or two or more of Ce, La, Gd, Y and Sc, TM is at least one of Ga, Al, Cu, Au, Ag, Zn, In and Mn, 0
The invention concerns a resistor, in particular a low-resistance current measuring resistor, having two connecting parts made of a conductor material and a resistor element made of a resistance material inserted between the connecting parts, the resistance material having a specific thermal force which generates a specific thermoelectric voltage in the event of a temperature difference between the resistor element on the one hand and the connecting parts on the other hand. The invention additionally provides for a compensating element which in operation generates a thermoelectric voltage which at least partially compensates for the thermoelectric voltage generated by the resistor element. Furthermore, the invention includes a corresponding manufacturing process.
A power resistor for use in an automotive battery diagnosis circuit. The resistor includes a length of conductive material stamped to form a ribbon, which has formed along its length pins arranged perpendicular to the length of the ribbon and in a plane perpendicular to the stamping direction. The pins are arranged to provide in use means for electrical connection and mechanical fixation to the circuit.
This invention provides a substrate for a superconducting wire used for manufacturing a superconducting wire with excellent superconductivity and a method for manufacturing the same. Such substrate for a superconducting wire exhibits the crystal orientation of metals on the outermost layer, such as a c-axis orientation rate of 99% or higher, a Δω of 6 degrees or less, and a percentage of an area in which the crystal orientation is deviated by 6 degrees or more from the (001) [100] per unit area of 6% or less.
A process for producing a solid graphene foam composed of multiple pores and pore walls The process comprises: (a) preparing a graphene dispersion having a graphene material dispersed in a liquid medium, which contains an optional blowing agent; (b) dispensing and depositing the graphene dispersion onto a supporting substrate to form a wet layer of graphene material having a preferred orientation; (c) partially or completely removing the liquid medium from the wet layer of graphene material to form a dried layer of graphene material having a content of non-carbon elements no less than 5% by weight (including blowing agent weight); and (d) heat treating the layer of graphene material at a first heat treatment temperature from 80° C. to 3,200° C. at a desired heating rate sufficient to induce volatile gas molecules from the non-carbon elements or to activate the blowing agent for producing the graphene foam having a density from 0.01 to 1.7 g/cm3 or a specific surface area from 50 to 3,000 m2/g.
A system for delivery of medical images, comprising an operator device to send a request to a delivery service coupled with a data storage system, where the request comprises an identifier. A medical image file in the data storage system comprises meta data associated with the identifier. The medical image file is converted into a format compatible with a determined output modality based on the meta data for a recipient device. The system can include a mobile viewer device to receive a converted medical image file, where the meta data associated with the determined output modality includes device-dependent data in header fields pertaining to the recipient device which is to receive the converted medical image file.
Embodiments are described that leverage variability of a chip. Different areas of a chip vary in terms of reliability under a same operating condition. The variability may be captured by measuring errors over different areas of the chip. A physical factor that affects or controls the likelihood of an error on the chip can be varied. For example, the voltage supplied to a chip may be provided at different levels. At each level of the physical factor, the chip is tested for errors within the regions. Some indication of the error statistics for the regions is stored and then used to adjust power used by the chip, to adjust reliability behavior of the chip, to allow applications to control how the chip is used, to compute a signature uniquely identifying the chip, etc.
Apparatus having an array of memory cells and a differential storage array might have a controller configured to program first data to a plurality of memory cells of the array of memory cells corresponding to an address of the array of memory cells, program second data to the plurality of memory cells containing the first data, determine if a power loss to the apparatus is indicated while programming the second data, and, if a power loss is indicated, program a first plurality of differential storage devices of the differential storage array responsive to information indicative of a plurality of digits of the first data, program a second plurality of differential storage devices of the differential storage array responsive to information indicative of a plurality of digits of the address, and program a third differential storage device of the differential storage array to have a particular value.
A method of operating a nonvolatile memory device is provided where the nonvolatile memory device includes a plurality of cell strings, and each cell string includes a plurality of multi-level cells. a voltage of a selected word line is sequentially changed to sequentially have a plurality of read voltages for determining threshold voltage states of the plurality of multi-level cells. A voltage of an adjacent word line adjacent to the selected word line is sequentially changed in synchronization with voltage changing time points of the selected word line. A load of the selected word line is reduced and an operation speed of the nonvolatile memory device is increased by synchronizing the voltage change of the selected word line and the voltage change of the adjacent word line in the same direction.
A sensing circuit with adaptive local reference generation of a resistive memory is configured to adaptively sense a first bit line current of a first bit line and a second bit line current of a second bit line via one sense amplifier. The sense amplifier has a first output node and a second output node. The adaptive local reference generator is electrically connected to the sense amplifier and generating a reference current equal to a sum of the second bit line current and a local reference current. A first bit line current flows through the first output node during a first bit line time interval. A second bit line current flows through the first output node during a second bit line time interval. The first bit line time interval is different from the second bit line time interval.
Aspects of the subject disclosure may include, for example, applying a setting voltage across first and second electrodes, wherein a nanowire with a first electrical resistance is electrically connected between the first and second electrodes, wherein the applying of the setting voltage causes a migration of ions from the first and/or second electrodes to a surface of the nanowire, and wherein the migration of ions effectuates a reduction of electrical resistance of the nanowire from the first electrical resistance to a second electrical resistance that is lower than the first electrical resistance; and applying a reading voltage across the pair of electrodes, wherein the reading voltage is less than the setting voltage, and wherein the reading voltage is sufficiently small such that the applying of the reading voltage causes no more than an insignificant change of the electrical resistance of the nanowire from the second electrical resistance. Other embodiments are disclosed.
Storage device programming methods, systems and media are described. A method may include encoding data to generate an encoded set of data. A first programming operation may write the encoded set of data to a memory device. The method includes encoding, using a second encoding operation based on the data, to generate a second set of encoded data. The second set of encoded data is stored to a cache. A first decoding operation is performed, based on the second set of encoded data and the encoded set of data, to generate a decoded set of data. A second decoding operation is performed to generate a second decoded set of data. The second decoded set of data is encoded to generate a third set of encoded data. The method includes performing a second programming operation to write the third set of encoded data to the memory device.
A memory circuit has compute-in-memory circuitry that enables a multiply-accumulate (MAC) operation based on shared charge. Row access circuitry drives multiple rows of a memory array to multiply a first data word with a second data word stored in the memory array. The row access circuitry drives the multiple rows based on the bit pattern of the first data word. Column access circuitry drives a column of the memory array when the rows are driven. Accessed rows discharge the column line in an accumulative fashion. Sensing circuitry can sense voltage on the column line. A processor in the memory circuit computes a MAC value based on the voltage sensed on the column.
One embodiment provides an apparatus. The apparatus includes a pair of nonvolatile resistive random access memory (RRAM) memory cells coupled to a volatile static RAM (SRAM) memory cell. The pair of nonvolatile RRAM memory cells includes a first RRAM memory cell and a second RRAM memory cell. The first RRAM memory cell includes a first resistive memory element coupled to a first bit line, and a first selector transistor coupled between the first resistive memory element and a first output node of the volatile SRAM memory cell. The second RRAM memory cell includes a second resistive memory element coupled to a second bit line, and a second selector transistor coupled between the second resistive memory element and a second output node of the volatile SRAM memory cell.
An integrated circuit chip includes: one or more couplers suitable for transferring data between stacked chips; one or more data nodes suitable for transferring data to a host; and one or more transfer circuits on a transfer path for transferring data between the one or more couplers and the one or more data nodes, wherein at least one transfer circuit among the one or more transfer circuits inverts a portion of the data which is transferred by the at least one transfer circuit.
According to one embodiment, a head gimbal assembly includes a suspension and a magnetic head supported by the suspension via a gimbal portion. The magnetic head includes a slider and a head portion provided in the slider. The slider includes an air bearing surface, a pair of side surfaces, a leading-side end surface, and a trailing-side end surface. The slider includes a deep groove which is formed between the leading-side step portion and the trailing-side step portion and is open to the air bearing surface and the pair of side surfaces, and a pair of partition walls which extends from the trailing-side step portion toward the leading-side step portion along the pair of side surfaces to close at least a portion of a side surface opening of the deep groove.
A system and method allows a user to enter a command capture audio, video, and/or still pictures that commence at a moment in time earlier than entering the command.
A tape-shaped magnetic recording medium includes a substrate; and a magnetic layer that is provided on the substrate and contains a magnetic powder. An average thickness of the magnetic layer is not more than 90 nm, an average aspect ratio of the magnetic powder is not less than 1.0 and not more than 3.0, the coercive force Hc1 in a vertical direction is not more than 3000 Oe, the coercive force Hc1 in the vertical direction and a coercive force Hc2 in a longitudinal direction satisfy a relationship of Hc2/Hc1≤0.8, and a value of σ1.5−σ0.5 is not more than 0.6 N in a tensile test of the magnetic recording medium in the longitudinal direction, where σ0.5 is a load at an elongation rate of 0.5% in the magnetic recording medium and σ1.5 is a load at an elongation rate of 1.5% in the magnetic recording medium.
A magnetic head includes a main pole, a trailing shield, a spin torque oscillator, and a buffer layer. The buffer layer is interposed between the main pole and the spin torque oscillator. The spin torque oscillator has first and second side surfaces. The first and second side surfaces respectively form first and second angles with respect to a direction perpendicular to a top surface of a substrate. The first and second angles each fall within a range of 0° to 10°. The buffer layer has third and fourth side surfaces. The third side surface includes a first inclined portion forming a third angle greater than the first angle. The fourth side surface includes a second inclined portion forming a fourth angle greater than the second angle.
A method, apparatus and computer program including: obtaining a spatial audio signal from a plurality of microphones; dividing the obtained spatial audio signal into at least a first component and a second component; applying a first audio signal optimizing system to the first component and applying a second audio signal optimizing system to the second component; and enabling a signal including the optimized components to be provided to a speaker for rendering.
A headphone, headphone system, and speech enhancing method is provided to enhance speech pick-up from the user of a headphone and includes receiving a plurality of signals from a set of microphones and generating a primary signal by array processing the microphone signals to steer a beam toward the user's mouth. A noise reference signal is also derived from one or more microphones, and a voice estimate signal is generated by filtering the primary signal to remove components that are correlated to the noise reference signal.
Systems and processes for operating an intelligent automated assistant to provide extension of digital assistant services are provided. An example method includes, at an electronic device having one or more processors, receiving, from a first user, a first speech input representing a user request. The method further includes obtaining an identity of the first user; and in accordance with the user identity, providing a representation of the user request to at least one of a second electronic device or a third electronic device. The method further includes receiving, based on a determination of whether the second electronic device or the third electronic device, or both, is to provide the response to the first electronic device, the response to the user request from the second electronic device or the third electronic device. The method further includes providing a representation of the response to the first user.
According to one embodiment, an interactive electronic device control system includes an interactive electronic device and an authentication manager. The interactive electronic device sends input voice data to a voice recognition service server and receives a response generated based at least in part on a result of recognizing the voice data by the voice recognition service server and the authentication manager authenticates a mobile terminal connected to the interactive electronic device via a network as an authenticated user.
A method at an electronic device with one or more microphones and a speaker includes receiving a first voice input; comparing the first voice input to one or more voice models; based on the comparing, determining whether the first voice input corresponds to any of a plurality of occupants, and according to the determination, authenticating an occupant and presenting a response, or restricting functionality of the electronic device.
Efficient empirical determination, computation, and use of an acoustic confusability measure comprises: (1) an empirically derived acoustic confusability measure, comprising a means for determining the acoustic confusability between any two textual phrases in a given language, where the measure of acoustic confusability is empirically derived from examples of the application of a specific speech recognition technology, where the procedure does not require access to the internal computational models of the speech recognition technology, and does not depend upon any particular internal structure or modeling technique, and where the procedure is based upon iterative improvement from an initial estimate; (2) techniques for efficient computation of empirically derived acoustic confusability measure, comprising means for efficient application of an acoustic confusability score, allowing practical application to very large-scale problems; and (3) a method for using acoustic confusability measures to make principled choices about which specific phrases to make recognizable by a speech recognition application.
A system may obtain a test utterance sample configured to test a virtual agent. The system may tokenize the test utterance sample into a sample tokens. The system may determine, based on a natural language processing framework, a synonymous set (synset) for at least one of the sample tokens. The synset may include a lemma tokens. The system may obtain a contextual corpus relevant to a natural language context of the virtual agent. The system may select a lemma token that is included in the corpus tokens. The system may generate a new test utterance comprising the selected lemma token. The system may insert the new test utterance in a test repository. The system may communicate the new test utterance to the virtual agent to test the virtual agent based on the new test utterance. If the virtual agent fails a test in respect to the new test utterance, the corpus of the virtual agent can be retrained.
In an approach to adaptive sound masking, one or more computer processors analyze a surrounding of one or more users and stores in a database. The one or more computer processors receive a request from the one or more users for adaptive sound masking. The one or more computer processors analyzes a surrounding environment associated with the one or more users and storing a first information associated with the surrounding environment in a database. The one or more computer processors generate a cognitive sound mask base on the first information. The one or more computer processors produce a sound cone based on the cognitive sound mask and directing the sound cone at a distracting sound. The one or more computer processors adapt the sound cone based on changes to the surrounding environment.
An apparatus for generating an audio output signal is provided. The audio output signal has two or more audio output channels and is generated from an audio input signal having two or more audio input channels. The apparatus includes a provider and a signal processor. The provider is adapted to provide first covariance properties of the audio input signal. The signal processor is adapted to generate the audio output signal by applying a mixing rule on at least two of the two or more audio input channels. The signal processor is configured to determine the mixing rule based on the first covariance properties of the audio input signal and based on second covariance properties of the audio output signal, the second covariance properties being different from the first covariance properties.
Systems and methods are provided for enhanced real-time audio generation via a virtualized orchestra. An example method includes receiving, from a user device, a request to generate output associated with a musical score. Actions associated with virtual musicians with respect to respective instruments are simulated based on one or more machine learning models, with the simulated actions being associated with a virtual musician and indicative of an expected playing style during performance of the musical score. Output audio to be provided to the user device is generated, with the output audio being generated based on the simulated actions.
GOA circuit is disclosed comprising m stages GOA units, wherein a n-th stage GOA unit comprises: an output control module, a forward-backward scan control module, a node signal control module, a signal output module, a first pull-down circuit, a second pull-down circuit, and a pull-up circuit, wherein m≥n≥1; output control module controls a n-th stage gate driving signal; first pull-down circuit comprises a 7th thin-film-transistor which first end connected with said output control module, and second end connected with low voltage signal; signal output module comprises a 5th thin-film-transistor which first end connected with high voltage signal and second end connected with third end of said 7th thin-film-transistor; node signal control module controls said 5th thin-film-transistor as conducting or non-conducting; second pull-down circuit controls said 5th thin-film-transistor as non-conducting. Present invention eliminates the sticking and flicker of display panels after out of power improving user experience.
A display device including: a display panel including a plurality of pixels configured to be driven in a normal mode or an always on display mode; an illuminance sensor configured to detect illuminance of ambient light; a direct current (DC)-DC converter configured to supply a power supply voltage having a first voltage level to the pixels through a power supply line when the illuminance is greater than a predetermined reference value in the always on display mode; and a display panel driver configured to supply a power supply voltage having a second voltage level to the pixels through the power supply line when the illuminance is less than or equal to the predetermined reference value in the always on display mode.
The present disclosure provides a method of compensating AMOLED pixel difference, including the steps of: fitting the driving voltage value and the driving current value of the reference pixel. Acquiring the threshold voltage, the coefficient and the power value corresponding to the reference pixel according to the fitting result. Acquiring the threshold change of the threshold voltage corresponding to the other pixel relative to the threshold voltage corresponding to the reference pixel and the coefficient ratio of the coefficient corresponding to the other pixel relative to the coefficient corresponding to the reference pixel. Compensating the other pixel difference according to the threshold change, the coefficient ratio and the power value. The disclosure makes the driving current under the same driving voltage be consistent, improves the uniformity of the light-emitting intensity of the AMOLED and enhances the display quality of the AMOLED display device.
A novel semiconductor device or a novel display system is provided. A signal generation portion monitors display conditions and controls the potentials output from a power supply circuit, in accordance with the display conditions. Specifically, a controller changes the parameter stored in a memory device when display conditions change. Then, the power supply circuit generates the potentials with the use of the changed parameter. Accordingly, the voltage applied to a light-emitting element can be controlled in accordance with the display conditions, which reduces the power consumption in a display portion.
The invention provides an OLED panel temperature compensation system and method. The system comprises an OLED panel and a processing module connected to the OLED panel, the OLED panel is disposed with a temperature sensor layer of a plurality of temperature sensors on one side or inside; when performing temperature compensation, the temperature sensor detects the temperature of the location and transmits to the processing module, the processing module receives and processes the initial data signals of the plurality of sub-pixels to obtain the to-be-displayed brightness of the plurality of sub-pixels, and receives and processes the temperatures from the plurality of temperature sensors to obtain the temperatures of the plurality of sub-pixels, and generates and outputs compensation data signals corresponding to the plurality of sub-pixels according to the to-be-displayed brightness and temperature of the plurality of sub-pixels. The OLED panel is thus accurately and effectively compensated for temperature.
Systems and methods for generating three-dimensional fluid flow simulations from two-dimensional (2D) image data are provided. Data is segmented from 2D images of a sample having a biological structure with fluid flow therethrough. Three-dimensional (3D) geometries are generated from the segmented data, and then a 3D reconstruction of the biological structure is generated from the 3D geometries. This 3D geometric computational analysis tool can be used to evaluate fluid dynamics and hemodynamics in the context of the structure anatomy and geometry.
An interactive augmented reality system for simulating medical procedures for pediatric disease education includes a plush toy having one or more patches disposed on a body of the plush toy in one or more corresponding locations each associated with an area of the body of the plush toy that is comparable to an area of a human body. An interactive medical procedure simulation logic section operable within a mobile device causes a particular patch within a series of live images to be scanned, and initiates an interactive augmented reality experience to simulate a medical procedure for pediatric disease education. Comfort is provided to children struggling with a disease. Children learn how to manage their chronic illness by enabling them to practice their medical procedures and receive feedback related to correct and incorrect care. A low-cost disease education delivery mechanism is provided directly to children through game-play.
Disclosed herein are an apparatus for writing a motion script and an apparatus and method for self-teaching of a motion. The method for self-teaching of a motion, in which the apparatus for writing a motion script and the apparatus for self-teaching of a motion are used, includes creating, by the apparatus for writing a motion script, a motion script based on expert motion of a first user; analyzing, by the apparatus for self-teaching of a motion, a motion of a second user, who learns the expert motion, based on the motion script; and outputting, by the apparatus for self-teaching of a motion, a result of analysis of the motion of the second user.
Methods and systems for improving resource content mapping for an electronic learning system. The methods can include: receiving, by the electronic learning system, a resource for satisfying at least one learning objective of the one or more learning objectives, the resource comprising a content having a content data convertible into a text data and one or more resource property fields defining at least one characteristic of the resource; sectioning the content data into one or more content portions based on an analysis of at least one of the content data and the one or more resource property fields; and assigning at least one content portion of the one or more content portions to at least one learning objective.
A piloting assistance system of a platform, and associated method are provided. The system includes a first detector for detecting a windshear able to generate a first alert that the platform is approaching a windshear zone; a second detector for detecting a windshear able to generate a second alert indicating the presence of the platform in the windshear zone; and a guider of the platform. The guider is able to automatically select a first guidance mode when a first alert is generated by the first detector, and to automatically select at least one second guidance mode different from the first guidance mode when a second alert is generated by the second detector. The system includes an information device able to display unified windshear alert information and/or unified information for implementation of a guidance mode, shared by the first alert and the second alert.
Systems and methods are disclosed for preventing damage to underground assets caused by earth work or construction equipment and vehicles. The system includes a central data system, which has access to asset location and map data, and a GPS enabled tracking device provided in the vehicle. The system operates by comparing the real-time vehicle location to the stored asset locations, displaying the map, asset information and vehicle location to the vehicle operator and generating alerts when the vehicle breaches a perimeter around an asset. Preferably, both the central data system and the tracking unit are configured to operate together and in parallel, thereby improving the reliability of the system. In addition, the system is also specifically configured to implement various approaches for using and displaying asset location data during monitoring operations while preserving the confidentiality and security of sensitive information.
A vehicle presence detection system for determining whether a parking space is vacant or occupied and utilizing this information to guide vehicles to available parking spaces. generally includes a LIDAR device, a cloud-based processing unit, a database, and a guidance light. The LIDAR device generally includes a light emitter, a light sensor, a CPU, a memory unit, and a communications device. The LIDAR device determines the distance between itself and a parking spot or a vehicle parked in that parking spot using an algorithm that accounts for variances in the ambient conditions. This status information can be communicated to a cloud-based processing unit, which can store this information in a database and/or use this information to send parking status indications to an autonomous vehicle dynamic sign, mobile device, or guidance light.
A vehicle identification system includes one or more displays associated with a vehicle, a transceiver, and a controller communicatively coupled to the transceiver. The one or more displays are located to be visible from an exterior of the vehicle. The controller is adapted to generate a first signal to be transmitted by the transceiver to a mobile communication device associated with a driver of the vehicle when it is determined that the vehicle is within a predetermined distance of a specific location. The mobile communication device associated with the driver is adapted to generate a second signal to be transmitted to the one or more displays. The second signal represents an indicator.
An intermediary between a remote control device and a remotely controllable device implements identification and/or authentication. The intermediary is, e.g., a node or set of nodes within a head end of a cable network service provider. A remote control device at a customer premise sends a command intended to control a remotely controllably device which is also located at the same customer premise. The customer premise includes a network interface, e.g., a cable modem, which has associated identification information. The command and the associated network interface identification information are communicated to the intermediary, e.g., via a cable modem. The intermediary accesses a subscriber record corresponding to the location based on the network interface identification information. The intermediary identifies the device to be controlled, e.g., a particular set top box and/or authenticates the remote control device. A command is sent via the network to the device to be controlled.
A system for automatically disarming an intrusion detection system, the intrusion detection system protecting a premises and having an armed state and a disarmed state of operation, including an intrusion detection system state of operation ascertainer operable, responsive to receiving an indication of detection of an intrusion, for ascertaining whether the intrusion detection system is in the armed state; a registered mobile communicator proximity detector communicating with the intrusion detection system state of operation ascertainer and operable, responsive to ascertaining that the intrusion detection system is in the armed state of operation, for ascertaining whether at least registered mobile communicator is in a vicinity of the premises; and an automatic intrusion detection system disarmer communicating with the registered mobile communicator proximity detector and operable, responsive to the ascertaining that at least one registered mobile communicator is in the vicinity of the premises, for automatically disarming the intrusion detection system.
A machine condition monitoring system employing a haptic feedback device. The haptic feedback device can be employed to notify an operator of an acquisition of a machine parameter measurement. The haptic feedback device can be integrated into a control unit of a condition monitoring device and/or a remote condition monitoring status receiving device. The haptic feedback device containing notification apparatus can be worn by the operator, thus providing immediate notification without requiring the Operator's undivided attention. The notification apparatus can be worn on the operator's waist, wrist, upper arm, ankle, neck, etc. The notification apparatus can also be stored within a pocket of a garment worn by the operator.
A driving assistance device of the embodiment includes: an acquisition unit that acquires a degree of drowsiness of a driver who is driving a vehicle, based on information on the driver being input; a calculation unit that calculates an expected time until the effect is lost indicating an expected time when drowsiness is not eliminated despite a stimulus being applied to the driver, based on a time interval when the degree of drowsiness obtained by the acquisition unit becomes equal to or more than a predetermined threshold; and a control unit that changes control performed on the driver as the expected time until the effect is lost calculated by the calculation unit is reduced.
A method for recognizing microsleep on the part of a driver of a vehicle. The method includes at least a step of reading in an eye closure information item regarding an eye parameter of the driver, the eye closure information item representing a first eyelid position for a maximum eye opening level, and/or a second eyelid position for a minimum eye opening level, for the driver; a step of classifying a current eyelid position of an eyelid of the driver using the eye closure information item, in order to obtain an eye opening information item that represents an open state of the eyes or a closed state of the eyes; and a step of ascertaining a sleep recognition value that represents an indication of an occurrence of microsleep.
An apparatus and method for damping haptic vibrations. A haptic output device is positioned within a device housing. The haptic output device has a haptic actuator and a haptic mass, the haptic mass being movable relative to the housing. A damper is positioned within the device housing. A controller is programmed to generate and deliver a haptic signal to the haptic actuator at a first time, and to generate and deliver a damping signal to the damper at a second time, the second time occurring after the first time. The method comprises moving a haptic mass, the haptic mass position in a housing; vibrating the housing in response to moving the haptic mass; damping movement of the haptic mass after a period of time; and substantially eliminating vibration of the housing in response to damping movement of the haptic mass.
Some embodiments may include a poker indexing service. For example, a multi dimensional vector of player performance and/or other data may be determined based on gaming related activity that is input or otherwise captured. Such a vector may be used in various forms to generate a metric or to facilitate wagering and/or other gaming activity. Other methods and apparatus are described.
Nested commit/reveal sequences using randomized inputs from each participant in a gaming transaction (e.g., the house and each player) may be employed to provide a selection of outcome or outcomes that can be verified by each participant as free from cheating. In general, techniques may be employed in a variety of distributed gaming transaction environments and as a verification facility for any of a wide variety of games in which the risk of player collusion can be eliminated. Nonetheless, several variations on a distributed card dealing method are illustrative and will be appreciated by persons of ordinary skill in the art as applicable in other gaming environments, including games employing outcomes denominated in die (or dice) rolls, coin toss, wheel spins, blind selection or other ostensibly random selection of an outcome from a predefined set thereof.
A credit card reader that is configurable for use is provided that includes a first assembly and a second assembly. The first assembly has a mag stripe card reader. The second assembly has a Europay Mastercard Visa (EMV) reader. The second assembly is coupled to the first assembly, where the first assembly rotates about an axis perpendicular to a plane in which the assemblies are disposed to one of a plurality of angular positions, the plurality of angular positions indicating an offset angle of the first assembly relative to the second assembly.
An integrated wireless data system and method for avionic performance indication for measuring, monitoring and displaying in-use, real-world engine-out characteristics on a propeller driven aircraft for the purposes of health monitoring, performance optimization, and regulatory compliance is provided. Engine-out characteristics may be measured either at the propeller extension hub mounted between the engine and propeller, on the crankshaft flange, or on the propeller itself, and include, but are not limited to, the engine output torque, thrust, vibration, bending loads and temperature. Data may be transmitted wirelessly to a base unit located inside the cockpit and user selected parameters are updated on a display in real-time. The system may also store all collected data, for later download and analysis. The system may also have a software interface that can be used to download, view and analyze all recorded data, as well as to configure the system settings and alerts.
Techniques are disclosed for displaying a graphical element in a manner that simulates three-dimensional (3D) visibility (including parallax and shadowing). More particularly, a number of images, each captured with a known spatial relationship to a target 3D object, may be used to construct a lighting model of the target object. In one embodiment, for example, polynomial texture maps (PTM) using spherical or hemispherical harmonics may be used to do this. Using PTM techniques a relatively small number of basis images may be identified. When the target object is to be displayed, orientation information may be used to generate a combination of the basis images so as to simulate the 3D presentation of the target object.
Embodiments described herein provide a general purpose graphics processing device, comprising a general purpose graphics processing compute block to process a workload including graphics or compute operations, a memory, and a constant folding unit comprising a processing unit to receive a first input shader and metadata for the first input shader, receive a first constant buffer comprising runtime constants for the first input shader, and generate an improved shader from the first input shader and the runtime constants. Other embodiments may be described and claimed.
The present disclosure is directed toward systems and methods for generating a composite radiographic image that corrects effects of parallax distortion. A sequence of radiographic images—including a series of discrete exposures or image frames from a fluoroscopic procedure—may be acquired using a C-arm apparatus. An exemplary method may include receiving a plurality of radiographic image frames pertaining to a patient, identifying a region of interest on the image frames, cropping the region of interest from a plurality of image frames, selecting a plurality of sequential portions of cropped image frames, and stitching together the selected portions to form a composite image that corrects effects of parallax distortion and displaying a three-dimensional image of a part of the patient according to the orientation of the patient calculated from this two-dimensional intra-operative radiographic imaging information.
A system and method of generating a two-dimensional (2D) image of an environment is provided. The system includes a 2D scanner having a controller that determines a distance value to at least one of the object points. One or more processors are operably coupled to the 2D scanner, the one or more processors being responsive to nontransitory executable instructions for generating a plurality of 2D submaps of the environment based at least in part on the distance value, each submap generated from a different point in the environment. A map editor is provided that is configured to: select a subset of submaps from the plurality of 2D submaps; and generate the 2D image of the environment using the subset of 2D submaps. The method provides for realigning of 2D submaps to improve the quality of a global 2D map.
A logo controller includes: a logo area detector for detecting a logo area commonly included in a plurality of first image frames, based on the plurality of first image frames; a logo peripheral area setting unit for setting a logo peripheral area expanded based on the logo area; a display load determiner for calculating a display load value, based on grayscale values of at least one first image frame, and determining the difference between a logo peripheral area representative value based on grayscale values of the logo peripheral area and the display load value exceeds a first reference value; and a logo peripheral area corrector for generating a second image frame.
Described are systems and processes for generating multi-view interactive digital media representations (MIDMR) for display on a user device. In one aspect, a mobile device is provided which comprises a display, one or more processors, memory, and one or more programs stored in memory. The one or more programs comprise instructions for locking the mobile device, and providing a lock screen on the display in a lock mode upon receiving user input for accessing the mobile device. The lock screen may display a dynamic MIDMR that dynamically changes without user input, which provides an interactive three-dimensional representation of an object that is responsive to user interaction with the mobile device. The dynamic MIDMR displayed is selected based on predetermined criteria, and may change based on a predetermined algorithm that includes weighted predetermined criteria factors as variables and recalculates the algorithm value to determine changes to the dynamic MIDMR.
In some implementations, a first electronic device including a first image sensor uses a processor to perform a method. The method involves obtaining a first set of keyframes based on images of a physical environment captured by the first image sensor. The method generates a mapping defining relative locations of keyframes of the first set of keyframes. The method receives a keyframe corresponding to an image of the physical environment captured at a second, different electronic device and localizes the received keyframe to the mapping. The method then receives an anchor from the second electronic device that defines a position of a virtual object relative to the keyframe. The method displays a CGR environment including the virtual object at a location based on the anchor and the mapping.
A system includes a processor and a memory. The memory stores instructions executable by the processor to identify an object, including points on the object, to perform tracking of the object based on a motion model including a relationship of the points to one another, and to then output a location of one of the points in a blind spot based on the tracking.
The present disclosure relates to the technical field of medical image processing and, in particular, to a liver boundary identification method and a system. The method includes: obtaining liver tissue information of a liver tissue to be identified; identifying a liver tissue boundary in the liver tissue information according to a feature of the liver tissue corresponding to the liver tissue information and a feature of the liver tissue boundary corresponding to the liver tissue information using an image processing technology or a signal processing technology; and outputting position information of the identified liver tissue boundary. By using the disclosed method, the liver tissue boundary can be identified automatically, the efficiency of identifying the liver boundary can be improved, and automatic positioning of the liver boundary can thus be achieved.
A system and method for Automated Detection and Measurement of Corneal Haze and the Demarcation Line is disclosed. Data extraction module performs visual data and statistics generation to detect corneal haze and calculate corneal attributes in images.
An image processing device includes a processor comprising hardware, wherein the processor is configured to execute: acquiring intraluminal images; generating, for each of the intraluminal images, lesion information by estimating a visual point with respect to a lesion region extracted from each of the intraluminal images and analyzing a three-dimensional structure of the lesion, the lesion information indicating any of a top portion, a rising portion, and a marginal protruding portion in the lesion region; and extracting, based on the lesion information, a target image satisfying a prescribed condition from the intraluminal images.