US11058607B1

One aspect of this disclosure provides a medication fulfillment system, comprising a medication fulfillment canister, a medication filling station, and a fulfillment station. In one embodiment, the medication filling station comprises a disassembly rack configured to hold the canister in an inverted position and hold an upper dispensing compartment in an inverted position to receive a given medication therein; and an air injection system including an air manifold having a gas supply end and outlet end, and a biased push plate, the outlet end connectable to a lock of the canister. The fulfillment station, comprises a vibrator station configured to receive the canister therein; one or more optical scanners coupled to a controller for reading identification data located on the canister to identify a medication located therewithin; and an air push device for unlocking the lock and allow the tray lid to be placed in an open position.
US11058604B2

A combination emergency wash and faucet unit includes a base configured to be coupled to a sink, an emergency wash arm pivotally coupled to the base and including an emergency wash unit configured to dispense a first fluid, and a spout pivotally coupled to the base and configured to dispense a second fluid. The emergency wash arm is repositionable relative to the base between a stored position and an active position. The spout is repositionable relative to the base and the emergency wash arm. The spout is configured to move away from the active position of the emergency wash arm when the emergency wash arm is moved from the stored position toward the active position.
US11058601B2

This application discloses systems and methods of applying vibration to a targeted area on an individual that is experiencing pain, discomfort, or other musculoskeletal symptoms. Steps of the method include lengthening followed by oscillation and vibration. The lengthening step requires positioning the individual (e.g., with the help of a stretching cage) such that the individual experiences a stretching sensation in a targeted area (e.g., a group of muscles, ligaments, tendons, etc.). Next, the individual oscillates in and out of that lengthened position while vibration is applied to the targeted area. It has been discovered that these techniques can bring about dramatic and quick improvements in flexibility and range of motion, while also diminishing symptoms like pain and discomfort.
US11058590B2

An absorbent article selected from a sanitary napkin, an incontinence pad and a pantyliner, comprising a topsheet layer a backsheet layer a fastening adhesive applied on the backsheet garment facing surface, wherein at least a portion of said fastening adhesive (PFA) is applied in a pattern and wherein said backsheet layer is a plastic film having a basis weight of less than 20 gsm.
US11058587B2

A system, method, and apparatus are disclosed for dressing a wound. The apparatus comprises a liquid and gas permeable transmission layer, an absorbent layer for absorbing wound exudate, the absorbent layer overlying the transmission layer, a gas impermeable cover layer overlying the absorbent layer and comprising a first orifice, wherein the cover layer is moisture vapor permeable.
US11058586B2

A system for attaching a welding face member to a hard hat includes a hard hat and an adapter. The adapter is attached to the hard hat. The adapter includes an adapter mating member which attaches to a welding face member. The adapter mating member is located below the hard hat.
US11058584B2

Disclosed herein are systems and methods for aiding a surgeon to perform a surgical procedure on an eye. The surgical procedure includes inserting an elongate probe from an opening into the eye across an anterior chamber to a target tissue region comprising a trabecular meshwork and a Schlemm's canal. Exemplary systems include an optical microscope for the surgeon to view the eye with a microscope image during the procedure; an optical coherence tomography (OCT) apparatus configured to perform an OCT scan of a target location in the target tissue region during the procedure; and an image processing apparatus configured to generate an augmented image by overlaying an OCT image of target location and a graphical visual element identifying the locations, wherein the graphical visual element is registered with the microscope image to aid the surgeon in advancing a distal end of the elongate probe to the target location.
US11058582B2

An imaging probe comprises a camera or endoscope with an external detector array, in which the probe is sized and shaped for surgical placement in an eye to image the eye from an interior of the eye during treatment. The imaging probe and a treatment probe 500 can be coupled together with a fastener or contained within a housing. The imaging probe and the treatment probe 500 can be sized and shaped to enter the eye through an incision in the cornea and image one or more of the ciliary body band or the scleral spur. The treatment probe 500 may comprise a treatment optical fiber or a surgical placement device to deliver an implant. A processor coupled to the detector can be configured with instructions to identify a location of one or more of the ciliary body band, the scleral spur, Schwalbe's line, or Schlemm's canal from the image.
US11058575B2

There is described a method for delivering exogenous biomolecules into an eye. The method generally has the steps of injecting, into a region of the eye, a mixture having a plurality of exogenous biomolecules and a plurality of plasmonic structures, the plasmonic structures having a plasmonic resonance wavelength, the plasmonic structures adjoining membranes of target cells in said region due to said injecting; and irradiating said region of said eye with a laser beam having a wavelength being offset to said plasmonic resonance wavelength, said irradiating causing the plasmonic structures to form pores in said membranes of said target cells, allowing at least some of the exogenous biomolecules to be delivered into the target cells via said pores.
US11058569B2

Various apparatus, e.g., braces or supports, and methods for stabilizing a shoulder and/or arm of a subject are provided herein. In certain variations, a shoulder stabilization apparatus includes one or more inelastic, non-stretchable and/or rigid components which restrict or limit various types of shoulder and/or arm motion, e.g., abduction. The shoulder stabilization apparatus may include various accessory straps which restrict or limit various types of shoulder and/or arm motion.
US11058568B2

A knee brace for use by athletes or others requiring protection and support of the knee. The knee brace includes a base and a spider member. The base is comprised of elastic material and configured to closely fit around portions of the knee and adjacent leg portions. A spider member having upper and lower pairs of tensioning straps is fastened to the interior surface of the base, with the tensioning straps extending through upper and lower apertures in the base for detachable attachment to the exterior surface of the base.
US11058565B2

A system for deploying a shape memory catheterization device within a patient, includes a catheter for endovascular insertion of the shape memory catheterization device. A heat source heats the shape memory catheterization device above the transition temperature. A transformation data generator includes a circuit driver for driving a circuit that includes at least one strain gage of the shape memory catheterization device and a detection circuit for generating transformation data based on a strain indicated by the at least one strain gage, wherein the transformation data indicates a shape transformation of the shape memory catheterization device from a catheterization shape to a transformed shape.
US11058562B2

A prosthetic socket, comprising a base for distal connection means for attaching a prosthesis component to the prosthetic socket and comprising at least one side wall, which extends from the base in the proximal direction and at least partially extends around a stump to be held in the prosthetic socket, and at least one support for fastening the side wall to the base being arranged on the base.
US11058560B1

A connector apparatus for securing a liner disposed around a residual limb of a user to a distal prosthetic member is provided. The apparatus includes a body member having a roller rotatably mounted to a side wall in a slot in the body member, a socket disposed around the body member and having an opening aligned with the slot of the body member, and a strap having a first end coupled to the liner. The socket facilitates attachment of the distal prosthetic member to the body member. The strap extends through the slot in the body member against the first roller and through the opening in the socket. The strap continues to extend along an exterior surface of the socket and is attached to itself, thereby securing the liner to the distal prosthetic member.
US11058546B2

An improved surgical system and procedure for correcting a deformity between first and second bones using an alignment guide based on a correction factor. The correction factor can be based on a virtual model of the first and second bones in a deformed configuration and a corrected configuration. In the virtual corrected configuration, first and second virtual axes can be fixed in the respective first and second bones. When reverted to the virtual deformed configuration, the orientation of the first and second axes can be used to determine the correction factor. The alignment guide is used to insert one or more k-wires into each of the first and second bones in a deformed configuration. A correction guide is passed along the k-wires to rotate and/or translate the first bone relative to the second bone into the corrected configuration.
US11058543B2

An orthopaedic prosthesis for use in a hip replacement surgery includes an implantable stem component. The implantable stem component includes a core and a shell extending over the core. The shell includes a polymeric material and is configured to receive a femoral head component. Metal foam may extend over a portion of the shell.
US11058538B2

Synthetic chord devices and methods for using the same for connecting tissues are provided. Aspects of the synthetic chord devices include a first flexible connector having first and second ends. Located at the first end is an attachment element that includes a tissue piercing member coupled to a securing member. The securing member includes an elongated shape memory coil that is present in a removable sheath configured to maintain elongation of the shape memory coil. A reinforcing element is located at the second end. The devices and methods of the invention find use in a variety of applications, such as cardiac valve, e.g., mitral valve, repair.
US11058525B2

A drivetrain assembly (100, 200) for a personal care device (10), the drivetrain assembly including a resonator (110) connected to a transmission component (24) configured to transmit oscillations to the removable attachment; and a drive coil (120) configured to oscillate the resonator in a first direction; where the drive coil is configured to generate an installation or removal signal in response to installation or removal of the removable attachment, the installation or removal of the removable attachment generating movement of the resonator in a second direction; and where the drivetrain assembly is configured to communicate the generated signal to a controller.
US11058514B2

Exemplary method and apparatus embodiments of this application can obtain a digital model of an individual intraoral dentition and perform tooth surface restoration after brace representation removal that includes wires and brackets.
US11058512B2

A medical apparatus, such as a dialysis machine (e.g. a hemodialysis machine or a peritoneal dialysis machine), includes a plurality of components, one or more sensors corresponding to the components and configured to detect signals, a display and a control unit. The control unit is configured to: receive signals from the one or more sensors, determine, from the signals, a status of the medical apparatus, and determine control commands for the display based on the determined status for status-dependent control of the display. The described apparatus improves the human-machine interface in terms of set-up time, operating time and freedom from errors. Depending upon the determined status, different status-specific menus may be illustrated on the display in order to assist the user when operating the apparatus or advise the user about any errors or subsequent steps.
US11058510B2

A stereotactic system for positioning a device relative to a spine includes a first frame with an attached first pedicle screw, a second frame with an attached second pedicle screw, and a platform for mounting the device. The lower parts of the frames are horizontally spaced apart, and attachable to the spine by the pedicle screws. The platform is attached to the upper parts of the frames and supported by the frames above the spine. The platform is slidably attached to the upper parts of the frames to adjust a longitudinal position of the platform relative to the frames. The platform is pivotally attached to the upper parts of the frame to adjust a horizontal distance between the lower parts of the frames, while maintaining a constant orientation of the platform.
US11058503B2

Surgical instruments for use in a surgical robot are provided herein. The instruments are preferably part of a translational instrument interface and are removably coupled to the surgical robot. In one aspect, the translational instrument interface has a slave hub mounted on a distal end of the slave unit, a sterile shield insertable within the slave hub, and an instrument having an end-effector for contacting tissue insertable within the sterile shield. The instrument may be disposable after a single use. The handle of the surgical robot is preferably coupled to the translational instrument interface such that actuation at the handle causes movement of the end-effector for performing surgery.
US11058498B2

Various robotic surgical systems are disclosed. A robotic surgical system comprises: a first robotic arm comprising a first force sensor, a second robotic arm comprising a second force sensor, and a control unit. The control unit comprises a processor and a memory communicatively coupled to the processor. The memory stores instructions executable by the processor to receive a first input from the first force sensor, to receive a second input from the second force sensor, and to effect cooperative movement of the first robotic arm and the second robotic arm based on the first input from the first force sensor and the second input from the second force sensor in a load control mode.
US11058489B2

Microwave ablation devices and systems and method including the devices are provided. The microwave ablation device includes a cable assembly operably coupled to an energy source, a feedline in electrical communication with the cable assembly, a balun disposed on the feedline, an outer tubular member through which the feedline at least partially extends, and an inflatable barrier disposed on the outer tubular member proximal to the balun.
US11058482B2

A multi-electrode renal denervation method and system using an integrated circuit are provided. The multi-electrode renal denervation system presented in the present invention comprises: a power generator transmitting control data for controlling the temperature of a plurality of electrodes; and a catheter in which the plurality of electrodes, which has an integrated circuit embedded therein and is controlled by the control data received from the power generator, are arranged, and the information measured using the integrated circuit is transmitted to the power generator.
US11058477B2

A control circuit for a surgical instrument includes a shaft control segment, a first electrical conductor configured to conduct a first electrical signal between the shaft control segment and a releasable surgical instrument cartridge, an electrosurgical energy control segment, a second electrical conductor configured to conduct a second electrical signal between the electrosurgical energy control segment and the releasable surgical instrument cartridge, and a connector electrically coupled to the electrosurgical energy control segment and configured to receive electrosurgical generator energy from an electrosurgical generator. The electrosurgical energy control segment is configured to detect a connection of the electrosurgical generator to the connector and to electrically isolate the shaft control segment from the electrosurgical generator energy when the electrosurgical energy control segment detects the connection of the electrosurgical generator to the connector.
US11058472B2

A surgical instrument includes an ultrasonic transducer, a distally extending shaft, and an end effector at a distal end of the shaft. The end effector includes an ultrasonic blade and a clamp arm. The ultrasonic blade includes an upper treatment side, a lower treatment side, a first lateral side, and a second lateral side. The clamp arm is movable relative to the ultrasonic blade for clamping tissue therebetween, and it provides an RF electrode operable to seal tissue with RF energy. The RF electrode includes first and second electrode side portions. The first electrode side portion is spaced laterally outward from the first lateral side of the ultrasonic blade by a first lateral gap distance. The second electrode side portion spaced from the first electrode side portion and is spaced laterally outward from the second lateral side of the ultrasonic blade by a second lateral gap distance.
US11058470B2

An insertion tool for deploying a flip anchor cable, including: a mechanism having a safety button and a slider, wherein the mechanism is configured to apply a clamping force on a portion of the flip anchor cable when the mechanism is in a first position; an inner tube having a proximal end connected to the mechanism configured to house a second portion of the flip anchor cable; a handle including a safety button opening and a slider opening, wherein the handle is configured to enclose a portion of the mechanism; and an outer tube having a proximal end connected to the handle configured to receive the inner tube; wherein the mechanism is configured to decrease the clamping force on the flip anchor cable when the mechanism is in a second position and to deploy a flip anchor of the flip anchor cable in the second position.
US11058458B2

A catheter system comprises an elongate catheter body including a distal end. The catheter system also comprises a cannulation lumen extending through the elongate catheter body and terminating at the distal end of the elongate catheter body. The catheter system also comprises a steering element extending through the elongate catheter body for steering the distal end of the elongate catheter body and an imaging element extending within the elongate catheter body. The imaging element is configured to obtain optical images of an area located distally of the distal end of the elongate catheter body.
US11058451B2

Systems and methods for removal of thrombus from a blood vessel in a body of a patient are disclosed herein. The method can include: providing a thrombus extraction device including a proximal self-expanding member formed of a unitary fenestrated structure, a distal substantially cylindrical portion formed of a net-like filament mesh structure, and an inner shaft member connected to a distal end of the net-like filament mesh structure; advancing a catheter constraining the thrombus extraction device through a vascular thrombus, deploying the thrombus extraction; retracting the thrombus extraction device to separate a portion of the thrombus from the vessel wall and to capture the portion of the thrombus within the net-like filament mesh structure; and withdrawing the thrombus extraction device from the body to remove thrombus from the patient.
US11058450B2

A punching needle for a handpiece used to separate a follicle of an extraction target hair from a skin tissue of a patient while the punching needle is rotated is provided. The punching needle includes a slit formed at one side of a front end portion thereof, the slit extends rearward from the front end portion of the punching needle in a longitudinal direction of the punching needle, and the punching needle is mounted in and used in the handpiece to allow a part of the slit or the entire slit to be exposed in front of the handpiece. The punching needle enables an inside of the punching needle to be directly and visually checked through the slit and enables the extraction target hair to be inserted into the punching needle from a side of the punching needle through the slit formed in the punching needle.
US11058437B2

A method of implanting a bone anchor in a vertebra comprises engaging a tip of a flexible drill bit with boney structure of the vertebra, rotating the flexible drill bit at a slow speed, pushing the drill bit into exterior cortical bone of the boney structure of the vertebra, guiding the flexible drill bit into cancellous bone of the vertebra, receiving a tactile output generated by the flexible drill bit indicating resistance of interior cortical bone of the boney structure against the flexible drill bit, and reorienting a trajectory of the flexible drill bit toward the cancellous bone of the vertebra in reaction to the tactile output.
US11058435B2

A surgical device incorporating a powered rotary cutting tool having a protective distal foot plate which protects against injuring non-target tissue enabling the rapid and safe removal of specifically-targeted bone, cartilage, and soft tissue.
US11058432B2

A reposable surgical clip applier is provided and includes a handle assembly, an endoscopic assembly selectively connectable to a housing of the handle assembly, and a clip cartridge assembly selectively loadable in and connectable to the endoscopic assembly.
US11058426B2

An end effector including an anvil and a staple cartridge assembly is disclosed. The staple cartridge assembly comprises a deck having steps defined thereon for compressing tissue positioned between the anvil and the staple cartridge assembly to different pressures. The staple cartridge assembly further comprises staples having different unformed heights removably stored therein. The staples are deformed against the anvil to different formed heights.
US11058422B2

A surgical instrument has a staple cartridge housing a plurality of staples and an anvil configured to capture tissue therebetween. The surgical instrument also has a firing assembly configured to deploy the plurality of staples into the captured tissue during a firing sequence, and a handle that includes an electric motor operably coupled to the firing assembly, wherein the electric motor is configured to motivate the firing assembly to deploy the plurality of staples into the captured tissue during the firing sequence, and a power pack. The power pack includes rechargeable battery cells configured to power the electric motor, at least one battery-cell health indicator, and an electronic control circuit configured to assess whether a subset of rechargeable battery cells is damaged during the firing sequence based on at least one measurement performed by the at least one battery-cell health indicator.
US11058419B2

A buttress is applied to an end effector of a surgical stapler. The buttress is loaded on a platform of a buttress applier cartridge. The end effector is closed upon the platform. An adhesive layer of the buttress secures the buttress to the end effector. The buttress is thus adhered to the end effector when the end effector is opened. The end effector is then actuated on tissue of a patient, thereby stapling the buttress to the tissue.
US11058414B1

Methods for tissue repairs with direct pass cinch are disclosed. A direct pass cinch is created with a suturing construct using only one portal and without shuttling steps. The suturing construct may be a loop terminating in a single tail.
US11058410B2

An anchoring system for securing tissue to bone includes an implant having a body through which a suture eyelet extends transversely, a suture recess extending along a portion of a length of the body, having a predetermined depth below an outer surface of the body, and a suture pinch ramp disposed at a proximal end of the suture recess. The suture pinch ramp has a depth approximately equal to the predetermined depth at a distal end thereof and sloping outwardly in a proximal direction so that a depth of a proximal end of the suture pinch ramp approaches zero. An insertion member includes an insertion tube and a handle which is engageable with the anchor body to deploy the anchor in a selected bone site.
US11058409B2

A cord that has been previously affixed around an annulus can be fastened with a fastener that is movable from a first state in which the cord is free to slide to a second state in which the cord is locked in place. After the fastener is moved to the second state, a cutting element with a slit shaped distal portion oriented in the distal-to-proximal direction with sharp edges slides with respect to a shelf and cuts off portions of the cord that are proximal with respect to the two locked parts.
US11058385B2

Detecting a vessel region in multiple angiographic image frames and defining a direction that perpendicularly intersects a longitudinal direction of the vessel region to improve co-registration between two imaging modalities. Motion of the vessel region is then detected based on the direction that intersects the longitudinal direction of the vessel region by evaluating positions of the vessel region in the multiple angiographic image frames. The method includes defining an area based on the detected motion and the detected vessel region, detecting a marker of an imaging catheter disposed in the vessel region within the area and performing co-registration based on the detected marker.
US11058383B2

The present invention relates to an apparatus for the detection of opacities in X-ray images. It is described to provide (210) an analysis X-ray image of a region of interest of an analyzed body part. A model of a normal region of interest is provided (220), wherein the model is based on a plurality of X-ray images of the region of interest. At least one abnormality is detected (230) in the region of interest of the analyzed body part, the detection comprising comparing the analysis X-ray image of the region of interest and the model of the normal region of interest. Information is output (240) on the at least one abnormality.
US11058374B2

The present invention proposes a radiation detector including a housing, a radiation detection panel accommodated in the housing and converting radiation incident from the outside of the housing into an electric signal, a printed circuit board electrically connected to the radiation detection panel and an intermediate plate that is disposed between the radiation detection panel and the printed circuit board, supports the radiation detection panel, and is electrically connected to the ground line of the printed circuit board, wherein the intermediate plate is transmissive to the radiation.
US11058370B2

An X-ray imaging method is for generating image data of a field of view of an object to be examined. In the method, firstly an individual imaging protocol is determined for imaging of the object to be examined. Furthermore, first X-ray projection measurement data with a first X-ray energy spectrum and at least one set of second contrast medium-influenced X-ray projection measurement data with a second X-ray energy spectrum, are acquired from the field of view. A third X-ray energy spectrum with a third mean energy is then determined on the basis of the determined individual imaging protocol. Subsequently, preferably pseudo-monoenergetic image data, associated with the third X-ray energy spectrum, is reconstructed on the basis of the acquired first and at least second X-ray projection measurement data as well as the determined imaging protocol. An image data-generating device is also described. A computerized tomography system is described, moreover.
US11058369B2

Methods and systems are provided for coherent scattered imaging using a computed tomography system with segmented detector arrays. In one embodiment, a method includes imaging a region of interest with an x-ray source and a segmented photon-counting detector array, detecting a position of an object of interest in the region of interest, selectively scanning, via the x-ray source and the segmented photon-counting detector array, the object of interest, detecting a coherent scatter signal from the object of interest with the segmented photon-counting detector array, and determining a material of the object of interest based on the detected coherent scatter signal. In this way, the coherent scatter signal may be used to identify and investigate lesions or other objects of interest within an imaged volume.
US11058368B2

A graphical audio station of a nurse call system is operable to permit a user to perform one or more of the following functions: establish a two-way voice communication link with another computer device in another patient and/or with a another computer device located in another staff work area and/or with a wireless communication device carried by caregiver and/or with a telephone of the healthcare facility; broadcast a voice page to a group of other selected computer devices; compose and send a text message to a portable device that is carried by a caregiver and that has wireless communication capability; browse web pages and/or view multimedia content, such as videos, hosted on servers of the healthcare facility and/or that are accessible via the Internet; view and/or acknowledge and/or answer and/or cancel alerts or nurse calls originating in a plurality of patient rooms.
US11058360B2

It is possible to measure a pulse rate correctly, when a body moves. A frequency analysis unit 13 generates a pulse wave frequency signal by converting pulse wave detection signals detected by a light sensor 20 into a frequency domain signal from time domain signals. A body motion level determination unit 14 determines a body motion level of a subject based on acceleration detection signals output by an accelerometer 21. A peak detection unit 15 detects a peak of spectrum intensity in the pulse wave frequency signal within a peak searching range, which varies depending on the determined body motion level. A pulse calculation processing unit 16 generates pulse information based on a frequency position of the peak detected by the peak detection unit 15.
US11058357B2

An acoustic wave apparatus is used, the apparatus comprising: a supporting member supporting an examinee and having insertion opening; a subject holding member holding the subject; a transducer array including transducers and being distant from the subject holding member; a load acquiring unit acquiring a load value applied between the supporting member and the subject holding member based on an amount of deformation of the subject holding member; a memory unit storing a first load reference value determined based on the amount of deformation of the subject holding member and an area applied with the load when the subject holding member and the transducer array come into contact with each other; a comparing and determining; and an interlock controlling unit.
US11058356B2

A method for measuring a myocardial physiologic parameter according to an embodiment includes placing an at least partially convex portion of a spectral sensor against an intercostal space of a human over a heart of the human and measuring the physiologic parameter of a myocardium of the heart with the spectral sensor over time during an emergency medical event. The spectral sensor may be configured to determine and visually display a suggested position adjustment for directing the spectral radiation more directly toward the tissue of interest (e.g. the myocardium), and/or for placing the operative elements of the spectral sensor closer to the tissue of interest (e.g. the myocardium).
US11058349B2

A monitoring non-invasive device for handling of sleep apnea, snoring and emergency situations operates for breathing assistance by means of transdermal stimulation of muscle groups including the pectoralis majoris, the serratus anterior, and the abdominal muscles. A wrist mounted version may alarm drivers or others requiring focus or concentration when they fall asleep and may alert a medical center. The invention may have a pulse oximeter on a person's wrist/finger to monitor their breathing while asleep, and in the event of a serious snoring or sleep apnea episode, activate the breathing assistance pulses.
US11058339B1

The present invention relates to an electrode harness and more particularly to an electrode harness with various features, which enhance the use and performance of the electrode harness. The present invention further relates to a method of taking biopotential measurements. The electrode harness and methods of the present invention allow for use with most applications where biopotential measurements are taken. The electrode harness can be used in ECG (or EKG), EEG, EMG, and other such biopotential measurement applications. Because of the versatility of various embodiments of the present invention, preferably the electrode harness can be adjusted for different applications or for application to various sized and shaped subjects. The electrode harness is further preferably part of a system, which includes either wireless or tethered bridges between the electrode harness and a monitor, and preferably includes various forms of processors for analyzing the biopotential signal.
US11058335B2

A device for measuring a force, includes: a fastening apparatus; and a sensor, which includes a measuring member arranged to move along a measurement axis, the sensor being arranged to measure a force exerted on the measuring member depending on the movement of this measuring member. The fastening apparatus is arranged to exert, during a movement of the measuring member along this measurement axis, on a carrier to which they are fastened, an average force borne by the measurement axis.
US11058333B2

A system includes an enclosure having a processor and a memory coupled to the processor. The enclosure includes a display coupled to the processor where the display is visible from an exterior of the enclosure; and a battery within the enclosure coupled to the processor and the display. The enclosure includes a probe tip coupled to an exterior of the enclosure. The probe tip includes first, second, and third sensor openings. A first distance between the first and second sensor openings is different than a second distance between the first and third sensor openings. The enclosure includes code stored in the memory where the code is executable by the processor, and includes code to receive first data associated with the first and second sensor openings, code to receive second data associated with the first and second sensor openings, and code to perform SRS using the first and the second data.
US11058331B1

An analyte sensor includes a detector array having at least two detector elements, for example antennas or light emitting diodes, that transmit electromagnetic energy. Any one or more of the detector elements in the detector array can be selectively controlled to function as a transmit detector element that functions to transmit a generated transmit signal in a radio or microwave or visible light frequency range of the electromagnetic spectrum into a target containing an analyte of interest. In addition, any one or more of the detector elements in the detector array can be selectively controlled to function as a receive detector element that functions to detect a response resulting from transmission of the transmit signal by the transmit detector element into the target. A scan routine can be implemented that includes a plurality of scans, where each scan uses a different combination of the detector elements to transmit a signal and detect a response.
US11058328B2

This invention relates to the means for detection of molecular and chemical matter utilizing multiple techniques covering electronics, optics, and imaging techniques. More particularly, this invention is related to detecting levels of certain molecules inside the body through non-invasive contact or non-contact with the body. More specifically, this invention is related to the means to detect levels of molecules associated with metabolic diseases, more particularly the early diagnosis of the disease, especially diabetes. This invention also relates to a medical device that utilizes electromagnetic waves of varying wavelengths and detects waves returned to the device.
US11058327B2

Devices for determining the likelihood that a user of a primary monitoring device (“PMD”) has developed a medical condition, generally comprising sensors coupled to the PMD, wherein the PMD detects changes to sensor readings over time, and wherein the changes indicate a change in the likelihood that a user of the PMD has developed a medical condition. In some embodiments, motion sensors are operably coupled to the PMD, and the PMD monitors and saves data relating to characteristics of motion detected, which are used to determine whether there has been a change in a likelihood that a user is undergoing a medical event. In further embodiments, the PMD comprises cameras, and the PMD monitors and saves data relating to movement of a user's eyes, which is utilized to determine whether there has been a change to a likelihood that the user is currently undergoing a medical event.
US11058326B1

An antenna array for millimeter wave communications with a cell tower having a base station which allow for penetration of signals within a vehicle, building, glass or the like. In alternative embodiments, it may be a plurality of antenna arrays in communication with a base station (or cell tower) to provide 360 degrees of reception.
US11058321B2

A tracking system that includes a sensor and a current driver. The sensor includes a substrate and magnetic sensor components configured to sense one or more magnetic fields and provide signals corresponding to the one or more magnetic fields. The magnetic sensor components are on the substrate and the substrate includes one or more conductive paths connected to one or more of the magnetic sensor components and intersecting one or more footprints of the magnetic sensor components. The current driver is configured to provide a regulated current to the one or more conductive paths intersecting the one or more footprints of the magnetic sensor components.
US11058310B2

A pulse wave sensor unit includes a pressure sensor, and an adhesive tape to attach the pressure sensor to a measurement portion to be measured. The pressure sensor includes a diaphragm part, and an annular support part which supports the diaphragm part and has an aperture for allowing the diaphragm part to face the measurement portion, and a closed space is able to be formed between the diaphragm part and the measurement portion by attaching the pressure sensor to the measurement portion using the adhesive tape.
US11058308B2

An optical coherence tomography system and method with integrated pressure measurement. In one embodiment the system includes an interferometer including: a wavelength swept laser; a source arm in communication with the wavelength swept laser; a reference arm in communication with a reference reflector, a first photodetector having a signal output; a detector arm in communication with the first photodetector, a probe interlace; a sample arm in communication with a first optical connector of the probe interface; an acquisition and display system comprising: an A/D converter having a signal input in communication with the first photodetector signal output and a signal output; a processor system in communication with the A/D converter signal output; and a display in communication with the processor system; and a probe comprising a pressure sensor and configured for connection to the first optical connector of the probe interface, wherein the pressure transducer comprises an optical pressure transducer.
US11058307B2

Medical devices including optical connector cable assemblies are disclosed. An optical connector cable assembly may include an optical connector cable having a first optical fiber extending therefrom. The optical connector cable may include a distal connector configured to connect to a guidewire. The distal connector may include an inner housing and a guidewire locking mechanism. The distal connector may also include an actuator. Actuation of the actuator may move the inner housing from a first position to a second position. When the inner housing is in the first position the guidewire locking mechanism is configured to secure the guidewire and the guidewire is rotatable with respect to the optical connector cable. When the inner housing is in the second position the guidewire locking mechanism is in an open state for receiving or removing the guidewire.
US11058287B2

An optical system for stereoscopic vision includes a first optical system and a second optical system. Each of the first optical system and the second optical system includes a stop and a plurality of lens units. The plurality of lens units includes at least one movable lens unit which moves at the time of focusing, and at least focusing to a near point and focusing to a far point is carried out by movement of the movable lens unit. At the time of focusing to a near point, both a first entrance pupil and a second entrance pupil are positioned on an image side of positions at the time of focusing to a far point. Here, the first entrance pupil is an entrance pupil of the first optical system, and the second entrance pupil is an entrance pupil of the second optical system.
US11058278B2

A nozzle for a cleaner includes a nozzle housing that has a suction flow path that allows air containing dust to flow therethrough. The nozzle also includes a driving device including a driving motor. Further the nozzle includes a rotation cleaning unit including a rotation plate which is connected to the driving device at a lower side of the nozzle housing. The nozzle also includes a mop attached to a lower side of the rotation plate. In addition, the nozzle includes a water tank mounted on an upper side of the nozzle housing and configured to store water. The water tank is separable from the nozzle housing. An upper side wall of the water tank forms an upper surface of the nozzle when the water tank is mounted on the nozzle housing, and a portion of a bottom wall of the water tank is configured to surround the driving device.
US11058269B2

A vacuum cleaner, which is a portable vacuum cleaner, including a tank body, a head portion disposed above the tank body, and a battery connection portion that is disposed at the head portion and is capable of connecting to a battery. A part of an upper end portion of the tank body has a bent shape or a curved shape, and the rest part of the upper end portion of the tank body has a shape neither bending inward nor curved inward. The vacuum cleaner may further include a battery connection portion disposed at the head portion and a brushless motor disposed at the head portion. The vacuum cleaner is easy to assemble, portable, convenient in checking the battery level, waterproof and has a good performance of drainage, high efficiency in dust vacuuming, small size and compact structure, light weight, and improved service period.
US11058262B2

A container has an opening lying in a plane, wherein the opening is provided on a connecting piece of the container. A closure of the container can be removed by displacement in the plane. At least one guide element is provided on the connecting piece, on or in which the closure can be displaced relative to the container. The closure has at least one recess on at least one of its outer surfaces.
US11058258B2

Electronic grinder-doser apparatus of the type with weight control or “grind-by-weight”, intended to grind and precisely dose coffee in beans dispensing the ground product in a filter-holding bowl for espresso coffee. Implemented is a dose compensated weighing system, of the multi-cycle and feedback type at every cycle, carried out by a device with a load cell and specific execution programs. The cell is interposed between the machine body and a base shaped in such a way as to integrate the centering fork of the bowl, making the hooking independent. The specific programs execute each grinding and dispensing cycle with a double weighing and automatic calibration, according to an Algorithm A comprising 4 steps (AF1-AF4) and a Filtering Algorithm B. The apparatus is suitable for professional daily use and helps the operator, by automatically calibrating during use.
US11058257B2

A grill or BBQ appliance that is generally intended for outdoor use has a pivoting hood disposed in hinged connection with a grill body, both of which are raised above a firebox that receives a food support grate. The hood may include a counterbalance mechanism to stably position the hood through a range of open positions. The hood may further include an opening or closing assist to assist a user in opening or closing the hood.
US11058252B2

Provided is a method of producing a cooking vessel, including the following steps: forming a blank from a sheet of stainless steel; drawing of the blank to form a cap comprising an interior surface and an exterior surface, the interior surface comprising a flat base area surrounded by a side wall; hot stamping of a diffuser base onto the exterior surface of the cap; engraving of a grid pattern over at least one portion of the base area of the interior surface of the cap to form a network of ribs having top surfaces that extend above the valleys and side surfaces that are distinct from the bottom surfaces of the valleys, said side surfaces of the ribs connecting the top surfaces of the ribs to the bottom surfaces of the valleys, the side surfaces of the ribs forming ramps connecting the top surfaces of the ribs to the bottom surfaces of the valley; sanding of at least the engraved base area of the interior surface of the cap, to create roughness; applying a non-stick coating on at least the sanded, engraved base area; and brushing and/or polishing of at least the sanded, engraved and coated base area to reveal the stainless steel on the top surfaces of the ribs.
US11058243B2

The invention relates to a cover which is also known under the name “sleeve” and serves for picking up and insulating thin-walled cups and containers. This sleeve prevents the user from burning his fingers when hot drinks such as coffee, tea or hot broth, bouillon, are introduced into the thin-walled cup and that the warm hands of the user heat a cold drink that was filled into the cup. Furthermore, by the materials used it supports the cleaning and through the attached joints a space-saving transportation is possible. The construction and the materials used allow for a long-term reuse.
US11058242B2

A dispensing system for heating and dispensing a food substance in a liquid state includes a portable dispensing unit including housing including a reservoir for holding a food substance, a heater operable to heat the substance to an operating temperature for producing a liquid, and a pump for dispensing the liquid via a dispensing tube and spray nozzle. A manually activated actuator operates to initiate the dispensing cycle. Control circuitry associated with the dispensing unit monitors the liquid temperature and controls operation of pump and unit. The dispensing unit may be powered by a rechargeable battery. A charging base provides a dock for recharging the battery of the dispensing unit. The pump may include an auto-reverse feature to draw the liquid back into reservoir when not dispensing the liquid for preventing clogs in the dispensing system.
US11058240B2

A pressure monitor pillow for preventing pressure injuries includes a pillow body configured to fit within a standard pillow case. A plurality of pressure sensors is coupled to a top side of the pillow body. A control housing is coupled to the pillow body and has a battery compartment with a removable. A logic board is coupled within the control housing and is in operational communication with each of the plurality of pressure sensors and the battery compartment. A display screen is coupled to the control housing and is in operational communication with the logic board and the battery compartment. The display screen shows a pressure reading from the plurality of pressure sensors. A power button is coupled to the control housing and is in operational communication with the logic board and the battery compartment.
US11058238B1

The rotating ring display device is a display device. The rotating ring display device is configured for use in displaying a jewelry item know as a ring. The ring mounts on the rotating ring display device for display. The rotating ring display device is a rotating structure. The rotating ring display device rotates the ring such that the ring can be viewed from a variety of angles. The rotating ring display device comprises a pedestal structure, a ring display structure, and a control circuit. The pedestal structure contains the control circuit. The ring display structure attaches to the pedestal structure. The ring display structure receives and displays the ring. The control circuit rotates the ring display structure.
US11058235B2

A fan plenum assembly for a merchandiser. The fan plenum assembly includes a plenum housing that defines an opening configured to receive a fan, and that has a side wall with a slot and a slot extension continuous with the slot. The slot has a major axis extending through a center of the slot. A bearing is configured to rotationally support a hinge pin and is coupled to the side wall. The bearing includes a positioning element that is disposed in the slot and in the slot extension. The positioning element is movable within the slot and the slot extension such that the bearing is movable along the major axis to permit axial adjustment of a position of the bearing relative to the plenum housing and the bearing is immovable rotationally relative to the plenum housing.
US11058225B2

An armrest has a base element, an arm-support element movable in a direction on the base element between a pair of end positions, a mount fixed on one of the elements and formed with a throughgoing hole extending in the direction, and a rod fixed on the other of the elements and extending along an axis with play through the hole of the mount. A pair of inelastic slide-bearing rings fixed in the hole at ends thereof loosely surrounds the rod. A respective elastic bearing block fixed in and relative to each of the rings presses the rod radially against a diametrally opposite inner-surface portion of the respective ring.
US11058217B2

An improved, height-adjustable desktop system that accommodates various postures including, but not limited to, seated in a chair at a desk, or standing upright on a floor, or various possible positions in between fully-seated or fully-standing, according to a user's preference. Systems and methods for providing computer-control for height adjustments allowing automatic or remote adjustment or both. The desktop system further providing minimalized footprint and upright design to allow placement in small spaces.
US11058214B2

A tuft picker for a brush-making machine for automated production of brushes, such as toothbrushes, which is adapted to remove filaments from a filament container. The tuft picker comprises two parts. Each of the two parts comprises at least one picker eye for taking up a predefined number of loose filaments from the filament container. These picker eyes comprise an opening which can be opened and closed by moving the cover tool from a first position into a second position during one working stroke.
US11058211B2

A compression sleeve and flexible bottle combine to serve as a fluid carrier such as for water or sports beverages. The flexible bottle has an interior volume for holding the fluid, the flexible bottle being readily collapsible to conform the interior volume of the flexible bottle to a volume of the fluid held within the flexible bottle, with a compression sleeve surrounding the flexible bottle. A pull-cord is attached to the compression sleeve and is moveable from a first position in which the pull-cord is retracted to a second position in which the pull-cord is extended, in which moving the pull-cord from the first position to the second position causes a contraction of the compression sleeve and a corresponding contraction of the flexible bottle.
US11058207B2

A self-supporting applicator comprises a first structural element which is self-supporting and has a shape determined according to a target structure, the applicator further comprises an active agent.
US11058202B1

A nail lamp has a removable, rechargeable battery pack and a translucent shell formed by double-injection molding. The lamp is portable can be operated cordlessly using the battery pack. The translucent shell glows when the lamp's treatment chamber is on. Surface-mounted light emitting diodes (LEDs) illuminate the treatment chamber with multiple wavelengths ultraviolet (UV) light. The battery pack has a USB port which allows a customer to conveniently charge a device (e.g., smartphone) while the customer's nails are being worked on. The battery pack has a battery gauge, which indicates a charge level remaining for the battery. When the battery pack is low on charge, the battery pack can be swapped with a charged battery pack. A battery pack can be charged while inserted in the lamp or removed from the lamp. The LEDs of the nail lamp are passively cooled.
US11058189B2

An illuminated ankle strap assembly for enhancing visibility of a user in a darkened environment includes a strap that is wearable around a user's ankle. A plurality of light emitters is coupled to the strap to emit light outwardly from the strap. Each of the light emitters is actuatable in a first condition having each of the light emitters blinking on and off to visually alert the motorists to the location of the user in a darkened environment. Each of the light emitters is actuatable in a second condition has each of the light emitters is continually on. In this way each of the light emitters enhances visibility for the user when the user is walking in a darkened environment.
US11058185B2

The invention relates to a novel incendiary device with a fire starter and a quick release slide buckle wherein sparking and ignition means reside in the buckle apparatus, and which buckle may be attached to clothing, backpacks or any other item a quick release slide buckle may be utilized. One portion of the buckle houses a sparking and combustible material, and the other is a mating side of a quick release buckle. Adding a fire starter to a quick release buckle is a novel tool for any outdoor activity that requires fire ignition.
US11058183B2

A tensioning system for articles of footwear and articles of apparel is disclosed. The tensioning system includes a tensioning member that is tightened or loosened using a motorized tensioning device for winding and unwinding the tensioning member on a spool. The motorized tensioning device includes a torque transmitting system that allows for incremental tightening, incremental loosening and full loosening of the tensioning member.
US11058181B2

The present disclosure generally relates to devices and methods for securing shoelace knots by clamping an individual knot between two movable plates.
US11058176B2

A sole structure includes an outsole having an outsole body defining an inner body surface and an outer body surface opposite the inner body surface. The outsole has a plurality of traction elements each extending from the outsole body away from the inner body surface. Each of the traction elements includes a base coupled to the outsole body surface. Each of the traction elements includes a tip spaced apart from the outer body surface and has a pitch defined by a vector. The pitch of each of the plurality of traction elements varies as a function of a distance from the central axis to a respective traction element.
US11058175B2

An intermediate sole structure for an article of footwear includes a foamed thermoplastic sole component. The foamed thermoplastic sole component has a foamed thermoplastic base layer and a foamed thermoplastic outer layer that is integrally formed with the foamed thermoplastic base layer. The outer layer includes a plurality of sipes extending through the outer layer and terminating at the base layer. The thermoplastic sole component has an inner surface defined by the base layer, an opposite, outer surface defined by the outer layer, and a thickness defined between the inner surface and the outer surface. The inner surface is substantially planar and is operative to be adhered to a ground-facing surface of an upper. Additionally, the thickness is smaller at a peripheral edge of the sole component than within a central region.
US11058153B2

A wearable electronic simulated smoking device is provided for delivery of a desired active ingredient responsive to a user's inhalation through the device. The device includes an elongated tubular member (110) having at least one reversibly bendable portion to at least partially encompass a portion of a user's body and is releasably retainable thereat. The device includes a vaporization chamber supplied with a vaporizable smoking composition and enabled by a controller to generate vapor from the vaporizable smoking composition and add the vapor to air drawn through the device.
US11058150B2

A tobacco scraper and container system such as a cigar scraper and container can include a first container having a closed bottom portion and an open top portion, a scraper element configured and arranged to be placed above the open top portion of the first container, and a removable cap configured to couple to the first container, enclose the first container, and to retain the scraper in a fixed position relative to the first container when coupled to the first container. In some embodiments, first container is configured to couple with a second container to enclose the second container when coupled with the closed bottom portion of the first container.
US11058141B2

The present invention relates to a method for manufacturing inductively heatable aerosol-forming rods (100). The method comprises supplying a first substrate web (31) and a second substrate web (32) separately to a continuous multiple-stage rod-forming process which comprises at least a first and a subsequent second stage. The method further comprises supplying a continuous susceptor profile (20) to the rod-forming process such that the susceptor profile passes through at least the second stage. Furthermore, the method comprises passing the first and second substrate web separately through the first stage. Thereby, the first and the second substrate web are separately pre-gathered transversely with regard to a respective transport direction of each of the substrate web through the first stage. The method further comprises passing the susceptor profile and the pre-gathered substrate webs through the second stage. Thereby, the separately pre-gathered substrate webs are jointly gathered into a rod shape around the susceptor profile. The invention further relates to a multi-stage rod-forming device (10) comprising at least a first stage (11) and a second stage (12) downstream of the first stage. The first stage is configured for separately pre-gathering a first and a second substrate web (31, 32) respectively as each of them passes through the first stage. The second stage is configured for jointly gathering the pre-gathered substrate webs into a rod shape around a susceptor profile (20) as the susceptor profile and the pre-gathered substrate webs pass through the second stage.
US11058138B2

The present invention relates to a formulation in the form of an aqueous suspension comprising calcium citrate. Said formulation exhibits excellent stability and compliance and finds use in calcium supplementation in subjects in need of such supplementation.
US11058137B2

Provided herein are shelf-stable protein food ingredients, food products comprising the shelf-stable protein food ingredients, methods of their production, and methods of their use. The shelf-stable protein food ingredients comprise cultured fungal biomass and a limited amount of water. Advantageously, the shelf-stable protein food ingredients can be stored, transported, and delivered within the food supply.
US11058136B2

Low-salt processed foods or drinks frequently taste like something is missing because of the less salty taste thereof. Although salt substitutes and flavoring agents are often used to offer a sense of satisfaction, these additives exhibit only limited effects or cause some troubles of, for example, changing the original flavor of food. Under these circumstances, the present invention addresses the problem of enhancing the salty taste of a low-salt processed food or drink without imparting any undesired taste thereto. To solve the above problem, the present inventors conducted intensive studies and, as a result, found that an effect of comfortably and naturally enhancing salty taste can be achieved by adding a composition, which comprises dietary fibers, in particular, glucan and mannan at a specific ratio, to common processed foods or drinks including low-salt processed foods or drinks.
US11058130B2

Disclosed are systems and methods for improving food quality. The systems and methods include receiving first temperature data from a first food service device, determining when the first temperature data exceeds a predetermined temperature value, and activating a first alarm when the first temperature data exceeds the predetermined temperature value. The first temperature data corresponds to a food temperature of food. The systems and methods may also include discarding the food in response to the first alarm being activated.
US11058127B2

A process of making a caramel color comprising a) mixing a carbohydrate with an ammonia compound and a sulfite compound and at pH from just greater than about 4.0 to about 6.0; and b) heating of the mixture from step a) in a sealed vessel to a temperature of from about 120° C. to about 137° C. and maintaining a temperature in said range for at least about 2 hours, said time and temperature being sufficient to yield a product having a color level of at least about double strength and a level of 4-MeI of less than about 20 ppm, is provided. Also provided is a process of ramped heating which results in a similar caramel color product.
US11058125B2

A pin bone removal apparatus is provided for removing pin bones in fish fillets while a conveyor conveys the fish fillets at a first conveying speed. A plurality of pin bone removal units is provided, each having a pin bone roller for pulling the pin bones from the fish fillets. The apparatus includes a closed-loop rail structure on which the pin bone removal units are slideable attached, where the closed-loop rail structure comprises a processing section and a returning section. The processing section is where at least one of the plurality of pin bone removal units is moved parallel to the fish fillets at a second conveying speed and engages with the surface of the fish fillets. After the pin bone removal the at least one pin bone removal unit is recirculated along the returning section.
US11058121B2

A method of controlling a cooking oven including a contactor, a relay, and a heating element, the contact, the relay, and the heating element in a series-type configuration. The method includes during a first operation, placing the contactor in a closed position, and during the first operation, selectively providing power, via the relay, to the heating element. The method further includes during a second operation, bypassing the relay while the contactor is in the closed position, and during the second operation, providing power to the heating element.
US11058118B2

Compositions, tablets, prills and granules are provided including (a) about 95 to about 99.999 weight percent of at least one alkali metal hydrogen sulfate; and (b) about 0.001 to less than 0.08 weight percent of at least one alkali metal salt of a fatty carboxylic acid and/or at least one alkaline earth metal salt of a fatty carboxylic acid; wherein the composition includes less than 1 weight percent of chlorite and/or hypochlorite and less than 1 weight percent of alkali metal salt and/or alkaline earth metal salt that is chemically different from the at least one alkali metal hydrogen sulfate, the at least one alkali metal salt of a fatty carboxylic acid and the at least one alkaline earth metal salt of a fatty carboxylic acid, on a basis of total weight of the composition. Methods of use also are provided.
US11058109B1

Pest-repellent pallet slip sheets for preventing or reducing rodent or pest damage to goods placed on pallets or other locations. The pest-repellent pallet slip sheets generally include slip sheets designed for placement on the top portion of a pallet, such that the slip sheet covers substantially the entire pallet. The slip sheets may be treated with repellent substance all over, randomly, or in a pattern such that a specific portion, or all, of the slip sheet is treated with the pest-repellent substance. The pattern may be produced, for example, by feeding slip sheet material past an application device at a given rate of speed, and then intermittently interrupting the application of the pest-repellent substance if an intermittent pattern is desired. A colored dye may be added to the pest-repellent substance to create a visible indication of a pattern or treated area.
US11058104B1

Rather than trying to call a gobbler and waiting for the gobbler to approach, the hunter instead attempts to seek a gobbler while holding a decoy. As the hunter comes within sight of the gobbler, he can slowly move (e.g., tilt and/or rotate) the decoy so that its fan moves in a manner that mimics movement of a real turkey. It has been found that the gobbler will often fixate on the decoy failing to notice the hunter even when he is not well camouflaged. In fact, the gobbler will often approach the decoy in an aggressive manner making it much less wary than in a typical hunt where a hunter is attempting to make calls that imitate a hen. When the hunter feels that the gobbler is fixated on the decoy, he can couple the decoy to his weapon thereby freeing both of his hands for operating his weapon.
US11058100B1

An open face fishing reel utilizes a quick-release spool device having a modular reel component that facilitates the interchanging of fishing line while the reel is still secured within the fishing reel housing and crank mechanism. The device is configured to be removably replaced with a different spool having a new unit of fishing line secured thereabout.
US11058091B2

Provided is a carrier material and its use in animal litter, where the carrier material exhibits reduced dust formation during handling. The carrier material comprises: bentonite clay; and a dust suppression agent coated on the bentonite clay, wherein the dust suppression agent is one or more alkoxylate materials of formula (I): R—O-(AO)2—H, wherein R is H, aryl (e.g., phenyl), or linear or branched C4-C24 alkyl; AO at each occurrence is independently ethyleneoxy, propyleneoxy, butyleneoxy, or random or block mixtures thereof; and z represents average number of moles of AO and ranges from 1 to 80.
US11058089B2

A novel soybean variety, designated 5PVSQ69 is provided. Also provided are the seeds of soybean variety 5PVSQ69, cells from soybean variety 5PVSQ69, plants of soybean 5PVSQ69, and plant parts of soybean variety 5PVSQ69. Methods provided include producing a soybean plant by crossing soybean variety 5PVSQ69 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety 5PVSQ69, methods for producing other soybean varieties or plant parts derived from soybean variety 5PVSQ69, and methods of characterizing soybean variety 5PVSQ69. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety 5PVSQ69 are further provided.
US11058086B1

A novel maize variety designated X08N734 and seed, plants and plant parts thereof are produced by crossing inbred maize varieties. Methods for producing a maize plant by crossing hybrid maize variety X08N734 with another maize plant are disclosed. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X08N734 through backcrossing or genetic transformation, and to the maize seed, plant and plant part produced thereby are described. Maize variety X08N734, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X08N734 are provided. Methods for producing maize varieties derived from maize variety X08N734 and methods of using maize variety X08N734 are disclosed.
US11058077B2

According to the invention, there is provided seed and plants of the hybrid corn variety designated CH100429. The invention thus relates to the plants, seeds and tissue cultures of the variety CH100429, and to methods for producing a corn plant produced by crossing a corn plant of variety CH100429 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH100429.
US11058075B2

Prior art technology has a problem in that when a plant is cultivated for a long period of time on a PVA film having its lower surface positioned in contact with a nutrient fluid, plant roots that have formed penetrate through the film. A plant cultivation system wherein the PVA film has an equilibrium degree of swelling in the range of from 125 to 250% as measured in water at 30° C. and has a loss tangent (tan δ) in the range of from 0.005 to 0.2 as measured in an equilibrium swollen state in water at 30° C., and a method for cultivating a plant by using this plant cultivation system. Plant cultivation can be performed for a long period of time while avoiding infection by bacteria and the like causative of plant diseases. Therefore, the present invention is useful in, e.g., agriculture and the manufacture of pharmaceuticals.
US11058070B2

In various embodiments, an apparatus for growing plants is provided. The apparatus may include an irrigation apparatus, an illumination apparatus, a climate control device, an accommodating space for accommodating one or more seed mats, a controller which is configured to control the irrigation apparatus, the illumination apparatus and the climate control apparatus by means of a program controller, at least one air humidity sensor for determining an air humidity in the accommodating space, and at least one temperature sensor for determining an air temperature in the accommodating space.
US11058063B2

An implement includes a bale cutting device, which includes a carrier that can be pivoted about a pivot axis, and a support connected to the carrier. A cutter bar is attached to and supported by the support so as to be movable at least substantially in the direction of a longitudinal extent of the support. The implement may include at least one pick-up for engaging a bale. In operation, the cutter bar is positioned on a far side of the bale, with the bale between the carrier and the cutter bar. The cutter bar may then be drawn inward into the bale to cut the bale approximately in half.
US11058061B2

A conveying and conditioning roller for a harvesting machine is provided on the surface thereof with teeth in the form of toothed strips which extend over the longitudinal extent of the roller and in each case have a leading tooth flank and a trailing tooth flank as well as a tooth edge. The roller is provided with wear protection zones continuously or in partial regions, the wear resistance thereof being greater than that of the material of the base body of the roller. The base body has a tooth structure determining the shape of the teeth and tooth wear protection zones are formed on the trailing tooth flanks by a high energy radiation process, substantially maintaining the geometry of the tooth structure, roller wear protection zones being formed together thereby on the rollers, as well as a method for producing such a roller wear protection zone.
US11058053B2

An autonomous robot lawnmower includes a blade assembly including blades, a drive system to drive the blades through a cutting area having a cutting width, and a lateral blade guard including at least four bars spaced apart from one another by no less than 1 mm and no more than 15 mm. The at least four bars are positioned between the blades and a mowable area when the robot lawnmower is supported on the mowable area. The at least four bars extend across a portion of the cutting width and extending rearward and forward of the cutting area.
US11058051B2

An agricultural mowing machine comprises a carrying arm. A lateral displacement structure is connected to the carrying arm and can be displaced relative to the carrying arm in a lateral direction between an inner position and an outer position. A mowing unit is connected to the lateral displacement structure. The mowing unit can be moved between an approximately horizontal working position, a raised headland position, and a transport position. A first hydraulic cylinder and a second hydraulic cylinder are connected to each other in such a manner that hydraulic fluid discharged from said first or second hydraulic cylinder is supplied under pressure to the other of the first or second hydraulic cylinder for pivoting the carrying arm so as to move the mowing unit from the transport position towards the headland position displacing the lateral displacement structure outwards relative to the carrying arm simultaneously.
US11058049B2

Disclosed is a swing pipe system for manure applications. In one embodiment the swing pipe system includes a main pipe configured to receive manure from a swivel, a support member at a first end of the main pipe configured to support the first end of the main pipe, and a tool bar configured to support a second end of the main pipe, the second end of the main pipe being pivotally supported to allow the main pipe to pivot about a horizontal axis and a vertical axis.
US11064636B2

Exemplary embodiments are disclosed of EMI shields including electrically-conductive foam (broadly, electrically-conductive resiliently compressible porous material). An exemplary embodiment includes an electromagnetic interference (EMI) shield for an optical transceiver including transmitter and receiver optical sub-assemblies. The EMI shield includes a portion having openings configured for receiving the transmitter and receiver optical sub-assemblies therethrough to thereby allow the EMI shield to be fit over the transmitter and receiver optical sub-assemblies for installation along a portion of the optical transceiver. The EMI shield also includes sidewalls depending from the portion that includes the openings. Electrically-conductive resiliently compressible porous material (e.g., electrically-conductive foam, etc.) is along at least a portion of an outer perimeter defined by the sidewalls.
US11064633B2

The present disclosure provides an electrical connector comprising an electrical connector housing, a partition part, a partition heat sink, a heat pipe, and a cooling module. The electrical connector housing comprised an upper surface, a lower surface, and two opposite sidewalls. The partition part is disposed in the electrical connector housing. The partition heat sink is disposed on the partition part and is disposed in the electrical connector housing. One end of the heat pipe is connected to the partition part. The cooling module is disposed at the outside the electrical connector housing and is connected to the other end of the heat pipe. The cooling efficiency is enhanced by conducting the heat of the partition heat sink to the outside of the electrical connector through a heat pipe to avoid heat accumulating in the electrical connector housing.
US11064632B2

A heat-sinking improved structure for evaporators includes at least one heat-sinking component having an outer wall board; an inner wall board extending upwards at the bottom of the outer wall board and dividing the lower portion of the interior of the outer wall board to form two water evaporation areas, and a gas concentration area formed at the top portion of the interior of the outer wall board; then, continuously arranging and combining such a plurality of heat-sinking components in the same direction thereby constituting a heat-sinking module which can be installed and sealed within an outer case in order to operate as a heat-sinking improved structure for the evaporator.
US11064631B2

A liquid immersion cooling device for information processing apparatuses. The liquid immersion cooling device includes an immersion tank, a refrigerant liquid that is retained in the immersion tank, and a plurality of fillers that are filled in the immersion tank and that float on a surface of the refrigerant liquid to cover the surface of the refrigerant liquid.
US11064629B2

A device casing includes a casing body and a detachable bracket. The casing body has first and second supporting frames opposite to each other, and first and second guiding slots formed on the first supporting frame. The first guiding slot has a first open end and a first closed end. The second guiding slot has a second open end and a second closed end. The detachable bracket is detachably disposed between the first and second supporting frames and has first and second sliding posts. The first sliding post is rotatably disposed at the first closed end. The second sliding post is slidably disposed at the second closed end. By the structural constraint between the first and second guiding slots and the first and second sliding posts respectively, the detachable bracket can stably rotate relative to the casing body and can be installed onto the casing body easily.
US11064628B2

A rack adapted for receiving one or more components is disclosed. The rack includes a backplane, a pair of side panels extending from the backplane and internal support members on each side to receive and mechanically guide an initial alignment of components upon their initial insertion in the rack. A pair of male connectors mounted to the backplane is configured to mate with a corresponding pair of female connectors of each component to mechanically guide a final alignment of each component when the component is further inserted in the rack. Mechanical guidance may also be provided by, or supplemented with, a connection capable of providing liquid cooling to the rack. A system including the rack and the component inserted in the rack is also disclosed.
US11064623B2

Slidable assemblies are provided which include a support, a slidable assembly, and a spring-clip element. The slidable assembly, which includes a slide member, is coupled to the support to slide along the support between a first position and a second position. The spring-clip element is associated with the support, and receives the slide member of the slidable assembly. The slide member translates within the spring-clip element as the slidable assembly is slid between the first position and the second position, and is retained by the spring-clip element in position when the slidable assembly is slid to the second position to hold the slidable assembly and restrain the slidable assembly from sliding along the support to the first position.
US11064619B2

Provided is an electrical junction box that enables easily checking the connection state of a connector terminal and a substrate. The electrical junction box includes: a box body; a substrate that is fitted to an inner portion of the box body; a connector terminal that passes through a side wall of the box body and is held thereby, and includes an inward end portion that is connected to the substrate; and a window hole that is formed in the side wall and enables visually checking a portion where the connector terminal is connected to the substrate.
US11064618B2

The application discloses an electronic device including a motherboard and a housing structure. The motherboard has a first surface and a second surface. The housing structure includes a first casing, a first cushion, a second casing, and a second cushion. The first casing has at least one first fixing member. The first cushion covers the first surface, is accommodated in the first casing and has at least one first through hole. The second casing has at least one second fixing member. The second cushion covers the second surface, is accommodated in the second casing and has at least one second through hole. A peripheral edge of the first cushion is attached to a peripheral edge of the second cushion, and the first fixing member may be fixed to the second fixing member through the first through hole and the second through hole.
US11064617B2

A switch device for a vehicle includes: a case member having on one end side thereof an electrical connection part; and an operating member provided on an opposite end side of the case member to face a vehicle compartment. The case member includes, on an upper wall disposed on an upper side in up-down direction when mounting the case member on a vehicle body interior material: a dividing wall extending in width direction of the case member, orthogonal to the up-down direction, along the material; a first rib extending from the dividing wall toward the one end side and dividing the upper wall into a first region going into the connection part and a second region not going thereinto, and a second rib extending in the first region from an intermediate part of the first rib toward the one end side to partition the dividing wall from the connection part.
US11064606B2

A multilayer substrate includes a stacked body including a plurality of insulating base material layers stacked on each other and a plurality of conductor patterns provided in contact with the plurality of insulating base material layers. The stacked body includes a first surface, and the plurality of conductor patterns include a plurality of mounting electrodes. The plurality of mounting electrodes include first openings. The first openings, in a plan view of a mounting surface, are provided over a mounting region and a non-mounting region of the mounting electrodes. The mounting region, when a mounted component is mounted, overlaps with the mounted component, and the non-mounting region does not overlap with the mounted component.
US11064599B1

Herein disclosed in a vacuum oil purification system which includes a fresh oil vacuum chamber, an old oil vacuum chamber for degasifying and dehumidifying insulating oil, a vacuum pump for generating vacuum environment, an oil pump for circulating oil, an oil filter for removing particles from oil, a pressure vessel for generating and adjusting oil pressure, heaters, heat, pressure and vacuum sensors, an oil penetration tray, a control panel having all the control buttons, LEDs, and quick connects, a mobile platform to hold all components in place, and an oil pan to collect all oil drips. A control unit with an LCD supervises all the input signals from sensors and generates command signals. The fresh oil vacuum chamber is covered by a foam and foil wrap insulation for heat exchange separation. This insulation cover dampens sound and vibration as well. The chambers have oil drain valves at the bottom. Vacuum is generated by a vacuum pump and is controlled manually by a switch and a vacuum gauge for each chamber. The vacuum is also controlled by a vacuum sensor coupled with electronics and the control unit to toggle vacuum pump on and off automatically. The entire system including the electronics may be mounted on a four-wheel platform to facilitate transport to a job site for example a healthcare center. Apparatus for purifying the insulating oil while flushing includes a spin-on filter to clean insulating oil in the return line.
US11064596B2

A system of light devices including a first light device and a second light device. The first light device having a first housing, a first light, a first transceiver, a first electronic processor. The second light having a second housing, a second light, a second transceiver, a second electronic processor. The first electronic processor is coupled to the first light and the first transceiver, and configured to control operation of the first light, and transmit, via the first transceiver a command to the second light device. The second electronic processor coupled to the second light and the second transceiver, and configured to receive, via the second transceiver, the command from the first light device, and change an operational parameter of the second light in response to the command from the first light device.
US11064591B2

A method (300) for detecting a dangerous environmental condition within a lighting environment (100) includes the steps of: providing (310) a lighting network (200) having a plurality of lighting units (10) each with a light source (12), at least some of the plurality of lighting units including a range sensor (32); obtaining (330), by the range sensors, range information; determining (360), based at least in part on the obtained range information, a depth of precipitation or accumulation at a first lighting unit; and determining (370), based on the determined depth, a dangerous environmental condition at the first lighting unit.
US11064582B1

Systems, methods and devices are descried. A method of controlling a segmented flash having a plurality of flash segments each arranged to illuminate a portion of the scene includes determining an amount of light for illuminating each portion of the scene, measuring forward voltages of each of the flash segments, and adjusting a brightness of each of the flash segments to the determined amount of light for illuminating each portion of the scene. The adjusting is performed by at least one of adjusting a magnitude of a drive current to each of the flash segments, adjusting a duty cycle of the drive current to each of the flash segments, or scheduling a dummy flash, based at least in part on the measured forward voltages.
US11064578B2

An electromagnetic induction heating cooking appliance may include a body comprising a wireless power transmitter that transmits power wirelessly, a first wireless communication module that transmits and receives signals wirelessly, and an electromagnetic induction heater that heats food or food materials accommodated in a space in the body using an induced current, and a door comprising a wireless power receiver that faces the wireless power transmitter, a second wireless communication module that faces the first wireless communication module, and an electronic device connected to the wireless power receiver that receives power via the wireless power receiver. The door may be coupled with the body such that it opens and closes the space in the body.
US11064573B2

Systems and methods of quasi-resonant induction heating are provided. In particular, a method for evaluating the resonant frequency of a quasi-resonant induction cooking device can be provided. The method can include generating a startup pulse, receiving multiple feedback pulses from a resonant frequency feedback circuit, measuring a pulse width of each of the feedback pulses, calculating an average pulse width based upon the feedback pulses and determining the resonant frequency based at least in part on the average pulse width and a transfer function.
US11064565B2

An in-room IOT control system includes a base module, a voice and touch interactive display extending above the base module, and a controller operable by the user to remotely (e.g., wirelessly) control the state of a plurality of environmental features including temperature, music, lighting, curtains, water, hotel services, amenities and entertainment. The display includes a digital mouth, the movement of which is synchronized to synthesized speech spoken by the module.
US11064564B2

An apparatus of a wireless communications device to transmit a sounding announcement frame (SAF) for use in a round-trip estimation to a receiving station, and associated method are provided. The apparatus is configured to encode an encoded field of the SAF that is one of a frame control field (FCF) or a sounding dialog token field (SDTF) of a null data packet announcement (NDPA) packet that forms the SAF to indicate to the receiving station that a communication different from a trigger frame may follow. The apparatus is also configured to configure the wireless device to transmit the NDPA packet to one or more stations.
US11064533B2

The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The disclosure provides method and apparatus for determining channel access procedure type for Msg3 transmission. The method includes receiving, from a base station, a random access response (RAR) including first information on a type of a channel access procedure for transmitting a msg3 of a random access procedure; performing the channel access procedure based on the first information; and transmitting, to the base station, the msg3 of the random access procedure based on a result of the channel access procedure.
US11064528B2

A communication technique for convergence of internet of things (IoT) technology, a fifth-generation (5G) communication system for supporting a higher data transfer rate beyond a fourth-generation (4G) system, and a system therefor are provided. The disclosure can be applied to intelligent services (e.g., smart homes, smart buildings, smart cities, smart or connected cars, health care, digital education, retail business, and services associated with security and safety) based on 5G communication technology and IoT-related technology. An embodiment relates to a method for controlling an uplink time alignment during execution of random access by a base station operating a broadband.
US11064519B2

A method, a device, and a system for transmitting a downlink signal is provided. The method includes monitoring a first common control channel indicating a downlink (DL) interval of subframe (SF) #(n−1) and SF #n, monitoring a second common control channel indicating a DL interval of SF #n and SF #(n+1), and performing a DL reception process in the SF #n based on a detection result of the first common control channel and a detection result of second common control channel. The DL interval represents occupied OFDM symbols in a DL subframe.
US11064518B2

Methods, systems, and devices for wireless communications are described. A base station may perform a channel access procedure on a shared radio frequency spectrum band using a first beam configuration. The base station may transmit, based at least in part on successful completion of the channel access procedure, a reservation request message (RRQ) to a user equipment (UE) using a second beam configuration, the second beam configuration comprising a beam width that is equal to or narrower than a beam width of the first beam configuration. The base station may receive a reservation response message (RRS) from the UE in response to the RRQ, the RRS comprising a third beam configuration that is based at least in part on the second beam configuration.
US11064506B2

A method and an apparatus for transmitting and receiving a feedback signal in a cellular mobile communication system is provided. The method of transmitting feedback in a Cooperative Multi-Point (CoMP) system, includes receiving feedback set information including allocation information of a Channel Status Information Reference Signal (CSI-RS) transmitted for estimating a channel of a User Equipment (UE), receiving IDentification (ID) information for identifying a CoMP set including CSI-RS allocation information from a cell operating in a CoMP mode, extracting the CoMP set using the ID information and a feedback set, detecting a first feedback mode and first feedback timing with a first CSI-RS not included in the CoMP set among CSI-RSs included in the feedback set, and generating and transmitting feedback with respect to the first CSI-RS according to the detected first feedback mode and the first feedback timing.
US11064505B2

Antenna tuning may include performing multiple sampling on a transmission signal applied to an antenna and a reception signal corresponding to the transmission signal during a period for which a first frequency is allocated to the transmission signal, such that sampling data are generated based on the multiple sampling, the sampling data including data corresponding to the transmission signal and data corresponding to the reception signal. The method may include calculating a parameter based on the sampling data, and tuning the antenna based on the parameter. A device may include a control circuit to perform the multiple sampling and set a tuning value, a radio frequency front-end to modulate the transmission signal based on the frequency and apply a return signal of the transmission signal or a reflection signal, and an antenna tuner to adjust a resonance frequency or an impedance of the antenna according to the tuning value.
US11064498B2

A resource allocation method and an apparatus in a communications system are provided. A terminal receives resource allocation indication information, where the resource allocation indication information is used to determine a subband corresponding to an allocated resource. The terminal receives second configuration information, where the second configuration information indicates one of a plurality of configurations of the first frequency domain resource unit size corresponding to the subband. And the terminal determines a size of a first frequency domain resource unit corresponding to the subband based on first configuration information and the second configuration information, where the first configuration information includes a correspondence between the subband and a plurality of configurations of the first frequency domain resource unit size.
US11064497B2

Disclosed are a method for transmitting/receiving data in a wireless communication system supporting NarrowBand-Internet of Things (NB-IoT) and a device therefor. Specifically, a method for receiving data by a terminal may include: receiving, from a base station, Semi-Persistent Scheduling (SPS) configuration information for SPS; receiving, from the base station, an SPS control channel for delivering control information representing activation of the SPS; and receiving, from the base station, SPS data channels in specific subframes scheduled according to the SPS configuration information, in which search spaces related to the remaining SPS data channels other than a first SPS data channel among the received SPS data channels may be configured not to be monitored by the UE.
US11064485B2

Systems, methods, apparatuses, and computer program products for signal block mapping are provided. One method includes configuring, by a network node (e.g., base station or eNB), a group of discovery signaling blocks. The method may then include mapping the discovery signaling blocks of the group onto a subframe structure, including the group information into each of the discovery signaling blocks, and transmitting the discovery signaling blocks in the subframe structure.
US11064484B2

A method of acquiring information on a resource region for transmitting PHICH and a method of receiving PDCCH using the same are disclosed. The resource region for transmitting the PHICH can be specified by first information corresponding to the per-sub frame PHICH number and second information corresponding to a duration of the PHICH within the subframe. The first Information can be specified into a form resulting from multiplying a predetermined basic number by a specific constant. And, the specific constant can be transmitted via PBCH. Moreover, the second information can be acquired from the PBCH as well.
US11064473B2

A user equipment (UE) or network device gNB can process or generate downlink control information transmissions for new radio (NR) systems or networks based on a compact DCI format. The DCI can include a grouped broadcast message for reduced signaling overhead that comprises random access response (RAR) message, a paging message, a system information block (SIB) message, another message information type, or any combination thereof. The DCI transmission can be determined as comprising paging information based on a direct indication in a physical downlink control channel (PDCCH) only or both in the PDCCH and a physical downlink shared channel (PDSCH) based on a flag field of the DCI transmission. Other configurations can also further reduce signaling overhead additionally or alternatively.
US11064467B2

The present invention is designed so that UL transmission can be made adequately even when transmission of uplink control information using secondary cells (SCells) is made configurable. A user terminal communicates with a radio base station by using carrier aggregation, and has a receiving section that receives a DL signal transmitted from the radio base station, a transmission section that transmits uplink control information that is generated based on the DL signal received, and a control section that controls transmission of the uplink control information, and, in this user terminal, the control section controls the transmission of the uplink control information using an uplink control channel and controls the transmission of the uplink control information using an uplink shared channel in each of a plurality of cell groups, each cell group including at least one component carrier (CC).
US11064462B2

A method and apparatus for improved battery performance of user equipment in a wireless network having multiple radio resource control (RRC) states, the method comprising the steps of: monitoring, at the user equipment, application data exchange; determining when no application on the user equipment is expected to exchange data; and initiating, from the user equipment, a transition to a less battery demanding radio resource control state or mode.
US11064460B2

The disclosure provides a method and a device in a User Equipment (UE) and a base station for wireless communication. The UE receives a first signaling for indicating a first time-frequency resource pool and a first spatial parameter group and a second signaling for indicating a second spatial parameter group in turn, the first spatial parameter group being associated to the first time-frequency resource pool including a first time-frequency resource set; the UE judges whether the first time-frequency resource set can transmit a radio signal; if so, the UE transmits a first radio signal in the first time-frequency resource set; otherwise, the UE gives up transmitting a radio signal in the first time-frequency resource set; the first spatial parameter group and the second spatial parameter group judge whether the first time-frequency resource set can transmit a radio signal. The disclosure improves efficiency of configured grant uplink transmission.
US11064458B2

A first base station receives from a second base station: a cell identifier of a cell of the second base station; and a second radio access network (RAN) area identifier of the cell. A packet for a wireless device in a radio resource control (RRC) inactive state is received. A RAN paging message is sent to the second base station in response to receiving the packet. The RAN paging message is based on a first RAN area identifier of the first base station being identical to the second RAN area identifier.
US11064457B2

According to one aspect of the present disclosure, a method of paging policy differentiation in a 5G telecommunications network is provided. A User Plane Function (UPF) receives downlink data for a target User Equipment (UE), and provides a data notification to a Session Management Function (SMF), the data notification comprising a Quality of Service (QoS) indicator, which the SMF uses to determine QoS Information (QoSI) that is sent to an Access Management Function (AMF). The AMF determines whether a paging policy selection should be performed by the AMF or by a Radio Access Node (RAN) that serves the target UE: if by the AMF, the AMF selects a paging policy based on the QoSI and sends a paging message to the RAN, which pages the UE; if by the RAN, the AMF provides paging policy information to the RAN, which selects a paging policy and pages the UE accordingly.
US11064456B2

Provided are a wireless communication method, a device, a chip and a system. The method is applied to a terminal device in a connected state; the method includes: the terminal device receives first indication information sent by a network device, the first indication information being used to indicate whether change indication information of a system broadcast exists in a paging message; and the terminal device determines whether to receive the paging message sent by the network device according to the first indication information. The first indication information is sent by the network device, in the case where the change indication information of the system broadcast is not included in the current paging message, preventing the terminal device from acquiring and decoding the paging message to verify if there is the change indication information of the system broadcast, thereby reducing the complexity and the power consumption of the UE.
US11064453B2

Embodiments herein relate to methods, apparatuses, and computer program products for position stream session negotiation. An example method includes: transmitting, to a positioning system, a message for initiating a positional data stream associated with at least one audio source, the message comprising one or more requirements for positional characteristics of the positional data stream; receive a response from the positioning system comprising an indication of one or more of the positional characteristics that are supported by the positioning system for the at least one audio source; and initiating the position data stream with the positioning system based on the received response.
US11064448B2

Various communication systems may benefit from improved single carrier-based waveform techniques. An apparatus may comprise at least one memory comprising computer program code and at least one processor. The at least one memory and the computer program code are configured, with the at least one processor, to cause the apparatus at least to transmit at least one indication of synchronization signal block (SSB) to a network entity. The apparatus further receives at least one bandwidth part comprising at least one SSB associated with CP-OFDM waveform and/or at least one SSB below at least one threshold peak to average ratio. The apparatus further configures at least one waveform based upon the received at least one SSB. The at least one SSB below at least one threshold PAR comprise at least one indication of PDCCH.
US11064444B2

A method is provided. The method comprises: selecting a new protection point in a dynamic protection area; creating an initial sort list of radios; determining look angles; determining which look angle includes most radios in its main beam; determining a modified sort list and an initial move list for the determined look angle; determining a certain percentile of aggregate interference power spectral density at the new protection point for radios that are in a main beam for each of remaining look angles; sorting, by level of certain percentile of aggregate interference power spectral density, the remaining look angles; and generating a move list of radios.
US11064436B2

An example of an apparatus including a memory to store training data and rules. The apparatus includes a network interface to communicate with a wireless network. The apparatus also include a network detector to detect a presence of the wireless network. The apparatus includes a machine learning engine in communication with the memory. The machine learning engine is to use the training data to generate rules to determine if the network interface is to be switched from the power-saving state to the powered state in the presence of the wireless network. The apparatus also includes a processor to switch the network interface from the power-saving state to the powered state based on the rules.
US11064435B1

Aspects of the disclosure provide methods and apparatuses for data communication. In some embodiments, an apparatus for data communication between a host and a plurality of station devices includes an interface circuit, a medium access controller (MAC) circuit, a control circuit, and a streaming circuit. The interface circuit is configured to receive a data packet from the host, and the data packet includes a bitmap addressing the data packet to one of the plurality of station devices. The medium access controller (MAC) circuit is configured to detect a sleep status of the one of the plurality of station devices. The control circuit is configured to adjust a bit mask based on the sleep status of the one of the plurality of station devices, so that the bit mask indicates the sleep status the one of the plurality of station devices. The streaming circuit is coupled between the interface circuit and the MAC circuit. The streaming circuit is configured to receive the data packet addressed to station devices, determine the sleep status of the one of the plurality of station devices based on the bit mask and the bitmap in the data packet, and transmit the data packet to the MAC circuit when the sleep status of the one of the plurality of station devices is in a wake state, otherwise, transmit the data packet to the control circuit when the sleep status of the one of the plurality of station devices is in a sleep state.
US11064434B2

Methods and apparatuses for improving power consumption for an activated cell in a wireless communication system are disclosed herein. In one method, a user equipment (UE) receives a configuration of at least one bandwidth part for a cell. The UE performs a reception for the cell with a bandwidth associated with a first bandwidth part when a first bandwidth part of the cell is active. The UE does not perform the reception for the cell when a second bandwidth part of the cell is active.
US11064424B2

Methods, systems, and devices for wireless communication are described. A base station may perform a Listen-Before-Talk (LBT) procedure to obtain access to a wireless communication channel. The base station may then determine a pattern of synchronization signal block (SSB) transmissions based on an outcome of the LBT procedure and transmit the pattern of SSB transmissions after obtaining access to the wireless communication channel. The outcome of the LBT procedure may include obtaining access to the wireless communication channel after a missed opportunity for at least one SSB transmission in a discovery reference signal (DRS) measurement timing configuration (DMTC) window. A user equipment (UE) may determine system timing based on a received SSB transmission.
US11064420B2

A software defined network controller receives from a radio access network access point an attach request generated by a user equipment that includes a user equipment identification and an IP address for the radio access network access point. The controller assigns a temporary identification to the user equipment and sends a modified attach request including the temporary identification, and application server identification and an application server IP address to the radio access network access point. The controller configures a forwarding table associated with the radio access network access point so that the access point forwarding table matches the user equipment identification, the application server identification and the application server IP address. The controller configures a service edge creation environment function forwarding table so that the forwarding table matches the user equipment identification mapped to the radio access network access point IP address and instructs an action so that packet traffic to and from the user equipment is processed without an explicit connection oriented signaling protocol.
US11064406B2

A method in a radio access node for communicating with a radio terminal in a network system includes transmitting to the radio terminal a mapping between a first set of identifiers and a second set of identifiers, each identifier identifying a reference signal in a network system, and communicating with the radio terminal using at least one identifier in the first set of identifiers.
US11064392B2

Methods, systems, and devices for wireless communications are described that provide for partitioning of time-frequency resources for access and backhaul links separately. A centralized scheduler in a centralized system or a set of access nodes (ANs) in a distributed system may allocate a portion of a set of resources for a given link type (e.g., access or backhaul). In some cases, multiple ANs may exchange reports or measurements to determine the resources to allocate to a given link type. The allocated resources may be repurposed for use by a different link type (e.g., access resources may be repurposed and used for backhaul resources) in order to account for varying traffic conditions.
US11064379B2

An embodiment of the present invention relates to a method for performing measurement by a terminal in a wireless communication system, the method comprising the steps of: receiving D2D signals transmitted by a plurality of relay terminals; and performing measurement using at least one signal among the D2D signals, wherein the D2D signal subjected to the measurement is a D2D signal having a valid CRC.
US11064378B2

A method includes: receiving one or more synchronization signals; deriving a synchronization reference from the one or more synchronization signals; receiving a plurality of reference signals; based on the derived synchronization reference, performing a plurality of measurements on the plurality of reference signals; based on the plurality of measurements, selecting a plurality of random access resources; and selecting a random access resource from the plurality of random access resources for transmitting a random access signal to at least one of the one or more TP's.
US11064375B2

According to one example of the present disclosure, an access point (AP) comprises a wired interface and a wireless interface. External wireless client devices may associate with the AP and the AP may forward traffic received from the wireless clients. The AP includes a virtual client which is to simulate a wireless client device.
US11064372B1

Disclosed is a mechanism to help reconfigure the geographic coverage area of a second access node so as to better cover UEs that experienced connection-addition failures with the second access node. In accordance with the disclosure, a computing system could determine geolocations where UEs that experienced connection-addition failures with the second access node were located when the UEs experienced the connection-addition failures with the second access node. The computing system could then reconfigure the antenna configuration of the second access node in an effort to have the geographic coverage area of the second access node better cover the determined geolocations.
US11064368B2

A system, in an active reflector device, adjusts a first amplification gain of each of a plurality of radio frequency (RF) signals received at a receiver front-end from a first equipment via a first radio path of an NLOS radio path. A first phase shift is performed on each of the plurality of RF signals with the adjusted first amplification gain. A combination of the plurality of first phase-shifted RF signals is split at a transmitter front-end. A second phase shift on each of the split first plurality of first phase-shifted RF signals is performed. A second amplification gain of each of the plurality of second phase-shifted RF signals is adjusted.
US11064365B2

Disclosed are a method for signal transmission/reception between a terminal and a base station in a wireless communication system supporting an unlicensed band, and apparatuses supporting the same. Particularly, disclosed are a method for transmitting/receiving a signal and apparatuses supporting the same, wherein a base station transmits a synchronization signal/physical broadcast channel block through an unlicensed band, and a terminal is synchronized with the base station on the basis of the transmitted synchronization signal/physical broadcast channel block.
US11064361B2

The present disclosure discloses an electronic device binding method, an electronic device, and an electronic device binding system. The electronic device binding method includes: receiving, at an electronic device and from the server, a binding request originating from a mobile terminal, and displaying the binding request, wherein the binding request contains device information of the electronic device and user information of the mobile terminal; generating at the electronic device a binding result in response to a first operation of an operator of the electronic device on the binding request, and transmitting the binding result from the electronic device to the server.
US11064360B2

A network device, which can be disposed in a mesh network, and include a WPS button and a processing circuit. The WPS button may trigger a WPS connection process. The processing circuit may be connected to the WPS button. The processing circuit can determine whether the uplink connection of the network device exists; if the uplink connection of the network device does not exist, the processing circuit can implement an uplink connection process; if the uplink connection of the network device exists, the processing circuit can implement a downlink connection process.
US11064353B2

Described herein are systems, devices, techniques and products for managing the dynamic assignment of media access control (MAC) addresses to wireless network devices, such as by identifying a dynamically assigned MAC address before, after, or during a wireless association process and communicating the dynamically assigned MAC address to a wireless network device. Also disclosed are systems, devices, techniques and products for preventing a denial of service attack on a wireless access point's association table, such as by requiring devices that associate with a wireless access point to respond to a query from the wireless access point shortly after association.
US11064342B2

Disclosed herein is a method of operation of a network node and a network node for executing the method to enable definition of an allowed area in which data services are provided to a wireless device, the allowed area having a size defined by one or more criteria comprising a predefined maximum number of tracking areas within the allowed area, the method comprises: upon attachment of the wireless device, accepting registrations of new tracking areas for the allowed area of the wireless device as long as the one or more criteria that define the size of the allowed area are satisfied.
US11064341B2

Disclosed is a method and device for the notification of information about an RAN-based notification area, comprising: a network side node determines RNA information about an RAN notification area according to a preset policy; the network side node sends the determined RNA information to a terminal. The policy comprises one of the following: representing the RNA information using a mode configured by a network side; or determining a representation mode of the RNA information according to related information of the terminal.
US11064323B2

A system includes a processor configured to receive a plurality of reports identifying file-chunk distribution among reporting vehicles. The processor is also configured to determine reseeding file chunks to improve distribution characteristics, responsive to the reports. The processor is further configured to determine a plurality of candidate delivery vehicles and responsive to determining that a distribution threshold has passed, send the reseeding file chunks to the determined delivery vehicles.
US11064315B2

A host device includes: a data management module for receiving exercise data from an electronic device; a group management module for generating a group requiring preset conditions and determining whether to include the electronic device in the group based on whether the exercise data of the electronic device received from the data management module meets the conditions; and a league management module for, when the number of generated groups is two or more, controlling a configuration of the two or more groups based on a result of the determination on whether one or more electronic devices included in each of the two or more groups meet conditions required by the group whenever a preset period elapses.
US11064314B2

The present embodiments relate to a method and an apparatus for acquiring location information of a terminal by using a wireless communication system. An embodiment provides an apparatus for measuring location information of a terminal, the apparatus comprising: at least one downlink signal receiver; at least one uplink signal receiver; and a controller for controlling the downlink signal receiver and the uplink signal receiver, wherein the controller configures uplink resource allocation information on the basis of control information received by the downlink signal receiver, and determines, on the basis of the uplink resource allocation information, whether to receive an uplink signal.
US11064312B2

The invention relates to an operating state measuring system, to a server, and to a method for controlling the operating state measuring system, comprising the following method steps: receiving a data packet from a receiving unit; receiving a position signal; evaluating the received data; and generating a result data set from the evaluated data.
US11064305B2

An exemplary hearing device includes an interface assembly comprising a plurality of contacts and a processor coupled to the contacts. The processor is configured to configure, while a receiver assembly is connected to the interface assembly, the contacts to serve as output contacts; output, based on the configuring, audio signals to the receiver assembly by way of the contacts; detect that a device has been connected to the interface assembly in place of the receiver assembly; measure, in response to the detecting, a direct current resistance (DCR) of the device; determine, based on the DCR, that the device is a programming device; reconfigure, in response to determining that the device is the programming device, the contacts to serve as input contacts; and receive, based on the reconfiguring of the contacts to serve as input contacts, programming instructions from the programming device by way of the contacts.
US11064303B2

A hearing aid having a bellows vibration body is disclosed. The hearing aid comprises: an external unit having a microphone for converting an external voice into an electrical signal; an internal unit which can be implanted under the skin and is for communicating with the external unit; a bellows vibration body which can be connected to the auditory ossicles and comprises a non-magnetic body; and an audio transmission tube for transmitting an acoustic signal, which is output from the internal unit, to the bellows vibration body, wherein the bellows vibration body vibrates in accordance with the acoustic signal transmitted by means of the audio transmission tube and thus transmits the vibration to the auditory ossicles.
US11064297B2

One embodiment provides a method, including: identifying, using at least one sensor, that a position of a microphone attached to a headset is associated with an audible input position; determining, using a processor, that the position is not associated with an optimal audible input position; and notifying, responsive to the determining, a user that the position is not associated with the optimal audible input position. Other aspects are described and claimed.
US11064296B2

Provided are a voice denoising method and apparatus, a server and a storage medium. The voice denoising method comprises: acquiring voice signals synchronously collected by an acoustic microphone and a non-acoustic microphone (S100); carrying out voice activity detection according to the voice signal collected by the non-acoustic microphone to obtain a voice activity detection result (S110); and according to the voice activity detection result, denoising the voice signal collected by the acoustic microphone to obtain a denoised voice signal (S120). The effect of denoising can be enhanced, and the quality of voice signals can be improved.
US11064282B1

A wearable audio system with a first active portion that in its normal use position is carried on a user's body on a first side of the mid-sagittal plane and a second active portion that in its normal use position is carried on the user's body on a second side of the mid-sagittal plane. Sound is transmitted from one active portion and received at the other active portion. The received sound is used to estimate whether the active positions are in their use positions.
US11064272B2

A device and a method including a power supply module operative to extract electric power from magnetic field surrounding an electric cable, a transceiver operative to communicate in a backhaul network, a transceiver for a wireless local area network and/or a remote sensing unit, and a controller module communicatively coupled to the transceiver and/or remote sensing unit, where the device is mounted around a single electric cable of an electric transmission grid or an electric distribution grid, and where the device derives power form the single electric cable.
US11064270B1

A system may receive an entity identifier for a user. The entity identifier may identify an entity that is associated with a category. The system may identify channel(s) for the category by obtaining data for the user, and analyzing the data to determine a score for each channel. The system may use the scores to select one or more of the channels. The system may provide content related to the selected channel(s) to a client device of the user, and the user may interact with the content via the client device.
US11064265B2

Disclosed is a method for processing media contents. A method for processing media content in a client terminal includes: receiving first information related to a partial media content and a background media content from a managing server, in which the first information includes region information of the partial media content and second information to create the partial media content; creating the partial media content based on the second information; creating an entire media content based on the region information, the partial media content and the background media content; and displaying the entire media content, in which the partial media content includes one of a partial media content object and a function object.
US11064264B2

A computer-implemented method, system, and computer program product to perform an intelligent rewind function includes: identifying one or more events that occur during playback of media content; identifying an interrupt event in the one or more events, where the interrupt event is an event that is estimated to be disruptive to a user consuming the media content; locating an event time on a timeline of the media content, where the event time is associated with the interrupt event; and reverting the media content to a rewind time in the timeline, where the rewind time is associated with the event time.
US11064263B2

Systems and methods for dynamically multiplexing requested linear media channels and network data on forward link traffic streams of a communication link to a craft media delivery system are provided. Furthermore, systems and methods for receiving dynamically multiplexed requested linear media channels and network data on forward link traffic streams of a communication link by a craft media delivery system are also provided.
US11064262B2

Multimedia content segment identified by users may be shared among media devices and media device users. Media content segment metadata is generated based on one or more identified media content item segments identified in one or more media content items. The media content segment metadata may include, but is not limited to, information indicating segment start and stop times, information about the particular media content item (e.g., title, actors, original air date), and other user-provided descriptive information. A link for the media content segment metadata may be posted for display on a webpage and which enables other users to access the media content segment metadata.
US11064254B2

A media presentation and distribution system includes a verification server that handles dynamic verification of playback of media assets on a client device. The client device receives an asset stream of media assets that comprises one or more tags embedded in the media assets. The client device detects an asset identifier associated with each of the media assets during playback of each media asset on the client device, based on identification of a tag of the one or more tags. The verification server verifies the playback of the media assets on the client device based on received support information from the client device. The playback of the media assets are verified to satisfy defined asset delivery criteria and to identify and debug a deviation or one or more errors with the playback of the media assets.
US11064253B2

A processing device and method are disclosed to manage content of a content feed is disclosed. The method can include receiving, from a client device, an overlay request for an overlay content. The method can also include select a first overlay content from a plurality of overlay contents. The method can further include determining when an amount remaining in a monetary budget, associated with the overlay request, exceeds a threshold monetary budget. The method can further include determining when a number of times the overlay content has been displayed does not exceed a threshold number of times. The method can further include retrieving, from an overlay database, the first overlay content. The method can further include delivering, to the client device, the first overlay content.
US11064251B1

Systems, methods, and non-transitory computer-readable media can determine a page to be scored for quality based at least in part on videos posted in the page. Respective video ecosystem quality scores can be determined for the videos posted in the page. A video ecosystem quality score can be determined for the page based at least in part on the respective video ecosystem quality scores for the videos posted in the page.
US11064241B2

Provided is a system deployed in a motor vehicle having a mobile communication device, including a computer readable storage medium, in communication with a content distribution system, comprising a display screen attached to a window within the motor vehicle and a computer program stored in the computer readable storage medium of the mobile communication device. The computer program when executed by the mobile communication device performs operations comprising receiving a content packet from the content distribution system indicating a plurality of content instances and transmitting content from the content instances to render on the display screen.
US11064233B2

The present disclosure relates to an artificial intelligence (AI) system utilizing machine learning algorithms and to an application thereof, and discloses an electronic device. The electronic device comprises: a memory for saving history information corresponding to the day and/or time for each of a plurality of services provided by the electronic device; and a processor for giving a weight to a piece of history corresponding to the day and/or time of an occurred event and selecting a recommended service from among the plurality of services on the basis of the piece of history given the weight, when a predetermined event occurs.
US11064227B2

Systems and methods for matching media content are disclosed, including: at a server, obtaining first media content from a client device, wherein the first media content item corresponds to a first portion of media content being played on the client device; obtaining second media content from a content source distinct from the server; comparing the first media content and the second media content; based on a determination that the second media content corresponds to a portion of the media content that is earlier than the first media content: obtaining third media content from the content source corresponding to a third portion of the media content subsequent to the second media content; comparing the first media content with the third media content; and based on a determination that the first and third media content are concurrent, identifying the first media content using identification information corresponding to the third media content.
US11064223B2

A media system replaces content in a first sequence of media content. The media system presents the first sequence of media content to an end-user and generates a fingerprint of the sequence of media content. The fingerprint is for comparison with a plurality of reference fingerprints so as to identify the first sequence of media content and determine a reference position within the first sequence of media content. The media system sends a request for a replacement sequence of content to a content replacement system, and receives replacement media content selected based on the identified first sequence of media content. The media system presents the replacement media content to the end-user instead of the first sequence of media content. Presenting the replacement media content begins at a position in the first sequence of media content that is determined based on the reference position.
US11064213B2

The present disclosure relates to method for embedding key information in an image, the method comprising reserving a range of DMZ values, in a predetermined range of 2N values used for storing useful data in the image, the reserved range being used for storing a key information associated with at least one coordinates in the image, with N>0 and DMZ<<2N.
US11064208B2

The disclosure is related to adaptive transcoding of video streams from a camera. A camera system includes a camera and a base station connected to each other in a first communication network, which can be a wireless network. When a user requests to view a video from the camera, the base station obtains a video stream from the camera, transcodes the video stream, based on one or more input parameters, to generate a transcoded video stream, and transmits the transcoded video stream to a user device. The base station can transcode the video stream locally, e.g., within the base station, or in a cloud network based on transcoding location factors. Further, the camera system can also determine whether to stream the video to the user directly from the base station or from the cloud network based on streaming location factors.
US11064204B2

The automatic video comparison system for measuring the quality of decoded data described herein provides a method for measuring the quality of decoded data at the level of sub-units of a unit of data, for instance at the level of sub-blocks of a video frame. The system can therefore locate defects that may not otherwise be detected by an automated system that measures quality at the level of the entire frame. Processing encoded media is computationally intensive, thus the automatic video comparison system uses a distributed computing system in order to distribute the computations across many compute resources that are capable of operating in parallel.
US11064199B2

In a video processing system, a method and system for generating a transform size syntax element for video decoding are provided. For high profile mode video decoding operations, the transform sizes may be selected based on the prediction macroblock type and the contents of the macroblock. A set of rules may be utilized to select from a 4.×.4 or an 8.×.8 transform size during the encoding operation. Dynamic selection of transform size may be performed on intra-predicted macroblocks, inter-predicted macroblocks, and/or direct mode inter-predicted macroblocks. The encoding operation may generate a transform size syntax element to indicate the transform size that may be used in reconstructing the encoded macroblock. The transform size syntax element may be transmitted to a decoder as part of the encoded video information bit stream.
US11064197B2

The present disclosure relates to image coding/decoding applying deblocking filtering and decoder-based intra-mode determination. In order to efficiently use software and/or hardware resources, the size of the template for the decoder-based intra-mode determination is smaller than the number of lines used by the deblocking filtering.
US11064195B2

In one example, a device includes a memory configured to store video data, and one or more processing units implemented in circuitry configured to construct a plurality of filters for classes of blocks of a current picture of the video data, wherein to construct the plurality of filters, the one or more processing units are configured to generate a plurality of sets of filter coefficients, and for a subset of the plurality of filters, determine respective indexes that identify one of the sets of filter coefficients for the corresponding filter of the subset; decode a current block of the current picture, determine a class for the current block, select a filter of the plurality of filters that corresponds to the class for the current block, and filter at least one pixel of the current block using the selected filter.
US11064185B2

The present disclosure discloses a system, a method and a device for generating depth image. The system includes an illumination source, an optical system, a control device, and at least one set of a dynamic aperture and an image sensor, wherein the dynamic aperture is configured to dynamically change a light transmittance, an exposure start time, and an exposure end time under a control of the control device. The control device is configured to acquire a first photo and a second photo, and generate a depth image of the target scene according to the first photo, the first shooting configuration information, the second photo, and the second shooting configuration information.
US11064171B1

A method of controlling a projector includes a distributing step of distributing each of luminance values of a plurality of pixels constituting an original image into a first luminance value, a second luminance value lower than the first luminance value, a third luminance value lower than the second luminance value, a first replacing step of replacing the luminance values of the pixels corresponding to the second luminance value with the third luminance value in the original image to generate a first image, a second replacing step of replacing the luminance values of the pixels corresponding to the second luminance value with the first luminance value in the original image to generate a second image, and a generating step of converting the luminance values of the pixels into transmittances in each of the first image and the second image to generate mask images.
US11064168B1

An electronic peep hole device includes a first portion that is configured to be mounted to an exterior side of a front door of a monitored property, the first portion includes a user interface and a camera that is configured to capture image data, a second portion that is configured to be mounted to an interior side of the front door of the monitored property, the second portion includes a display unit that is configured to display the image data captured by the camera, and a connecting portion that is configured to connect the first portion to the second portion through a hole in the surface of the front door, the connecting portion being configured to house an electrical connection between the first portion and the second portion.
US11064164B2

A system for holding a camera for acquiring images of preparations includes a rail that can be mounted above a preparation surface. A camera carrier couples a camera with the rail such that the camera is movable relative to the rail and such that the camera can acquire images of preparations on the preparation surface.
US11064160B2

A subject can be tracking using a plurality of physical video monitoring or image acquisition devices deployed in a delimited area. A map represents the delimited area. Icons representing the physical monitoring devices can be placed and configured on the map representing the delimited area. Some or all of the placed and configured video monitoring devices can be logically linked together to form scenes. The video feed from the physical video monitoring devices may be recorded in stable storage. A layout for display of the video feeds may be selected. Upon playing the video feed, whether live or recorded, a subject can be tracked through the delimited area by selecting one of the video monitoring devices in one of the available scenes.
US11064145B2

In an imaging device, a differential stage includes an input transistor having an input node connected to a floating diffusion portion, a first control line and a second control line are located in a plurality of sets, the first control line is connected to connection portions of some sets of the plurality of sets, and the second control line is connected to connection portions of the other sets of the plurality of sets.
US11064138B2

An image sensor includes a pixel structure which pair-wise vertically shares at least one read node, and further comprises a memory node for storing charges. A vertical transfer control line commands charge transfer from the photodiode to the memory node of a given column. The vertical transfer control rows apply two different exposure times, a first to the even columns and a second to the odd columns. The pixels and the read circuit perform one read operation per vertical pair of pixels over the exposure time associated with the column of the pair. A processing block is configured to calculate, for each vertical pair of pixels, an interpolated digital value. A periodic pattern of colored filters creates an HDR-mode color image sensor.
US11064121B2

An image shake correction device includes: a movable member; a support member that supports the movable member to be movable in a plurality of directions along a flat surface; a circuit board that is fixed to the movable member; an imager that is mounted on the circuit board; a plurality of position detectors that is fixed to a rear surface of the circuit board opposite to a surface of the circuit board on which the imager is mounted to detect a position of the movable member in a movement direction of the movable member; magnetic force generators that face the plurality of position detectors respectively and are fixed to the support member; and adjustment members that adjust distances between the magnetic force generators and the support member.
US11064115B2

An image sensor includes an image information processing unit that forms integrated information in which image sensor identification information capable of identifying the image sensor and image information obtained by an analog/digital conversion unit are associated with each other, and an image information output unit that outputs the integrated information to an external unit.
US11064114B2

An image processing apparatus capable of achieving an excellent image quality while obtaining an effect of correction and suppressing side effects caused by correction processing is provided. This image processing apparatus sets a correction value for correcting a deterioration in an image quality due to characteristics of an image optical system, based on lens characteristic information about the image optical system, and performs image processing using the correction value on an image. In an area corresponding to a range where incident light having passed through the image optical system does not reach, a limit to a level for the correction value is set.
US11064106B2

Disclosed herein are electronic device display interface embodiments for controlling a camera and for reviewing images captured in the device from the camera. For example, in some embodiments, a device is provided with a display for viewing images to be captured by the camera and to provide a display interface for controlling camera operation, wherein the display interface, when in an image capture mode, is to provide an image capture button with two or more smaller image mode buttons disposed adjacent to the image capture button.
US11064105B2

In a lens apparatus, a CS terminal is disposed adjacent to a DGND terminal, and a DCA terminal is disposed on the other side of the CS terminal from the DGND terminal. The terminals on the accessory correspond to terminals on an imaging apparatus where a CS terminal is disposed adjacent to a DGND terminal, and a DCA terminal is disposed on the other side of the CS terminal from the DGND terminal.
US11064103B2

A video image transmission apparatus configured to transmit a video image captured by an image capturing unit includes a determination unit configured to determine whether to add object information to metadata based on a video type of an image to be transmitted to an information processing apparatus, an addition unit configured to add, to the metadata, the object information about the video image to be transmitted to the information processing apparatus in a case where the determination unit determines that the object information is to be added to the metadata, and a transmission unit configured to transmit the video image and the metadata to the information processing apparatus.
US11064099B2

An imager includes: an imaging element chip; a fixing member to which the imaging element chip is adhered, and which is electrically connected to the imaging element chip; a circuit board that is fixed to the fixing member via a plurality of conductive members; and a stress relaxing member that is fixed to a second surface of the circuit board opposite to a first surface of the circuit board, the first surface being a surface of the circuit board to a side of which the fixing member is fixed, a linear expansion coefficient of the fixing member, a linear expansion coefficient of the circuit board, and a linear expansion coefficient of the stress relaxing member are as defined herein, and the stress relaxing member overlaps an entire adhesion portion between the imaging element chip and the fixing member as defined herein.
US11064091B2

An image forming apparatus includes a login processing section and an automatic logout processing section. The login processing section executes login processing and logout processing for a user. The automatic logout processing section instructs the login processing section to execute the logout processing when a standby period elapses in a state in which no function for image formation is carried out and no operation on an operation section for the image forming apparatus is received during login by the user. The automatic logout processing section switches the standby period to a shortened period shorter than a normal period upon detection of a specific operation.
US11064081B2

An image forming apparatus includes a main assembly including a main assembly frame and an image forming portion; a reading unit including a reading frame, a placing portion, a reading portion, and a hinge supporting portion; a hinge; and an openable unit. The hinge supporting portion includes a first fixing portion fixed to the reading frame and a second fixing portion provided adjacent to the main assembly frame and fixed to the main assembly frame.
US11064069B2

The present invention provides an IP telephone and the like capable of preventing a loss of the beginning part of a talk. A communication apparatus according to the present invention includes: a memory (110) configured to store communication data with a communication destination; and a control unit (120) configured to transmit and receive the communication data to and from the communication destination in each first duration and store the transmitted and received communication data in the memory (110), then output, after a communication session with an external recording apparatus that records the communication data is established, the communication data stored in the memory (110) to the external recording apparatus in each second duration that is shorter than the first duration.
US11064066B2

A communication apparatus may perform: receiving a specific signal from a first external apparatus via a second interface; changing a state of a first interface from a first state to a second state, in a case where the specific signal including predetermined information is received via the second interface while the state of the first interface is the first state; maintaining the state of the first interface in the first state, in a case where the specific signal not including the predetermined information is received while the state of the first interface is the first state; and performing a communication of target data with the first external apparatus via the first interface being in the second state, after the state of the first interface has been changed to the second state.
US11064051B2

Systems and methods for leader election. A disclosed method includes sending, by a first compute node of a plurality of compute nodes, a plurality of remote procedure calls (RPCs) to a plurality of storage boxes according to an order, wherein each of the plurality of RPCs causes a leader election algorithm to execute in one of the plurality of storage boxes; and updating a state of the first compute node to “leader” when a result of executing the leader election algorithm for each of the plurality of RPCs indicates that the first compute node is elected as a leader node.
US11064045B2

Disclosed is a method for processing a service function chain request, which includes: classifying the service function chain request received; determining a domain to process the service function chain request; wherein the service function chain requested by the service function chain request includes at least one virtual network function (VNF); distributing the service function chain request to the domain determined; determining at least one server for implementing the at least one VNF; and determining the time at which the at least one server implements the at least one VNF. The disclosure also discloses a system for processing a service function chain request.
US11064042B2

A proxy server has a proxy callback interface to receive a webhook call from a callback producer server of a web service, the webhook call including a webhook channel address and payload callback data. A proxy server database stores a callback record comprising the payload callback data in a proxy server database. A query interface receives a callback query from a callback consumer server, the callback query identifying the webhook channel address. The query interface further configured to identify a plurality of callback records associated with the webhook channel address stored within the proxy server database after receipt of a previous callback query from the callback consumer server, and return the plurality of callback records to the callback client responsive to the callback query.
US11064038B2

An improved system and method for defining an event based upon an object location and a user-defined zone and managing the conveyance of object location event information among computing devices where object location events are defined in terms of a condition based upon a relationship between user-defined zone information and object location information. One or more location information sources are associated with an object to provide the object location information. One or more user-defined zones are defined on a map and one or more object location events are defined. The occurrence of an object location event produces object location event information that is conveyed to users based on user identification codes. Accessibility to object location information, zone information, and object location event information is based upon an object location information access code, a zone information access code, and an object location event information access code, respectively.
US11064036B2

A system for discovering services includes a storage device and a processor. The storage device is configured to store a catalog of software installed packages. A processor is configured to scan a file system to identify configuration files associated with one or more packages found in the catalog of software installed packages; identify a subset of configuration files associated with executing processes by finding references to a configuration file in active processor memory and placing the configuration file in the subset of configuration files; and verify that a network port associated with an executing process corresponds to a designated network port as indicated in the configuration file associated with the executing process.
US11064033B2

Methods, devices, and systems for migration or sharing of existing M2M service layer sessions are disclosed. In one embodiment, a Session Migration and Sharing Function (SMSF) performs the migration or sharing of a M2M service layer session. Various forms of service layer session context may be used to enable the migration and sharing of M2M service layer sessions.
US11064032B1

A network device has a Local Area Network (LAN) port and several Wide Area Network (WAN) ports. The network device detects a computing device that is connected to the LAN port initiating establishment of a TCP connection. The network device creates a TCP socket that establishes the TCP connection with the computing device and inspects TCP packets on the TCP connection to identify a cloud application associated with the TCP packets. The network device creates another TCP socket that establishes a TCP connection to the identified cloud application by way of a WAN port that is designated to be an output port for the identified cloud application. A routing path is created between the LAN port and the designated WAN port. Subsequent TCP packets originated by the computing device for the identified cloud application are forwarded along the routing path.
US11064028B2

A method and apparatus for deduplication of sensor data is described. In one embodiment, a method includes receiving a plurality of sensor packets P at a network gateway apparatus. Each packet Pi has a corresponding timestamp Ti. The method includes storing a subset of the plurality of received packets P′ for a first period of time T1. The method also includes comparing each of the stored packets P′i to other stored packets P′j to determine an equivalence. In response to determining the equivalence of the stored packet P′i with P′j, the method includes forwarding only one of packet P′i or P′j to a destination.
US11064021B2

Techniques for managing a network system are disclosed. For example, a method comprises: receiving, at a network adapter, an access request from a client, the access request including first header information and first payload information; transmitting the first header information to a load balancing server associated with the network adapter; receiving the updated first header information from the load balancing server, wherein the updated first header information is determined by the load balancing server based on the received first header information and an identifier of the load balancing server, and wherein the updated first header information indicates a destination server to which the access request is to be transmitted; and, generating, based on the updated first header information and the first payload information, an updated access request. Accordingly, the processing capability of load balancing servers and the performance of load balancing servers in a network system may be improved effectively.
US11064019B2

A server includes a plurality of nodes that are connected by a network that includes an on-chip network or an inter-chip network that connects the nodes. The server also includes a controller to configure the network based on relative priorities of workloads that are executing on the nodes. Configuring the network can include allocating buffers to virtual channels supported by the network based on the relative priorities of the workloads associated with the virtual channels, configuring routing tables that route the packets over the network based on the relative priorities of the workloads that generate the packets, or modifying arbitration weights to favor granting access to the virtual channels to packets generated by higher priority workloads.
US11064017B2

A peripheral device includes one or more processors and a memory storing program instructions that when executed implement an extension manager of a virtualized computing service. The extension manager establishes a secure network channel for communications between the peripheral device, which is located at a premise external to a provider network, and a data center of the provider network. The extension manager assigns a network address of the substrate network of the service to a hardware server at the external premise. The substrate address is also assigned to an extension traffic intermediary at the data center. In response to a command directed to the virtualized computing service, one or more compute instance configuration operations are performed at the hardware server.
US11064015B2

Techniques for delivering a distributed network security service providing isolation of customer data are described. One example method includes configuring a first node to participate in a node cluster, wherein the first node is hosted by a first cloud service provider, and wherein participating in the node cluster includes performing one or more processing actions specific to the node cluster on data received by the node; configuring a second node to participate in the node cluster, the second node hosted by a second cloud service provider; receiving a status indication from the first node over a network; determining a synchronization mechanism for the first node based on a network configuration of the first node, wherein the determined synchronization mechanism is configured to allow the first node to acquire synchronization data from other nodes in the node cluster; and transmitting the synchronization mechanism to the first node over the network.
US11064014B2

A method, system, and computer-readable storage medium for creating and executing containerized applications in cloud computing are disclosed. For example, one method involves identifying a command. Such a command indicates an application to be executed by a compute node. The method also involves generating a job for transmission to the compute node. The job indicates a container. The compute node, upon receipt of the job, is configured to create an environment for such a container, execute the application within the container, and generate results of the execution of the application.
US11064011B2

Systems and methods for communicating and displaying collections of image and video clip content are described. In one example embodiment, a device receives interface information about a group of content collections from a server computer system. When a user inputs a selection of a first content collection, the device displays images and video clips in a sequence defined by the content collection. Each piece of content (e.g. image or video clip) is displayed for less than a threshold display time. When the device finishes playing the first content collection, the device automatically begins playing a next content collection. Additional content collections generated from content submitted by other client devices can be received from the server computer system, with autoforward play of additional content collections continuing indefinitely. Some embodiments include content collections generated by the server computer system, as well as advertising elements or other system images presented between content collections.
US11064004B2

The present invention relates to systems and methods suitable for verifying and compensating nodes for streaming multimedia. In particular, the present invention relates to systems and methods that utilize a blockchain to verify and compensate devices for computational resources contributions when streaming multimedia over a decentralized network.
US11063998B2

Systems and methods for monitoring, logging, and managing data transformations and data streams of energy management (EM) data energy data sources.
US11063996B2

An exemplary golf club head having an increased amount of discretionary mass may be realized by utilizing improved drop angles, an improved average crown height, and/or articulation points. The discretionary mass may be placed low and deep in the club head to improve the location of the center of gravity as well as the inertial properties. A preferred break length may also be utilized to further improve the depth of the center of gravity. In one example, the center of gravity may be positioned to substantially align the sweet spot with the face center of the club head.
US11063994B2

Methods, apparatus and articles of manufacture for distributing communication of a data stream among multiple devices are disclosed. Example methods disclosed herein include sending a message from a first electronic device to a second electronic device to announce the first electronic device is available for inclusion in a shared connection to be established by the second electronic device with a service provider, the shared connection to split a first data stream from a source into a plurality of partial data streams to be distributed among a plurality of electronic devices. Disclosed example methods also include establishing a data connection with the service provider to receive a first one of the partial data streams associated with the shared connection. Disclosed example methods further include relaying the first one of the partial data streams associated with the shared connection from the service provider to the second electronic device.
US11063991B2

Some embodiments relate to a method implemented by a first terminal for setting up a session with a second terminal. An identifier of a session server is obtained at least from a subscriber device in the first terminal which comprises a subscriber identifier and an operator identifier. A session request and an identifier of the second terminal are sent to the server. At least one instruction is received from the server and a message comprising a first set, relative to the first terminal, of at least one characteristic parameter of the requested session is generated in accordance with at least one instruction received and sent to the server. A message is received from the server comprising a second set of at least one characteristic parameter of the requested session, the second set relating to the second terminal and having a non-zero overlap with the first set.
US11063990B2

The present disclosure describes techniques for verifying an identity of an originating device that initiates a VoIP communication with a recipient device. Specifically, an attestation parameter module is configured to detect a call request associated with a VoIP communication that is initiated by an originating device. The attestation parameter module may authenticate an identity of the originating device, and in doing so, insert an attestation parameter into an identity header of a modified SIP INVITE message sent to the recipient device. In response to receiving the modified SIP INVITE message with the attestation parameter, the telecommunication network associated with the recipient device may verify the identity of the originating device based on the attestation parameter included within the SIP INVITE message. In some examples, the attestation parameter module may generate and insert an attestation parameter within a modified SIP INVITE message that is initiated in a SIP/non-SIP telecommunication network.
US11063986B2

Embodiments of the present disclosure provide a first set of methods, computer-readable media, and system configured for: receiving a configuration for a domain name system (DNS) to log all queries; publishing a customized sender policy framework (SPF) policy to the DNS, the customized SPF policy comprising a macro-endowed mechanism; logging a plurality of received SPF customized queries; accessing a log comprising the plurality of received SPF customized queries; extracting data from each of the received SPF customized queries, the data being populated by the macro mechanism associated with the SPF customized query; populating a datastore with extracted data comprising at least one of the following: a username, a IP address, and a domain, as extracted from each received SPF customized query; and providing, based on the extracted data, an indication of outbound emails sent from the domain. In various embodiments, email authorizations and restrictions may be based thereon.
US11063982B2

Methods and systems for configuring a common security policy for a plurality of nodes included within an enterprise network. Example methods can include grouping nodes within profiles based on IP address, in addition to concordance data. Additionally, nodes may be added to profiles based on a classification of the node being common to classifications of nodes within the profile. Still further, profiles may be grouped into a solution based at least in part on classification of the profile, in addition to grouping of profiles into solutions based on affinitization using concordance data. The methods described also include determining a common security policy to apply to each of the nodes within the profile.
US11063974B2

A collection of techniques is disclosed to allow for the detection of malware that leverages pattern recognition and machine learning to effectively provide “content-less” malware detection, i.e., detecting a process as being an ‘anomaly’ not based on its particular content, but instead based on comparisons of its behavior to known (and characterized) ‘trusted’ application behaviors, i.e., the trusted applications' “phenotypes” and/or the phenotypes of known malware applications. By analyzing the patterns of normal behavior performed by trusted applications as well as malware applications, one can build a set of sophisticated, content-agnostic behavioral models (i.e., “application phenotypes”)—and later compare the processes executed on a user device to the stored behavioral models to determine whether the actual measured behavior reflects a “good” application, or if it differs from the stored behavioral models to a sufficient degree and with a sufficient degree of confidence, thus indicating a potentially malicious application or behavior.
US11063973B2

Methods and systems for generating a security policy at a gateway are disclosed. A server computer and a gateway can perform a protocol in order to train a security model at a gateway, such that it can detect attack packets and prevent those attack packets from reaching the server computer via the gateway. In a learning phase, the server computer can provide training packets and test packets to the gateway. The gateway can use the training packets to train a security model, and the gateway can classify the test packets using the security model in order to test its accuracy. When the server computer is satisfied with the accuracy of the security policy, the server computer can transmit an acceptance of the security policy to the gateway, which can subsequently deploy the model in order to detect and filter attack packets.
US11063965B1

A system including a deep learning processor obtains response data of at least two data types from a set of process stations performing operations as part of a manufacturing process. The system analyzes factory operation and control data to generate expected behavioral pattern data. Further, the system uses the response data to generate actual behavior pattern data for the process stations. Based on an analysis of the actual behavior pattern data in relation to the expected behavioral pattern data, the system determines whether anomalous activity has occurred as a result of the manufacturing process. If it is determined that anomalous activity has occurred, the system provides an indication of this anomalous activity.
US11063948B2

A method, system and computer program product for handling potential service load interruptions. The utilization of resources, such as servers in a service infrastructure of a SaaS provider, are monitored. If the utilization of a resource exceeds a threshold, then the resource is identified as having an excessive service load leading to a potential service load interruption. When a request is received from a user requesting to access such a resource, one or more action items to be completed by the user are generated and presented to the user. “Action items” refer to any activity that is required by the user to be performed thereby providing the SaaS provider additional time to address the potential service load interruption in an appropriate manner. Additional action item(s) will be presented to the user until the SaaS provider addresses the potential service load interruption, at which point, the request will be serviced.
US11063944B2

Provided is a process that affords out-of-band authentication based on a secure channel to a trusted execution environment on a client device. The authentication process includes one or more authentication steps in addition to verifying any credentials provided by a client device. A notification may be transmitted by a server to a device other than the client device attempting to access the asset. That device may be a mobile device with a trusted execution environment storing user credential information, and the server may store representations of those credentials. The mobile device collects user input credentials and transmits representations for matching the previously stored representations and signed data for verification by the server that received data originated from the mobile device. The access attempt by the client is granted based in part on the result of authenticating the data received from the mobile device in a response to the notification.
US11063943B2

A system and method are presented for the re-authentication of asynchronous messaging, specifically within enterprise to consumer communications. A third-party enterprise messaging server may be used as a conduit for a messaging service allowing for customer interaction with a business. The messaging server can append a re-authentication process for customers once a customer has been authenticated by the enterprise. Each time a customer resumes an interaction exceeding a timeout threshold, the messaging server invokes its re-authentication process. Lapsed interactions may be treated as continuous without having the customer re-authenticate through the enterprise specific authentication.
US11063937B1

Systems and methods for authentication via camera are provided. In example embodiments, an authentication server transmits, to a mobile device, an identity verification image. The authentication server receives, from a computing device, a scanned image, wherein the computing device is different from the mobile device. The authentication server determines whether the scanned image includes data from the identity verification image. The authentication server transits, to a web server accessed by the computing device, an indication that a user's identity has been verified upon determining that the scanned image includes the data from the identity verification image.
US11063925B1

Techniques are described for client registration for authorizing an aggregator service to access data on behalf of an application, through self-registration of an application client identifier and issuance of authorization token(s) based on the application client identifier. Implementations provide a technique for dynamic client registration that avoids the need for manual vetting and manual generation of the client credential grant. Additionally, the implementations described herein enforce domain values around the scope and/or purpose of the client grant. This allows for support of application providers through a single point of registration that supports multi-layer and channel. This also allows for support of a scalable authorization solution for any suitable number of clients. The dynamic client registration process adds an additional layer of security through the OAuth client grant and mutual authentication.
US11063908B2

This on-vehicle communication device includes: a storage unit configured to store correspondence information indicating a correspondence relationship between an address and a port number; and a communication unit configured to perform, by using the correspondence information, filtering of a packet having been received. A target port number which is a port number of a target instrument is registered in advance in the correspondence information. In the filtering, the communication unit selectively allows a packet that includes the target port number, to pass. The communication unit performs an address registration process of acquiring an address from the packet that includes the target port number and registering, into the correspondence information, the acquired address in association with the target port number. In the filtering after the address registration process, the communication unit selectively allows a packet that includes the target port number and the corresponding address, to pass.
US11063905B2

Systems and methods for detecting Internet services by a network policy controller are provided. According to one embodiment, a network controller maintains an Internet service database (ISDB) in which multiple Internet services and corresponding protocols, port numbers, Internet Protocol (IP) address ranges and singularity levels of the IP ranges are stored. The network policy controller intercepts network traffic and detects the Internet service of the network traffic. If an IP address of the network traffic falls in an IP range with highest singularity level and the protocol type, port number of the network traffic are matched in the ISDB, the corresponding Internet service is identified as the Internet service of the network traffic. The network policy controller further controls transmission of the network traffic based on the Internet service.
US11063899B1

Computerized methods and systems determine LAP and UAP values of the MAC address of electronic devices. A memory stores LAP records. Each LAP record has at least: an LAP value associated with an electronic device, and candidate UAP values associated with the LAP value. A packet processor modifies the LAP records by updating the candidate UAP values based on information associated with packets received from electronic devices. A probing manager modifies each LAP record by updating each LAP record to include a determined UAP value selected from the candidate UAP values based on attempts to connect to an electronic device of the electronic devices using selected candidate LAP-UAP value pairs. Each pair has the LAP value of the LAP record and a selected one of the candidate UAP values that is selected based on one or more computed metrics associated with the candidate LAP-UAP value pairs.
US11063896B2

Systems and methods are disclosed for detecting confidential information emails. In accordance with one implementation, a method is provided for detecting confidential information emails. The method includes obtaining a sender address of an electronic message, the sender address comprising a first username and a first domain name, and obtaining at least one recipient address of the electronic message, the recipient address comprising a second username and a second domain name. The method also includes determining whether the recipient address and the sender address are different addresses of a user, and based on the determination, flagging the electronic message.
US11063884B2

This disclosure describes enhancements to Ethernet for use in higher performance applications like Storage, HPC, and Ethernet based fabric interconnects. This disclosure provides various mechanisms for lossless fabric enhancements with error-detection and retransmissions to improve link reliability, frame pre-emption to allow higher priority traffic over lower priority traffic, virtual channel support for deadlock avoidance by enhancing Class of service functionality defined in IEEE 802.1Q, a new header format for efficient forwarding/routing in the fabric interconnect and header CRC for reliable cut-through forwarding in the fabric interconnect. The enhancements described herein, when added to standard and/or proprietary Ethernet protocols, broadens the applicability of Ethernet to newer usage models and fabric interconnects that are currently served by alternate fabric technologies like Infiniband, Fibre Channel and/or other proprietary technologies, etc.
US11063882B2

Improving allocation of network resources by receiving node names for resource allocation, checking a bookmark file of bad nodes for the received node names, selecting good nodes from the received nodes for command execution, sending commands to selected good nodes, identifying bad nodes during command execution; and adding the identified bad nodes to the bookmark file.
US11063877B1

A socket-intercept layer in kernel space on a network device may intercept a packet destined to egress out of the network device. The socket-intercept layer may then query a routing daemon for the Maximum Transmission Unit (MTU) value of the interface out of which that packet is to egress from the network device. In response to this query, the routing daemon may provide the socket-intercept layer with the MTU value of that interface. A tunnel driver in kernel space may identify the size of the packet and fragment the packet into segments whose sizes are each less than or equal to the MTU value of the interface. The tunnel driver may then push the segments of the packet to a packet forwarding engine on the network device. In turn, the packet forwarding engine may forward the segments of the packet to the corresponding destination via the interface.
US11063874B2

A method, includes receiving a packet flow optimization policy including a flow identifier of a target packet flow, a device identifier of a to-be-adjusted forwarding device, and information about the next hop; obtaining status information of an access control list (ACL) of the to-be-adjusted forwarding device based on the device identifier, where the status information includes resource usage status information of the ACL and capability information that indicates whether the to-be-adjusted forwarding device supports packet flow forwarding that is based on the ACL; and when determining, based on the status information, that the ACL includes an idle resource and the to-be-adjusted forwarding device supports packet flow forwarding that is based on the ACL, sending an ACL record to the to-be-adjusted forwarding device, where the ACL record includes the flow identifier and the information about the next hop.
US11063872B2

The disclosure provides an approach for reducing congestion within a network, the network comprising a plurality of subnets, the plurality of subnets comprising a plurality of host machines and a plurality of virtual computing instances (VCIs) running on the plurality of host machines. Embodiments include receiving, by an edge services gateway (ESG) of a first subnet of the plurality of subnets, membership information for a group identifying a subset of the plurality of host machines. Embodiments include receiving a multicast packet directed to the group and selecting from the plurality of host machines, a replicator host machine for the multicast packet. Embodiments include sending, to the replicator host machine, the multicast packet along with metadata indicating that the replicator host machine is to replicate the multicast packet to remaining host machines of the subset of the plurality of host machines identified in the membership information for the group.
US11063871B2

A communication apparatus includes an electronic control unit configured to manage transmission timing of predetermined data to the network, transmit the data to the network based on the transmission timing, measure an actual transmission time, determine whether the actual transmission time exceeds a specified transmission time, when the transmitted data is predetermined control object data, when determination is made that the actual transmission time is equal to or less than the specified transmission time, set next transmission timing of the control object data to be the predetermined period, and when the transmitted data is the control object data, when determination is made that the actual transmission time exceeds the specified transmission time, delay next transmission timing of the control object data by a predetermined waiting time with respect to the predetermined period.
US11063868B2

An operation method of a first communication node comprises: receiving a first frame from a second communication node; obtaining a destination address of the first frame; and transmitting a second frame including an indicator for indicating an occurrence of an error in the first frame to a communication node corresponding to a source address of the first frame, when a port corresponding to the destination address does not exist in a routing table.
US11063867B2

According to an example of a method for forwarding a packet, a ESGW device decapsulates a received downstream data packet to obtain a downstream IP data packet when a destination MAC address of the downstream data packet is an MAC address of the ESGW device; determines a matching ARP entry of an IP address of a target user terminal based on the destination IP address of the downstream IP data packet to obtain a session ID of the target user terminal; determines a length field of a PPPoE header by a microcode, and obtains a pre-stored fixed-value field of the PPPoE header from a data storage area; encapsulates the downstream IP data packet into a downstream PPPoE data packet based on the session ID, the length field, and the fixed-value field, and forwards the downstream PPPoE data packet through an egress port of the matching ARP entry.
US11063864B2

Disclosed are examples of systems, apparatus, devices, computer program products, and methods implementing aspects of a decentralized content fabric. In some implementations, one or more processors are configured to execute a software stack to define a fabric node of a plurality of fabric nodes of an overlay network situated in an application layer differentiated from an internet protocol layer. The defined fabric node is configured to: obtain a request for digital content from a client device; obtain, from one or more of the plurality of fabric nodes, a plurality of content object parts of a content object representing, in the overlay network, at least a portion of the digital content; generate consumable media using: raw data stored in the content object parts, metadata stored in the content object parts, and build instructions stored in the content object parts; and provide the consumable media to the client device. In some instances, the consumable media is further generated using a digital contract stored in a blockchain.
US11063863B2

The invention relates to a system for receiving an interest message. The system comprises at least one communication interface, at least one memory and at least one processor. The at least one processor is configured to receive an interest message on a first one of the at least one communication interface. The interest message comprises a name of a requested data object. At least one name component of the name of the requested data object comprises a range. The at least one processor is further configured to determine whether the at least one memory comprises a named data object having a name matching the name of the requested data object and to provide the named data object on the first one of the at least one communication interface if the memory comprises the named data object. The at least one processor is also configured to, if the memory does not comprise the named data object, forward the interest message on one or more further ones of the at least one communication interface, associate the name of the requested data object with an identifier of the first one of the at least one communication interface in the at least one memory, receive the named data object on the one or more further ones of the at least one communication interface and forward the named data object on the first one of the at least one communication interface based on the association.
US11063861B2

In one embodiment, a device predicts a failure of a first tunnel in a software-defined wide area network (SD-WAN). The device makes a prediction as to whether a second tunnel in the SD-WAN will satisfy a service level agreement (SLA) associated with traffic on the first tunnel. The device proactively reroutes the traffic from the first tunnel onto the second tunnel, based on the prediction as to whether that the second tunnel will satisfy the SLA of the traffic. The device monitors one or more quality of service (QoS) metrics for the rerouted traffic, to ensure that the second tunnel satisfies the SLA of the traffic.
US11063860B2

In general, techniques are described for providing control plane-based OISM forwarding. For example, network devices may configure two types of next hops for a multicast group. For example, the next hops may include an L2-switched next hop and an L3-routed next hop. The L2-switched next hop specifies the one or more other PE devices as a next hop for multicast traffic for the multicast group that is received on an access-facing interface of the PE device and switched on a source Virtual Local Area Network (VLAN). The L3-routed next hop specifies a list (e.g., either an empty list or specifying incapable Integrated Routing and Bridging (IRB) devices) as a next hop for multicast traffic for the multicast group that is received over an EVPN core on a core-facing interface of the PE device and locally routed from the source VLAN to a listener VLAN.
US11063859B2

Embodiments provide a packet processing method. In accordance with this method, a first LSP packet can be received by a network device. The following determinations can be made: that the network device stores no LSP packet whose LSP ID and PDU type are the same as an LSP ID and PDU type of the first LSP packet; that the network device has stored a second LSP packet whose LSP ID is the same as an LSP ID of the first LSP packet and PDU type is the same as a PDU type of the first LSP packet, and that a sequence number of the second LSP packet is less than a sequence number of the first LSP packet. When one or more of these determination are made, a determination whether LSP packet digest information matching the first LSP packet exists can be made. When the LSP packet digest information matching the first LSP packet is determined to exist, the first LSP packet can be stored.
US11063857B2

Techniques are described herein that are capable of monitoring connectivity and latency of network links in virtual networks. For instance, a ping agent injects first ping packets into network traffic on behalf of hosts in the virtual network. The ping agent monitors incoming packets to identify first ping response packets, which are in response to the first ping packets, among the incoming packets. A ping responder rule that is included in inbound packet filter rules for a port in a virtual switch intercepts second ping packets in the network traffic. The ping responder rule converts the second ping packets into second ping response packets and injects the second ping response packets into outbound packet filter rules to be transferred to sources from which the second ping packets are received.
US11063847B2

Systems and methods for mapping service function chains to physical network resources include receiving a service function chain request specifying multiple service functions including a service access point, generating a service graph including service links between consecutive service functions, receiving resource information describing capabilities of physical network resources and a topology of the physical network, generating a resource graph including infra links between pairs of connected physical network resources, creating, dependent on the service graph and the resource graph, multiple solutions for mapping the service functions to the physical network resources, and outputting one or more mapping solutions. Each of generating the service graph, generating the resource graph, and creating the mapping solutions may be performed by one or instances of respective microservices that operate in parallel. The systems may also include respective microservice instances for creating end point mappings, creating infra node mappings, and pruning and ranking mapping solutions.
US11063844B2

Resource usage data of a virtual machine (VM) instance is collected by an agent to be delivered to the network function virtualization infrastructure (NFVI) for conversion to virtual resource usage metrics to be provided to a virtualized infrastructure manager (VIM) for transmission of a virtual resource usage measurement to a virtualized network function manager (VNFM). For example, an agent executing on a compute node receives virtual resource data from a compute node hypervisor. The agent provides the virtual resource data to the NFVI. The NFVI converts the virtual resource data to virtual resource usage metrics using a publishing pipeline. The NFVI uses the publishing pipeline to report the virtual resource usage metrics to a virtualized infrastructure manager. The VIM uses the data to provide virtual resource usage measurements to a virtualized network function manager (VNFM).
US11063840B1

Methods and systems for predicting successful data transmission during mass communications across computer networks featuring disparate entities and imbalanced data sets using machine learning models. For example, the methods and systems provide a prediction as to whether or not a communication will be successful prior to the transmission being sent. Moreover, in some embodiments, the methods and systems described herein provide probability of a successful transmission as a function of time. For example, the methods and system provide a probability of how likely a communication will succeed (or fail) if it is sent at various times. Additionally, in some embodiments, the methods and systems may alert a sender prior to the transmission of a communication that the transmission is likely to succeed or fail.
US11063837B2

Techniques for optimizing network traffic distribution functions at network elements are described. As described, a network element provides information about network traffic distribution at the network element to a network controller. The network controller determines optimized network control parameters using machine learning that when implemented at the network element, redistributes network traffic over various network resources.
US11063833B2

Disclosed herein are systems, products, and/or methods for determining a dependency between a task and a hardware component executing the task. The method may include: accessing an execution log storing information related to a plurality of tasks, each task of the plurality of tasks being executed by a respective computing device of a plurality of computing devices distributed across a network architecture; identifying a task of the plurality of tasks to obtain application layer information of the identified task; determining which respective computing device executed the identified task to obtain network layer information of the respective computing device; generating a dependency map illustrating a relationship between the identified task and the respective computing device that executed the identified task, the relationship including the application layer information and the network layer information; and displaying, using an interactive graphical user interface (GUI) on a user device, the dependency map.
US11063824B2

A peer-to-peer (P2P) network boost system for boosting the transmission of specific packets between at least two electronic devices on the internet includes at least one boosting node and a hardware boosting device, wherein the hardware boosting device includes a geographical location judging module, a P2P matching module and a transmitting module. The boosting node is configured for receiving the specific packets and planning the transmitting route of the specific packet. The hardware boosting device judges the specific packets from a plurality of packets sent by the electronic device and sends the specific packets to the others electronic devices through the boosting node. The P2P network boost system achieves the network boosting function and optimizes the transmitting route through the hardware boosting device and the boosting node to improve the connecting quality and reduce the connecting cost.
US11063823B2

Embodiments of the present invention are directed towards optimizing two or more services that exchange data over a communication network to send, receive and record data across a plurality of network connections, where each network connection is between two sockets, and modifying the communication network to, at least temporarily, assign a plurality of sockets for use by the two services to exchange data between them.
US11063822B2

According to one embodiment, an electronic apparatus includes a transceiver and a processor. The transceiver is connectable to any of a plurality of wearable devices wearable by a user. The processor updates a configuration file that stores one or more configuration values of the plurality of wearable devices. The processor provides, when a first wearable device of the plurality of wearable devices is connected to the electronic apparatus, the one or more configuration values to the first wearable device. The processor provides, when a second wearable device of the plurality of wearable devices is connected to the electronic apparatus, the one or more configuration values to the second wearable device.
US11063820B2

Provided is a method, performed by a user equipment (UE), of controlling an access, the method including receiving, through system information from a base station, barring information including a barring configuration information list and a public land mobile network (PLMN)-specific barring information list, the barring configuration information list including at least one barring configuration information and the PLMN-specific barring information list including at least one barring information per PLMN and performing a barring check based on the received barring information when the access is triggered, in which the barring configuration information corresponds to one barring configuration information index according to an order of being included to the barring configuration information list.
US11063814B2

A method includes allocating an identifier to each of a plurality of policies each comprising a network-isolation identifier associated with a VXWAN directive and transmitting each of the plurality of policies to one or more devices in a network.
US11063797B2

A transmitter is arranged to transmit binary information using a binary amplitude shift keying where information symbols are represented by a signal including a first power state and a second power state. A duration of a bit includes a first part where the second power state is applied irrespective of which binary value being represented, and a second part where a binary value is represented by any of the first power and a third power state or a combination pattern of the first power state and the third power state. The first power state has a higher signal power than the second power state and the third power state. The duration of the second part is equal or less the duration of the first part and the signal power of the first power state is such that the binary values are distinguishably decodable.
US11063796B2

Automobile receiving, demodulating and processing signal for location finding. Processing a sensor and touchscreen generated signal for control of communication, location finding or operation of the automobile. Processing the processed digital communication signal into a further processed baseband signal and modulating and transmitting the processed baseband signal. Processing a camera generated signal into a processed camera signal and providing processed camera signal to an interface unit. Processing and modulating in an automobile a signal into a processed cross-correlated Time Constrained Signal (TCS) wave form and Long Response (LR) filtered signal. Receiving in an automobile a wireless modulated remote control (RC) signal, demodulating and processing modulated RC signal into a demodulated processed RC signal. Transmitting a signal to an emergency 911 (emergency 911 or enhanced emergency E-911) wireless service provider.
US11063792B2

The invention provides a method for automatically adjusting the gain of a multi-stage equalizer of a serial data receiver, the serial data receiver provides a gain circuit, the gain circuit comprises a multi-stage equalization circuit, and each stage of equalization circuit is arranged in series; the method comprises: Step S1, setting corresponding serial numbers for each stage of equalization circuit in sequence; Step S2, selecting an equalization circuit corresponding to the serial number from the gain circuit according to a preset rule; Step S3, sequentially adjusting the selected equalization circuits of each stage according to the sequence of the serial numbers to obtain corresponding standard adjustment values; and Step S4, adjusting the equalization circuit greater than or equal to the corresponding serial number according to the standard adjustment value. The method has the benefits that the optimal compensation for the signal is realized.
US11063791B2

A receiver is equipped with an adaptive phase-offset controller and associated timing-calibration circuitry that together shift the timing for a data sampler and a digital equalizer. The sample and equalizer timing is shifted to a position with less residual inter-symbol interference (ISI) energy relative to the current symbol. The shifted position may be calculated using a measure of signal quality, such as a receiver bit-error rate or a comparison of filter-tap values, to optimize the timing of data recovery.
US11063783B2

A passive optical network communication method, including receiving an Ethernet packet carrying an optical network unit identifier, determining a correspondence between the optical network unit identifier and an optical network unit type according to the optical network unit identifier, determining that an optical network unit that receives the Ethernet packet is a first type of optical network unit, where the optical network unit type includes the first and second type of optical network unit, and a packet receiving rate of the first type is different from that of the second type, determining a correspondence between the optical network unit type and a channel according to the first type, determining a channel corresponding to the first type, encapsulating the Ethernet packet into a gigabit-capable passive optical network encapsulation method (GEM) frame, and sending the GEM frame to the first type of optical network unit using the determined channel.
US11063775B2

A method and apparatus for efficient and dynamic support of mobile low latency services including maintaining, by a control plane entity of an inter mobile device information exchange service hosting management functionality for said service, information on a plurality of participants of said service in a service area. A forwarding rule indicative of forwarding messages related to said service from a sender participant of said plurality of participants to a receiver participant of said plurality of participants is generated based on said information on said plurality of participants of said service in said service area. The forwarding rule is transmitted to a user plane entity of said service, and said user plane entity is located in a connection path between said control plane entity and said first participant of said service and in a connection path between said control plane entity and said second participant of said service.
US11063772B2

A multi-cell per bit nonvolatile memory (NVM) unit includes a select transistor disposed on a first oxide define (OD) region, a word line transistor disposed on the first OD region, and serially connected floating gate transistors disposed between the select transistor and the word line transistor. A first floating gate extension continuously extends toward a second OD region and adjacent to an erase gate region. A second floating gate extension continuously extends toward a third OD region and is capacitively coupled to a control gate region. A channel length of each of the floating gate transistors is shorter than that of the select transistor or the word line transistor.
US11063770B1

Disclosed herein are methods, systems, and apparatus for controlling authorization of access to user data. One of the methods includes generating a first decentralized identifier based on information about a second decentralized identifier and information about a third decentralized identifier; registering a first set of records and the first decentralized identifier at a second blockchain, the second blockchain includes one or more blockchain contracts configured to, upon execution, perform one or more operations associated with the first decentralized identifier, and registering the first set of records includes storing a hash value for each record in the first set of records in the second blockchain; and controlling authorization of access to the first set of records based on the first decentralized identifier, including in response to receiving a request to grant a second user access to a particular record in the first set of records, determining whether the request includes the first decentralized identifier.
US11063768B2

An example secure embedded device includes a secure non-volatile memory coupled to a processor. The processor provides a scramble or cipher key and uses a scramble algorithm or a cipher algorithm to scramble or cipher information received from an external device into transformed information. The processor writes a least a portion of the transformed information to a plurality of memory locations of the secure non-volatile memory. The plurality of memory locations is based on the scramble or cipher key.
US11063763B2

Embodiments relate to a system that may include a third-party server and a domain name system (DNS). The third-party server may be configured to receive a request for a session token from a named entity device for the named entity device to communicate with an application programming interface (API). The API may be associated with a domain. The third-party server may obtain the session token from the API. The third-party server may encrypt the session token with a public key corresponding to the named entity device to generate an encrypted session token. The DNS may be configured to receive the encrypted session token and publish a DNS record at a namespace of the DNS, the DNS record containing the encrypted session token for the named entity device to retrieve the session token. The named entity device may decrypt the encrypted session token by the private key stored at the device.
US11063756B1

Methods, systems and devices for using different encryption keys written into interconnects of different functional blocks in different integrated circuits to securely encrypt and authenticate firmware, data, instructions and other messages transmitted among said functional blocks; and methods, systems and devices to obfuscate encryption keys to significantly increase the time and resources required to compromise those keys, ensuring encrypted data is only decrypted by authorized functional blocks, applications or users. Unique keys, small enough not to impact substrate surface area available for other device functions, can be written by charged particle beams such that multiple (or each of) functional blocks has a corresponding key unique within an IC and across a line of ICs and so that access to said keys is as limited (or nonexistent) as desired. Circuits embodying key bits can also be distributed throughout ICs and across layers, uniquely to individual functional blocks in individual ICs, to obfuscate patterns implementing keys and thereby raising time and resource cost to reverse engineer keys to prohibitive levels.
US11063754B2

Systems, devices, and methods for hybrid secret sharing are disclosed. In accordance with embodiments, a computing device may encrypt the secret message using a first encryption key to generate an encrypted secret message. The computing device may also split a second encryption key into a plurality of key shares in accordance with a threshold number. The threshold number is less than or equal to the number of the plurality of key shares. Then, the computing device may transmit a plurality of messages. Each message of the plurality of messages comprises the encrypted secret message and one of the plurality of key shares.
US11063748B2

Some embodiments of the subject technology provide a novel system for synchronizing content items among a group of peer devices. The content synchronizing system of some embodiments includes the group of peer devices and a set of one or more synchronizing servers communicatively connected with the peer devices through one or more networks. In some embodiments, the synchronizing system uses a star architecture, in which each peer device offloads its synchronization operations to the synchronizing server set. Without establishing a peer-to-peer communication with any other peer device, the particular peer device in these embodiments supplies an encrypted content item set along with the N−1 encryptions of a content key used to encrypt the content item set to the synchronizing server set so that this server set can distribute the encrypted content item set and an encrypted content key to each of the N−1 peer devices.
US11063740B1

Embodiments herein describe sub-picosecond accurate two-way clock synchronization by optically combining received optical pulses with optical pulses generated locally in a photonic chip before the optical signals are then detected by a photodetector to obtain an interference measurement. That is, the optical pulses can have different repetition rates so that the offset between the received and local optical pulses constantly changes, thereby resulting in different interference measurements. Optically combining the pulses in the photonic chip avoids much of the jitter introduced by the electronics. Further, the sites can obtain multiple interference measurements which can be evaluated to accurately determine when the optical pulses arrive at the site with femtosecond accuracy.
US11063739B2

The present invention relates to an adaptive synchronization device for demodulating a signal in linear modulation (x). The device functions from a sampled version of the signal (x). The device being characterized in that it comprises: —at least one synchronization module (F) comprising: —at least one first sub-module (Fn) arranged to deliver a first output signal (y) from the input signal (x) received at a period (T) less than the value (I) with (B) the bandwidth of the input signal (x); this first sub-module (Fn) is capable of compensating a transmission delay of the input signal (x) by estimation of the propagation delay (τ) between a transmitter and a receiver of a transmission medium; this first sub-module adapts the rate at its output to one sample per symbol; —at least one second sub-module (Fu) arranged to deliver a corrective (δτ) to be applied to the current estimation of the delay (τ), from an error term (w) defining the decision error of the device and the influence of the processings downstream of the first sub-module (F); —at least one correction module of transmission imperfections (H), disposed downstream of the synchronization module (F) and forming a correction chain of transmission imperfections of the first output signal (y) received by this module (H) at the rhythm T, and comprising: —at least one first sub-module (Hn) arranged to deliver a second output signal (z) at the rhythm (T) estimating a stream of emitted symbols (ai); —at least one second sub-module (Hp) configured to deliver the error term (w), by application of a correction to an error term (v) for estimation of symbols to consider the influence of the processings included in the first sub-module (Hn). ( 1 B ) ( I )
US11063736B2

An object is to provide proper communication even with a shortened TTI. Provided is a user terminal that communicates with a plurality of carriers including a TDD carrier using a shortened TTI having a transmission time interval (TTI) length of less than 1 ms. The user terminal includes: a receiving unit that receives DL signals transmitted from a radio base station; and a control unit that controls transmission of UL signals related to the DL signals. The control unit operates such that at least one of the UL signals related to the DL signals transmitted every TTI of the TDD carrier is transmitted through another carrier in a predetermined period.
US11063733B2

Methods, systems, and devices for wireless communications are described. A wireless device may identify a set of power configurations for a plurality of communications with at least one target device. The set of power configurations may be based at least in part on a type of signal, a type of channel, a parameter of the wireless device, a parameter of the target device, or a combination thereof. The wireless device may then determine a duplexing mode for the plurality of communications based at least in part on the set of power configurations. The duplexing mode may be, for example, a full duplex mode or a half-duplex mode. The wireless device may then transmit the plurality of communications to and/or receive the plurality of communications from the at least one target device according to the set of power configurations and the selected duplexing mode.
US11063731B2

A method and apparatus for transmitting and receiving data in a communication system using beamforming are provided. The transmission method includes transmitting a control channel signal in a control channel region of a subframe using a first transmission beam of a base station. The transmission method also includes transmitting a data signal during a predetermined time period of a data region after the control channel region in the subframe using a second transmission beam determined based on the first transmission beam. The transmission method further includes transmitting a data signal in a remaining data region following the predetermined time period using a scheduled transmission beam.
US11063729B2

Various embodiments disclosed herein provide for switching between non-orthogonal and orthogonal multiple access protocols dynamically. A base station device can determine whether a user equipment device on a communication link should use a non-orthogonal multiple access system or an orthogonal multiple access system based on one or more attributes of the communication link, and send an indication of the selection to the user equipment device. The base station device can indicate the selection using a spreading factor parameter that is either equal to one or greater than one. If the spreading factor parameter is equal to one, that can indicate to the user equipment device to use an orthogonal multiple access system, whereas if the spreading factor parameter is greater than one, that can indicate to the user equipment device to use a non-orthogonal multiple access system.
US11063727B2

The present disclosure provides a method and a device in User Equipment and a base station for multi-antenna system. The UE first receives a first signaling, a second signaling, a first reference signal and a second reference signal; and transmits first channel information. The first and second reference signals respectively comprises Q1 RS port(s) and Q2 RS port(s), the Q1 RS port(s) and Q2 RS port(s) are respectively transmitted by Q1 antenna port(s) and Q2 antenna port(s). The first signaling and second signaling are respectively used to determine L1 antenna port(s) and Q1 antenna port(s), the Q1 antenna port(s) is(are) a subset of the L1 antenna port(s). Herein, the Q1 and Q2 are positive integers respectively, the L1 is a positive integer greater than or equal to the Q1. The first channel information corresponds to Q antenna ports, the Q is a sum of the Q1 and Q2.
US11063721B2

Disclosed in the present application are a pilot sending and receiving method and device, configured to reduce a delay of receiving pilot data at a terminal, thus improving efficiency of channel estimation based on the pilot data. The pilot sending method provided in the present application comprises: determining a pilot data pattern configured for a user equipment device, the pilot data pattern comprising time-frequency position information of pilot data, and the time-frequency position information comprising position information of an initial time point of the pilot data in a subframe; and sending to the user equipment device, according to the pilot data pattern, the pilot data.
US11063718B1

Systems and techniques relating to wireless networking systems and techniques, namely employing acknowledgement mechanisms utilized with trigger frames, include: transmitting, by a first wireless device, a first frame, wherein the first frame comprises a field indicating a response frame type associated with reception of the first frame; receiving, by the first wireless device from a second wireless device, an acknowledgement (ACK) frame associated with the field in the first frame via an established wireless communication channel, the ACK frame having a frame type corresponding to the response frame type indicated in the first frame; and receiving, by the first wireless device from the second wireless device, additional frames associated with the ACK frame.
US11063713B1

In a wireless communication network, a primary access node wirelessly serves User Equipment (UEs) over a primary radio channel. A secondary access node wirelessly serves the UEs over a secondary radio channel. The primary access node determines uplink interference. The primary access node processes the uplink interference to select a new primary radio channel size and a new secondary radio channel size. The primary access node wirelessly serves the UEs over the primary radio channel having the new primary channel size. The secondary access node wirelessly serves the UEs over the secondary radio channel having the new secondary channel size.
US11063705B2

In a Non-Orthogonal Multiple Access (NOMA) system, a user equipment (UE) can be configured to transmit signals with multiple access (MA) signatures. If a base station configures multiple MA signatures to a UE, the UE can select one or more MA signatures, then transmit signals in parallel, serial, or in hybrid ways. Due to the flexibility and complexity of the UE selecting MA signatures without an explicit configuration from the base station, additional control overhead is provided to support parallel HARQ processing. In addition, a new DCI format is disclosed that supports multi-branch NOMA transmission, which allows multiple ACK/NACKs within a DCI. Further, using the techniques disclosed herein, a base station can explicitly indicate ACK-NACKs without being assisted by a HARQ ID field.
US11063691B2

A radio node in a wireless communication system employs multiple different candidate formats that define different possible positions of decoding checks within a transport block of a specific size. The radio node determines, from these different candidate formats, a format that defines a position of decoding checks within a transport block to be encoded or decoded. The radio node then encodes or decodes at least a portion of the transport block based on the determined format.
US11063684B2

An optical transmission apparatus includes a first transmitter configured to output an optical signal having a wavelength belonging to a first wavelength band, a switch configured to output the optical signal outputted to the first transmitter toward a first transmission line or a second transmission line, a wavelength converter configured to convert the optical signal outputted from the switch toward the first transmission line into an optical signal having a wavelength belonging to a second wavelength band other than the first wavelength band, a second transmitter configured to output an optical signal having a wavelength belonging to the first wavelength band, and a first multiplexer configured to multiplex the optical signal outputted from the first wavelength converter and the optical signal outputted from the second transmitter, and output a multiplexed optical signal to the first transmission line.
US11063682B2

Methods, systems, and devices for wireless communication are described. In some cases, due to blind decoding and channel estimation (CE) limits, one or more user equipment (UE) specific search sets may be pruned for blind decoding and/or CE purposes. For instance, after hashing a set of common decoding candidates to control channel elements (CCEs) within the control region, the UE specific search sets may be pruned so as to conform to the blind decode limitation, since a common search space has already occupied a portion of the total blind decode limit. Following pruning, the UE may hash the sets of UE-specific decoding candidates associated with the one or more UE specific search sets to CCEs within the control region. The UE may further prune UE specific search sets, based on CE limits, while reusing CE for overlapping hashed locations.
US11063676B2

The embodiments herein relate to a method performed by a testing device for enabling testing of a communication node. The testing device measures a test parameter associated with RF characteristics of the communication node when it is located at a test location during a first condition. The communication node is configured with a node setting during the measurement in the first condition. The testing device measures the test parameter associated with the RF characteristics of the communication node when it is located at the test location during a second condition. The communication node is configured with the same node setting in the second condition as in the first condition. The testing device checks whether a result parameter associated with the test parameter measured during the first and second condition fulfills a requirement.
US11063666B2

A communication device includes an interleaving unit that determines an interleaving length of transmit data to be transmitted through free-space optical communication, and interleaves the transmit data based on the determined interleaving length, and a shaping unit that shapes the interleaved transmit data so as to make the interleaving length detectable on a receiving side of the free-space optical communication.
US11063664B2

A novel device, system and method is disclosed for transmitting audio from a wireless audio device to wireless headphones and/or speakers (or combination thereof) via a combination of digital and analog, one and/or two way, radio frequency and infrared wireless technologies for the purposes of providing entertainment for one or more listeners using the headphones or speakers with internal or external battery or power supply and one or more integrated power connections for the wireless audio device or other devices.
US11063655B1

A wireless device receives configuration parameters comprising first random access parameters, associated with beam failure recovery, and second random access parameters. The wireless device may initiate, in response to detecting a beam failure on a primary cell and based on the first random access parameters, a first random access process on a first BWP of the primary cell. The wireless device may stop the first random access process in response to triggering consistent LBT failure for the primary cell. The wireless device may switch from the first BWP to a second BWP of the primary cell as an active BWP. The wireless device may initiate a second random access process on the second BWP for consistent LBT failure recovery and based on the second random access parameters.
US11063654B2

A diversity receiver and a terminal are provided. The diversity receiver includes a first main channel and a first diversity channel, the first main channel includes an antenna diplexer and a first main transmission channel, and the first diversity channel includes a tunable bandpass filter and a first diversity receiving channel. The first diversity receiving channel is coupled to a diversity antenna by using the tunable bandpass filter, and the tunable bandpass filter is configured to: adjust a passband bandwidth of the tunable bandpass filter according to a band bandwidth of a first transmit signal generated by the first main transmission channel and a band bandwidth of a first receive signal received from the diversity antenna, and perform bandpass filtering based on the passband bandwidth on the first receive signal.
US11063645B2

Aspects of this disclosure relate to pair of wireless communication devices communicating with a network system in a coordinated manner. The network system can transmit data to and/or receive data from the pair of wireless communication devices. This can enable the network system to communicate with a primary wireless communication device of the pair at a higher data rate than a peak data rate of wirelessly communicating with the primary wireless communication device. The pair of wireless communication devices can be in communication with each other via a peer-to-peer link.
US11063636B2

The present invention relates to a wireless power transmission system and, more particularly, to an apparatus and a method for performing handover between heterogeneous communication methods. A wireless power transmission apparatus and reception apparatus can indicate whether to support out-band communication thereof on the basis of an out-band flag. The wireless power transmission apparatus can request the wireless power reception apparatus to start a handover by using a bit pattern requesting the handover. The handover procedure to out-band may be performed in a negotiation phase or may be performed in a separate handover phase. Information for establishing an out-band communication connection can be transmitted from the wireless power reception apparatus to the wireless power transmission apparatus through in-band communication. Also, even after the handover to the out-band is completed, it is possible to periodically or intermittently perform the in-band communication in a power transmission phase to detect a swap of the wireless power reception apparatus.
US11063634B2

In a first aspect of the present invention, a wireless power transmission link is proposed, which while substantially maintaining resonant coupling condition (resonance frequency of the source resonant circuit is substantially equal to the resonance frequency of the load resonant circuit) detects a coupling condition of the wireless power transmission link. In a further aspect of the present invention, a wireless power transmission link is suggested, which while substantially maintaining resonant coupling condition (resonance frequency of the source resonant circuit is substantially equal to the resonance frequency of the load resonance circuit) controlling the operating state of the wireless power transmission link such, that the coupling condition of wireless power transmission link is substantially limited to the critical coupling condition.
US11063626B2

A protective case for a mobile terminal is disclosed. The protective case for a mobile terminal includes a first shell and a second shell. The first shell has a body portion and a rim portion. The rim portion is fixed to a periphery of the body portion. The first shell is made of Kevlar, and the second shell is made of polyurethane a strength less than a strength of material of the first shell. The second shell is fixed to an inner side of the rim portion that faces towards the body portion, such that a receiving space configured to receive the mobile terminal is defined by the first shell and the second shell.
US11063621B2

Example methods and apparatus to measure exposure to broadcast signals having embedded data are disclosed. An example broadcast signal exposure meter includes a first decoder to obtain an identifier of a broadcast station from an audio signal output by an end user broadcast receiver, a radio to tune to a broadcast signal from the broadcast station associated with the identifier of the broadcast station, a second decoder to obtain embedded data from the broadcast signal, the embedded data representing media contained in the broadcast signal, and an interface to provide the embedded data to a server, the server to determine audience measurement information for the media based on the provided embedded data.
US11063592B2

An integrated circuit gating circuit includes a first control stage that outputs a first internal signal based on an enable signal and a clock signal, a second control stage that outputs a second internal signal based on the first internal signal and the clock signal, and an output driver that outputs an output clock signal based on the second internal signal. The second control stage includes a first multi-finger transistor that is connected between a second node outputting the second internal signal and the 0-th node and operates based on the clock signal. A first portion of the first multi-finger transistor is formed in a first row defined on a semiconductor substrate, and a second portion of the first multi-finger transistor is formed in a second row defined on the semiconductor substrate.
US11063591B2

In an embodiment, a method includes programming a control signal that specifies a target resistance and a target voltage in a circuit. The method further includes sending the control signal to at least one transistor configured to control a current flow in the circuit. The method further includes providing, as an output, a signal with the target voltage and target resistance.
US11063590B1

A circuit with a first transistor includes a first current electrode coupled to a first voltage supply, a second current electrode coupled to a first circuit node, and a gate electrode coupled to receive a first input signal. A second transistor includes a first current electrode coupled to the second current electrode of the first transistor, a second current electrode, and a gate electrode coupled to receive a first bias voltage. A third transistor includes a first current electrode coupled to the second current electrode of the second transistor, a second current electrode coupled to a second circuit node, and a gate electrode. A fourth transistor includes a first current electrode coupled to the second circuit node, a second current electrode coupled to a third circuit node, and a gate electrode coupled to receive a second bias voltage. The gate electrode of the third transistor is coupled to the third circuit node. A fifth transistor includes a first current electrode coupled to the third circuit node, a second current electrode coupled to a second voltage supply terminal, and a gate electrode coupled to receive a second input signal.
US11063589B1

One or more embodiments of a power circuit can comprise a capacitor in series between a power source and a gate of a transistor, to receive a driver output of a first voltage from the power source. The power circuit can further comprise a first diode in parallel between the power source and the gate of the transistor. In some embodiments, when the driver output is present and exceeds a first breakdown voltage of a second diode, and the second diode enables flow of current from the first cathode to the ground, resulting in the capacitor being negatively charged up to a second voltage corresponding to excess of the first voltage over the first breakdown voltage. In additional embodiments, after the capacitor is at least partially charged, when the driver output is not present, the capacitor discharges a negative current based on the negative charging of the capacitor up to the second voltage.
US11063586B2

Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of auxiliary FETs coupled in series and a main FET coupled in parallel with an interior FET of the plurality of auxiliary FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
US11063585B2

A theory and a technical foundation for building a technical framework of a color temperature tuning technology are disclosed composing a power allocation algorithm and a power allocation circuitry, wherein the power allocation algorithm is a software for designing a process of dividing and sharing a total electric power between at least a first LED load with a color temperature CT1 and a second LED load with a color temperature CT2 to generate at least one paired combination of a first electric power X allocated to the first LED load and a second electric power Y allocated to the second LED load to create at least one mingled light color temperature CTapp thru a light diffuser according to color temperature tuning formulas CTapp=CT1·X/(X+Y)+CT2·Y/(X+Y) and X+Y=constant; and the power allocation circuitry is a hardware designed for implementing the process.
US11063583B2

A multi-sense circuit includes a transistor circuit having sense nodes and a gate node, a peak detector having inputs coupled to the sense nodes of the transistor circuit and an output, and a control circuit having a gate control node coupled to the gate node of the transistor circuit and an overcurrent protection node coupled to the output of the peak detector.
US11063579B2

A circuit for testing an electronic component, such as a transformer, includes at least two power supplies and at least two H bridge circuits. A first H bridge circuit is conductively coupled in parallel to a first power supply. A second H bridge circuit is conductively coupled in parallel to a second power supply. The second H bridge circuit includes one or more anti-series diodes for preventing current from the first power supply from passing through the second H bridge circuit to the second power supply. The first H bridge circuit and the second H bridge circuit are configured to conductively couple to the electronic component for providing a voltage with a predefined waveform to the electronic component.
US11063576B2

A front end module (FEM) for a 5.6 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 5.6 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 5.6 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 5.6 GHz PA, a 5.6 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
US11063575B2

A method and a band reject filter (BRF) using as acoustic resonators at least one of bulk acoustic wave (BAW) resonators and film bulk acoustic resonators (FBAR) are provided. The BRF includes at least one substrate having at least one of a plurality of capacitors formed thereon, the plurality of capacitors having capacitances selected to achieve a particular band reject response. The BRF also includes at least one die. At least one of a plurality of acoustic wave resonators are formed thereon. The plurality of acoustic wave resonators are one of BAW resonators and FBARs and are designed to have the same resonant frequency. A plurality of conductors between the substrate and the die are positioned to electrically connect the acoustic wave resonators and the capacitors.
US11063566B2

An RF module with improved testing capabilities is provided. The module has a first switch with signal outputs and an additional auxiliary connection connected to an auxiliary terminal. The auxiliary terminal can be connected to an RF filter while a power amplifier is decoupled from the filter.
US11063562B2

The disclosure provides an amplifier. The amplifier includes a first transistor that receives a first input and generates a first load current. A first output node is coupled to a power supply through a first load resistor. The first load resistor receives the first load current. A first capacitor network is coupled to the first output node and draws a first capacitive current from the first output node. A first current buffer is coupled between the first output node and the first transistor. A current through the first current buffer is a summation of the first load current and the first capacitive current.
US11063561B1

A receiver circuit with input common mode voltage sensing is provided. The receiver circuit is applied to a controller area network and comprises a resistor assembly, connected with a high end and a low end of the controller area network, a common mode voltage sensor and a receiving amplifier. The resistor assembly bucks voltage, respectively generating the high end and low end voltage divisions at first and second nodes and outputting the voltage divisions to the receiving amplifier to generate a resultant signal to an output end of the controller area network. The common mode voltage sensor is connected between the resistor assembly and the receiving amplifier, and able to sense the common mode voltage on bus and control the voltage on center tap of the resistor assembly so the receiver circuit for controller area network can receive the differential signal with a much wider input common mode range.
US11063555B2

The method of forecasting for solar-based power systems (10) recognizes that no single solar irradiance forecasting model provides the best forecasting prediction for every current weather trend at every time of the year. Instead, the method trains a classifier to select the best solar irradiance forecasting model for prevailing conditions through a machine learning approach. The resulting solar irradiance forecast predictions are then used to allocate the solar-based power systems (10) resources and modify demand when necessary in order to maintain a substantially constant voltage supply in the system (10).
US11063549B2

A motor control system comprises a motor control circuit, a non-transitory storage medium and a processing circuitry. The storage medium is configured to store a current threshold profile that is indicative of a current requirement of the motor control circuit for an operational cycle of a motor. The processing circuitry is configured to adjust the stored current threshold profile based on a change to the operational cycle of the motor (e.g., from standard to non-standard).
US11063548B2

A power tool is provided including a power supply interface receiving a medium-voltage-rated removable battery pack having a maximum rated voltage in the range of 40 to 80 volts, and a brushless direct current (BLDC) motor. The motor includes a rotor and a stator having at least three stator windings corresponding to at least three phases of the motor, the rotor being moveable by the stator when the stator windings are appropriately energized within the corresponding phases, each phase being characterized by a corresponding voltage waveform energizing the corresponding stator winding. A multi-phase inverter bridge circuit is disposed between the power supply interface and the motor, and a controller is configured to output drive signals to the inverter bridge circuit to control flow of current from the battery pack to the motor such that the motor produces a maximum power output of at least 2500 watts.
US11063547B2

PWM control of first and second inverters that control a double-winding type rotating electric machine is performed with mode switching between asynchronous PWM and synchronous PWM. A first-group triangular wave used for the PWM control of the first inverter is switched from the asynchronous PWM to the synchronous PWM in first timing at which carrier phases of an asynchronous PWM triangular wave and a synchronous triangular wave are matched with each other. A second-group of triangular wave used for the PWM control of the second inverter is switched from the asynchronous PWM to the synchronous PWM in second timing at which the carrier phases of the asynchronous PWM triangular wave and the synchronous triangular wave are matched with each other.
US11063544B2

An inverter device includes: an inverter, a power supply current detection sensor, a phase current detection sensor, a three-phase voltage command calculator, and an inverter on/off signal generation unit. The phase current detection sensor detects a phase current in one phase of the inverter. The inverter on/off signal generation unit generates on/off signals based on the phase voltage commands. The three-phase voltage command calculator uses the power supply current and the phase current detected by the power supply current detection sensor and the phase current detection sensor, respectively, so as to calculate phase voltage commands directed to the inverter, and at a center time point of a period in which an upper arm switching element corresponding to one phase out of two phases for which the phase current detection sensor is not provided is on, and lower arm switching elements corresponding to the other two phases are on.
US11063543B2

A voltage supplier in one aspect of the present disclosure includes a first voltage generator, a second voltage generator, a first switcher, a second switcher, a first booster, and a second booster. The first booster boosts a voltage lower than a first switching drive voltage to thereby generate the first switching drive voltage, and supplies the first switching drive voltage to the first switcher on a first supply path. The second booster boosts a voltage lower than a second switching drive voltage to thereby generate the second switching drive voltage, and supplies the second switching drive voltage to the second switcher on a second supply path.
US11063542B2

A motor driving apparatus that drives a motor includes a controller that outputs a driving signal indicating a driving amount of the motor, a driver including a plurality of inverter circuits, each of which supplies an electric current supplied from an external power supply to the motor based on the driving signal outputted from the controller, and first temperature sensors, each of which measures a temperature of a separate one of the plurality of inverter circuits. A first temperature difference is defined as the temperature of one of the inverter circuits minus the temperature of a remaining one of the inverter circuits. The controller, when the first temperature difference is equal to or greater than a predetermined difference value at a specific time point, outputs a driving signal indicating a second driving amount smaller than a first driving amount to the one of the inverter circuits.
US11063541B1

The design of a novel digital controller for a motor driven aircraft arrestment system of the type used on aircraft carriers is described. The unique control and feedback design of the described controller has many advanced features, which provide many advantages over existing designs for controlling advanced arresting gear systems. Gain scheduling in engage/arrest controllers can be done based on estimated parameters such as speed, effective skew angle, and faults to allow optimized engage/arrest controllers, where the gain scheduling can be defined, discretely, for each “bin” as defined for a range of threshold values, or it can be defined, continuously, using interpolation and/or functions of speed and effective skew.
US11063537B2

The present invention concerns a method of controlling a rotational speed of a rotor (3) of a direct current electric motor (1) comprising an inductor circuit (A, B) for rotating the rotor, which is configured to rotate continuously and is equipped with permanent magnets. The method comprises: measuring the rotational speed of the rotor; determining a time drift in the rotor rotation compared to a reference signal; defining N speed thresholds with at least one being a variable speed threshold depending on the determined time drift, the N speed thresholds defining N+1 rotational speed ranges for the rotor; determining in which one of the N+1 rotational speed ranges the determined rotational speed of the rotor is; and finally selecting an action relative to the control of the inductor circuit, based on the determined rotational speed range, for controlling the rotational speed of the rotor.
US11063533B2

The present invention relates to a control circuit (10) for controlling a resonant power converter. It is described to generate (210) a modulation signal. A carrier signal is generates (220), wherein the generation of the carrier signal comprises measuring at least one signal from the power converter. A switching signal is generated (230) that is useable to control a value of at least one magnitude of the resonant power converter based on the modulation signal and the carrier signal.
US11063530B2

A method of removing a direct current component at an output terminal of an MMC converter according to the present invention includes a detection step of individually detecting charging voltages charged in capacitors of a plurality of sub-modules connected in series to each other in the MMC converter; outputting an average value of the individually detected charging voltages; delaying the outputted average value by a predetermined phase to output a phase-delayed average value; outputting the average value and the phase-delayed average value as a q-axis component voltage by using a predetermined dq conversion unit; calculating an error between the q-axis component voltage and a three-phase average voltage for the q-axis component voltage; and outputting, through a pre-determined first PI control unit, an offset voltage for reducing the error.
US11063528B2

A multi-level inverter having at least two banks, each bank containing a plurality of low voltage MOSFET transistors. A processor configured to switch the plurality of low voltage MOSFET transistors in each bank to switch at multiple times during each cycle.
US11063521B2

A switching power supply includes a current resonance-type DC-DC converter that has an auxiliary winding provided on the primary side of a transformer, divides a voltage, which has been generated in the auxiliary winding by a current resonance operation, using a voltage divider circuit formed of resistors, and supplies, to a control IC, the divided voltage as a detection voltage for the resonant voltage for setting a timing for turning off a switching element. A phase correcting capacitor is provided between the auxiliary winding and the voltage divider circuit and corrects a delay in switching timing by setting the phase of the voltage of the voltage divider circuit ahead of the voltage of the auxiliary winding.
US11063499B2

Apparatus and methods are provided for manufacturing a rotor. The rotor has a core with an open center, conductive bars extending across the core and conductive end rings at ends of the core. A mandrel has a body that extends through the open center and a head that extends over and engage the first end of the core around the open center. A central cap couples with the body, extends over and engages the second end of the core around the open center. An end cap covers the central cap and engages the core around the open center. The end cap defines at least part of a cavity around the conductive bars for receiving molten metal.
US11063498B2

A conductor shaping apparatus includes a first shaping die, a second shaping die and a holding section configured to hold the conductor and rotates the second shaping die about a rotational axis with respect to the first shaping die, and it further includes a first movement restricting portion formed in the first shaping die and configured to contact with a portion of the conductor so as to restrict a movement of the conductor together with the second shaping die when the second shaping die is rotated in a direction approaching the first shaping die, and a second movement restricting portion that is formed in the first shaping die and is configured to contact with a portion of the conductor so as to restrict the movement of the conductor together with the second shaping die when the second shaping die is rotated in a direction apart from the first shaping die.
US11063489B2

Described herein are fractional slot electric motors with compact crowns. A motor comprises multiple coil elements protruding through a stator core and forming electrical connections with each other and/or with a lead assembly. The lead assembly comprises phase busbars connected to selected coil elements and comprising terminals for connecting to an external power supply. The lead assembly also comprises neutral busbars, with no external connections and internally connected to other coil elements. Each coil element has a rectangular cross-sectional profile to maximize the slot-fill-ratio of the motor, Each coil element is electrically coupled to two other components. For example, each looped coil element is coupled to two other coil elements at a stator side, opposite the lead assembly. Each extended coil element is coupled to another coil element at that same side and coupled to another coil element or a busbar at the lead assembly side.
US11063483B2

An electric motor includes: a rotary shaft member rotating about an axis; a rotor including a rotor core, which has an annular shape and is provided on the rotary shaft member, and a magnet provided on the rotor core; a stator including a stator core, which has an annular shape and is disposed at an interval from the rotor core in a radial direction that is a direction orthogonal to an axial direction of the rotary shaft member, and a stator coil wound around the stator core; a field yoke, which has an annular shape, includes the rotor and the staorm, and has a fixed relative positional relationship with the stator core; and a case member, which has a side wall extending in the axial direction to face an outer peripheral surface of the field yoke, the field yoke being fixed to the case member.
US11063472B1

A method involves receiving power data measurements at nodes of an electrical power grid, the electrical power grid having multiple buses. For a first bus of the electrical power grid, an objective function is repeatedly minimized using the received power data measurements to determine estimated admittances between the first bus and other buses of the electrical power grid. The minimization of the objective function is linearly constrained by a repeatedly estimated sum of conductances and susceptances connected to the first bus. A minimum value of the objective function for the first bus is determined that corresponds to a maximum value of the estimated sum of conductances and susceptances. A topology of the electrical power grid associated with the first bus is determined based on the estimated admittances that correspond to the minimum value of the objective function and to the maximum value of the estimated sum of conductances and susceptances.
US11063470B2

A system and method of managing a power infrastructure having a plurality of duty power modules (DPMs) configured to power a plurality of load centers. Various different operational modes may be deployed. Inherent redundancy mode is implemented by: monitoring operations of the power infrastructure; powering each load center during normal operations using DPMs through a load center switch via an enabled preferred setting (PS) input; providing an inherent redundancy (IR) bus coupled to each load center switch via an alternate setting (AS) input that is disabled during normal operations, wherein the IR bus is configured to receive excess capacity power exclusively from the DPMs; and in response to a detected DPM failure, disabling the PS input and enabling the AS input in the load center switch for an affected load center to capture power from the IR bus.
US11063462B2

A charging apparatus includes: an electric power source circuit including a first inverter and a second inverter to drive one motor; and a charging port having a positive electrode terminal connected to a positive electrode side of a first storage battery, and a negative electrode terminal connected to a negative electrode side of a second storage battery. In the case where the battery charger outputs first electric power, the first storage battery and the second storage battery are connected in parallel when being charged with the first electric power. In the case where the battery charger outputs second electric power that is larger than the first electric power, the first storage battery and the second storage battery are connected in series when being charged with the second electric power.
US11063450B2

An energy storage system comprising a main bus, a transfer bus, and a pair of anti-parallel thyristors electrically coupled to the main bus and the transfer bus. The system also includes a first and second group of battery cells electrically coupled to the main bus and the transfer bus, and a switching network including a plurality of switches that selectively connect the first and second groups of battery cells to the main bus and the transfer bus. A controller controls the position of the switches and a bias voltage applied to the first and second thyristors so as to seamlessly transition power from the first group of battery cells to the second group of battery cells when the group of battery cells are being discharged and seamlessly transition power between the first group of battery cells and the second group of battery cells when the battery cells are being charged.
US11063448B2

Methods and a system for dynamically modifying charging settings for a battery assembly are described. A first usage value and a second usage value for the battery assembly are received. A usage difference value for the battery assembly is determined by comparing the first usage value to the second usage value. The usage difference value is compared to a plurality of battery usage ranges. Each battery usage range is associated with a bin count, a different voltage offset, and a different current offset. The bin count of one of the plurality of battery usage ranges is updated based on the comparison. The bin counts of the plurality of battery usage ranges are analyzed to determine a largest bin count and a respective battery usage range. The battery assembly is charged with a voltage offset and a current offset corresponding to the respective battery usage range with the largest bin count.
US11063438B2

A power control apparatus capable of stable transition of a set voltage is provided. A power control apparatus includes a DC to DC converter connected to a DC bus line, a communication unit that communicates with another power control apparatus, and a control unit that controls power interchange with the other power control apparatus through the DC bus line, in which the control unit controls at least a control mode and a droop rate, the control mode includes a first mode for controlling a voltage of the DC bus line, a second mode for controlling a current flowing through the DC bus line, and a third mode for stopping the power interchange, and when the control mode is shifted from the first mode to the second mode or the third mode, the control unit controls the droop rate to be set to a predetermined value other than 0%.
US11063435B2

An adaptive stability control system includes a direct current (DC) bus and one or more distributed controllers. The DC bus is configured to provide bidirectional pulsed power flow and energy storage. The distributed controller is configured to continuously measure an impedance of the DC bus and execute at least one adaptive control algorithm to regulate impedance of the DC bus to maintain stability of the bidirectional pulsed power flow and energy storage.
US11063422B2

A power semiconductor module includes a power semiconductor element; a control circuit which controls the power semiconductor element; and multiple terminals. The control circuit deactivates a gate terminal, which is a control electrode of the power semiconductor element, in an event of a fault in the power semiconductor element or the power semiconductor module, and outputs from a first output terminal a fault signal indicating the event of the fault in the power semiconductor module. When there is no fault in the power semiconductor element and the power semiconductor module, the control circuit uses the first output terminal for other applications such as for outputting temperature information on the power semiconductor module, for example. This allows the fault signal to be output without increasing the number of terminals of the power semiconductor module more than necessary.
US11063411B2

A floor power distribution system that includes a power distribution junction assembly including a first housing configured to abut a floor surface, a pair of receptacle junction assemblies each including a second housing configured to abut the floor surface, and a pair of raceway assemblies each including an elongated raceway including a longitudinally extending channel, a pair of ramps each coextending with the elongated raceway on opposite sides thereof, each ramp including a proximate edge that engages the elongated raceway and having a first thickness, and a distal edge having a second thickness that is less than the first thickness, wherein the elongated raceway and the elongate ramp are configured to be located between the floor surface and a floor covering in an area frequented by foot traffic.
US11063409B2

A gas arrester is disclosed. In an embodiment a gas arrester for data line systems includes a discharge electrode, a plurality of individual electrodes for connection to data lines and a common gas discharge region formed between the individual electrodes and the discharge electrode.
US11063403B2

A solid-state laser device includes an inner container, an outer container, a cooling medium supply unit, and a cover section. The inner container in which a laser medium is accommodated includes an inner light-transmitting unit. An outer light-transmitting unit of the outer container is provided at a part that faces the inner light-transmitting unit and is vacuum-insulated from the inner light-transmitting unit. The cooling medium supply unit supplies a cooling medium so that the cooling medium comes in contact with a surface other than a light input and output surface in the laser medium. The cover section partitions a light-passing area from a cooling medium supply area to which the cooling medium is supplied.
US11063401B2

A device for achieving a mechanical link and optical and/or electrical and/or fluidic transmission between a first element (E1) and a second element (E2), including: a first connection part designed to be fixed to the first element (E1), a first joining member connected optically and/or electrically and/or in fluidic communication with the first element (E1) and mounted on the first connection part, a second connection part designed to be fixed to the second element (E2), and arranged at least in part between the first connection part and the first joining member and defining a ball joint link between the first and second elements, and a second joining member connected optically and/or electrically and/or in fluidic communication with the second element (E2), arranged in the second connection part, the first and second joining members being configured to allow an optical and/or electrical and/or fluidic transmission from one to the other.
US11063398B2

A hub device includes a first member including a first housing and a first circuit board arranged within the first housing, the first circuit board comprising a wireless emitting module; and a second member detachably connected to the first member and including a second housing and a second circuit board arranged within the second housing. The second circuit board includes a wireless receiving module that is used to wirelessly communicate with the wireless emitting module.
US11063395B2

A cable connector disposed at a cable includes a signal protection device, an outer pipe and a transmission member. The signal protection device includes an inner pipe and a signal protection module. The inner pipe is inserted into the outer pipe through an end opening thereof such that a metallic conducting rod of the inner pipe is in the outer pipe. The signal protection module is inserted through another end opening of the outer pipe such that the metallic conducting rod of the inner pipe is penetratingly disposed at the signal protection module. The transmission member is inserted through another end opening of the outer pipe such that a conducting element is electrically connected to the metallic conducting rod of the inner pipe, revealing a transmission element. Therefore, the signal protection device is modularized and miniaturized.
US11063382B2

A bulkhead passthrough connector containing a printed circuit board (PCB) for transferring electrical signals across a bulkhead to an electronic valve actuator, an electronic valve actuator configured to operate and communicate with a valve using a PCB through a bulkhead, the electronic valve actuator, and a method of assembling a bulkhead passthrough connector incorporating a PCB. The embodiments may include a passthrough partition which separates one side of the bulkhead from another. A PCB retainer may also be secured to the passthrough partition. The PCB is attached to the PCB retainer and extends from one side to another side of the bulkhead through the passthrough partition. The PCB further includes electrical paths printed on the PCB and electrical connectors located on both sides of the bulkhead to enable communication with external devices.
US11063371B2

A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. According to the disclosure, an antenna module includes a first substrate layer on which at least one substrate is stacked; an antenna coupled to an upper end surface of the first substrate layer; a second substrate layer having an upper end surface coupled to a lower end surface of the first substrate layer and on which at least one substrate is stacked; and a radio frequency (RF) element coupled to a lower end surface of the second substrate layer.
US11063368B2

An antenna assembly for a level radar for detecting a topology of a filling material surface is provided. For example, the antenna assembly comprises antenna elements which are designed and/or configured to transmit and/or receive the electromagnetic measurement signal. The distances between adjacent elements are non-equidistant with respect to one another, and the minimum distance between two elements can correspond to one half of a wavelength of the electromagnetic measurement signal.
US11063360B2

A facing portion of an antenna is provided with a first capacitance complementary adjusting portion which adjusts variation of a capacitance caused by a first movement of a second facing portion relative to a first facing portion and a second capacitance complementary adjusting portion which adjust variation of the capacitance caused by a second movement of the second facing portion relative to the first facing portion. The first capacitance complementary adjusting portion has a first variable portion and a second variable portion which have mutually opposite effects on the capacitance. The second capacitance complementary adjusting portion has a third variable portion and a fourth variable portion which have mutually opposite effects on the capacitance.
US11063355B2

A novel bi-directional vector modulator to be used as an active phase shifter is proposed. The advantages of the active phase shifter include: 1) Compact size—By active current combining technique, short transmission lines are used to perform signal combining rather than using area-consuming Wilkinson combiner or splitter; 2) High phase resolution and flexibility—phase interpolation can be performed by vector addition through m-path vector modulators; 3) High efficiency—no signal switch loss, only switched matching capacitor; 4) Simplified signal interconnection; 5) No passive combiner needed—eliminate large size and losses in the passive combiner); 6) Can have unequal combining and/or splitting by changing the gain of vector modulator, which is difficult to realize with passive combining and/or splitting network; and 7) Can combine different signals.
US11063353B2

A system utilizes e-fuses in phase shifter elements of a phased array antenna to achieve a desired direction of a beam formed by the phased array antenna. A phase shifter element includes: a transmission line structure comprising a signal line, a ground return line, a capacitance line, and an inductance return line; and at least one e-fuse connected to the transmission line structure, wherein the phase shifter element has a first phase shift when the at least one e-fuse is unbroken and a second phase shift, different from the first phase shift, when the at least one e-fuse is broken.
US11063344B2

The present disclosure includes an antenna and a base station including an antenna. The antenna includes at least one unit cell that includes a flap layer, a feed network, and a patch. The flap layer includes a plurality of flaps. The feed network is positioned below the flap layer and includes a plurality of feed lines. Each of the plurality of feed lines includes an excitation port and a transmission line. The patch has a quadrilateral shape and is positioned above the flap layer such that an air gap is present between the patch and the flap layer.
US11063337B2

Methods, systems, and devices are described for an antenna positioning apparatus, which includes a multiple-assembly positioner for adjusting a positioning angle about a positioning axis. The multiple-assembly positioner has two or more positioning assemblies that are coupled in series between a base structure and a positioning structure. Positioning assemblies can be individually selected based on various criteria, such as cost, complexity, angular range, and other performance, and be configured to work together to provide a desired range of adjustment to the positioning angle while simultaneously meeting precision requirements. In one example, a positioning assembly can include a shaft with an eccentric portion, which is rotated in order to provide the adjustment. A method is described where a first positioning assembly can be actuated to a first initial position, and then held, such that a second positioning assembly can be actuated to provide a selected antenna positioning angle.
US11063335B2

A resonator assembly and method are disclosed. The resonator assembly comprises: a resonant chamber defined by a first wall, a second wall opposing the first wall and side walls extending between the first wall and the second wall; a first resonator comprising a first resonator element and a first resonator cap, the first resonator element having a first grounded end and an first open end, the first resonator element being grounded at the first grounded end on the first wall and extending into the resonant chamber, the first resonator cap having a first grounded portion and an first open portion, the first resonator cap being grounded at the first grounded portion on the second wall and extending into the resonant chamber to at least partially surround the first open end of the first resonator element with the first open portion for electrical field loading of the first resonator element by the first resonator cap; and a second resonator comprising a second resonator element and a second resonator cap located for electrical field loading of the second resonator element by the second resonator cap, the second resonator element being located for magnetic field coupling between the first resonator element and the second resonator element. In this way, a compact resonator assembly is provided having high operational performance. The provision of resonators having resonator elements and resonator caps helps to reduce the height of the resonator assembly to around one eighth of the operating wavelength. The provision of the resonator caps helps to contain the electrical field from the resonator elements, which enables adjacent resonator elements to be located closer together to provide for enhanced magnetic field coupling therebetween.
US11063330B2

A filter which stops the propagation of an electromagnetic wave of a predetermined frequency band in a signal line or a power supply line is provided. This filter is a conductor connected to the signal line or the power supply line. This conductor is configured to include a linear portion. The first portion of the linear portion with an end portion connected to the signal line or the power supply line has the first width, and the second portion different from the first portion of the linear portion has the second width different from the first width.
US11063316B2

A battery module and a battery pack are disclosed. The battery module includes a module frame having a top plate and a bottom plate vertically spaced apart from each other at a predetermined interval and disposed to face each other, and at least one barrier configured to vertically partition a space between the top and bottom plates; two or more battery submodules arranged inside the module frame in a matrix form with the at least one barrier being interposed therebetween; and a left side plate and a right side plate configured to cover a left side and a right side of the module frame and a front cover and a rear cover configured to cover a front side and a rear side of the module frame.
US11063314B2

A manufacturing method includes the steps of: preparing a battery case having an opening; fabricating an assembly by inserting a wound electrode body and a lid which includes a terminal connected to the wound electrode body and which closes the opening into the battery case; sandwiching the battery case by a pressing jig in a state where the opening faces downward to close a gap between the battery case and the lid; disposing the assembly so that the terminal faces upward by inverting the assembly in a state where the battery case is sandwiched by the pressing jig; and welding the lid and the battery case to each other in a state where the terminal faces upward and the battery case is sandwiched by the pressing jig.
US11063296B2

The present invention relates to a non-aqueous electrolyte solution additive, and a non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery which comprise the same, wherein, specifically, since the non-aqueous electrolyte solution, which comprises a compound capable of maintaining a passive effect by increasing an effect of forming a solid electrolyte interface (SEI) on surfaces of a positive electrode and a negative electrode, is provided, high-temperature storage characteristics and life characteristics of the lithium secondary battery may be improved.
US11063292B2

A composite electrolyte structure includes: a protective layer having a Young's modulus of about 106 pascals or greater and including a first particle, the first particle including an organic particle, an inorganic particle, an organic-inorganic particle, or a combination thereof, wherein the particle in the protective layer has a particle size of greater than 1 micrometer to about 100 micrometers, and a solid electrolyte layer including a second particle including an organic particle, an inorganic particle, an organic-inorganic particle, or a combination thereof, wherein the second particle has a particle size of greater than 1 micrometer to about 100 micrometers, wherein the first particle and the second particle are the same or different, and wherein the protective layer is on the solid electrolyte layer.
US11063289B2

A method of treatment of a sample of lithium titanium thiophosphate LiTi2(PS4)3 including: (a) providing a solid sample of lithium titanium thiophosphate LiTi2(PS4)3, (b) compressing the lithium titanium thiophosphate sample provided in step (a) to form a compressed powder layer; and (c) sintering the lithium titanium thiophosphate obtained as a compressed powder layer in step (b) at a temperature of at least 200° C. and at most 400° C.
US11063283B2

A fuel cell system and method of operating, the system including a fuel cell stack configured to generate electricity and anode exhaust, a mixer configured to mix fuel received from a fuel source with steam and the anode exhaust, a low-temperature pre-reformer configured to at least partially reform fuel received from the mixer at a temperature of less than about 420° C., and an anode recuperator configured to heat fuel received from the low-temperature pre-reformer using the anode exhaust and to provide the fuel to the fuel cell stack.
US11063281B2

The invention relates to a fuel cell system (1) suitable for operation with a cathode operating gas containing oxygen and inert gas and an anode operating gas containing hydrogen and inert gas; an appliance system operated by means of the fuel cell system (1); and a method for operating the fuel cell system (1). In the method according to the invention, the single components of the operating gases are stored separately, and mixed to the required portions during operation of the fuel cell system, thereby constantly recirculating the inert portion of the operating gases. During operation of the fuel cell system, gases are neither taken in from the environment nor released into the environment nor are fuel cell exhaust gases stored in the fuel cell system or the appliance system. In an alternative variation, only the anode operating gas is mixed and recirculated, while the cathode operating gas and the cathode exhaust gas are taken from the environment and released into the environment, respectively.
US11063269B2

A power generation cell includes a resin film equipped MEA and a first metal separator. The first metal separator includes an oxygen-containing gas flow field, an outer peripheral bead, and a first bypass stopping convex portion. An oxygen-containing gas flows across the oxygen-containing gas flow field along an electrode surface. The outer peripheral bead surrounds the oxygen-containing gas flow field to prevent leakage of a reactant gas. The first bypass stopping convex portion extends from the outer peripheral bead. A corner of a cathode on at least one end in the flow field direction of the oxygen-containing gas flow field is overlapped with an apex portion of the first bypass stopping convex portion.
US11063266B2

A connector is moved obliquely to a first separator. An optical distance measuring device is used to optically measure an attachment position of the connector while using the first separator as a reference. A reference plane of the first separator is used as a reference. An inspection plane of the connector is also used as a reference. The inspection plane is formed to be parallel to the reference plane in the state that the connector is accurately attached to an attachment portion.
US11063261B2

Provided are an electrode capable of maintaining electrical conductivity during elongation and shrinkage, a method for manufacturing the same, and electrochemical device including the same.
US11063246B2

Provided are a manufacturing method of an organic light emitting diode back plate and the organic light emitting diode back plate. In the manufacturing method of an OLED back plate, pixel openings and light blocking grooves correspondingly above active layers are formed in a pixel definition layer. Then, OLED light-emitting functional layers are formed in the pixel openings and the black light shielding blocks completely covering the active layers are formed in the light shielding grooves by ink jet printing, thereby effectively preventing the TFT elements from being affected by the illumination and ensuring the characteristics of the TFT elements. The structure is simple and the production cost is low.
US11063242B2

An organic light-emitting display apparatus including a substrate; a display unit which defines an active area of the substrate and includes a thin film transistor; concave-convex portions protruded from the substrate in an area outside the active area; and an encapsulation layer which encapsulates the display unit. The thin film transistor includes an active layer, a gate insulating layer on the active layer, a gate electrode, a source electrode, a drain electrode, and an interlayer insulating layer between the gate electrode and the source electrode, and between the gate electrode and the drain electrode. The concave-convex portions include portions of the gate insulating layer and the interlayer insulating layer, and the encapsulation layer covers the concave-convex portions.
US11063240B2

A display device includes a display substrate including at least one step portion, and a thin film encapsulation layer above the display substrate, the thin film encapsulation layer including a buffer layer configured to reduce a height difference due to the at least one step portion and a barrier layer above the buffer layer, the buffer layer including a plurality of sub-layers and interfaces between the plurality of sub-layers, and the interfaces including a curved surface changing from a concave shape to a convex shape toward a portion overlapping the step portion from an outer portion of the step portion.
US11063235B2

A display panel and a manufacturing thereof, including a substrate, a pixel defining layer, an auxiliary electrode layer, an electron transport layer, a cathode layer, an organic layer, and a metal layer. The pixel defining layer includes a plurality of pixel openings. The auxiliary electrode layer includes a first auxiliary electrode sublayer and a second auxiliary electrode sublayer sequentially disposed on the pixel defining layer. The first auxiliary electrode sublayer is provided with a groove portion. The metal layer is disposed between the second auxiliary electrode sublayer and the cathode layer and corresponding to the groove portion.
US11063231B2

An electroluminescent device including an anode and a cathode facing each other, an emission layer disposed between the anode and the cathode, the emission layer including quantum dots, a hole auxiliary layer disposed between the emission layer and the anode and an electron auxiliary layer disposed between the emission layer and the cathode, wherein the electroluminescent device is configured such that electrons are dominant in the emission layer and a logarithmic value (log (HT/ET)) of a hole transport capability (HT) relative to an electron transport capability (ET) is less than or equal to about −1, or the electroluminescent device is configured such that holes are dominant in the emission layer and the logarithmic log value (log (HT/ET)) of the hole transport capability (HT) relative to the electron transport capability (ET) is greater than or equal to about 0.5.
US11063230B2

Disclosed is a flexible display apparatus in which torsion prevention lines are disposed so as to prevent cracks and to detect fine cracks. The flexible display apparatus includes a flexible substrate including an active area and an inactive area, the inactive area including a first inactive area, a second inactive area provided with a circuit board disposed therein, and a bending area located between the first inactive area and the second inactive area, and torsion prevention lines disposed in a direction vertical to a length direction of the flexible substrate, in a region of the bending area of the flexible substrate, adjacent to the first inactive area, and fine crack detection lines disposed in parallel between a plurality of signal lines formed in the length direction of the flexible substrate, in the region of the bending area of the flexible substrate, adjacent to the first inactive area.
US11063220B2

An organic light-emitting device includes an emission layer and an electron transport layer. The emission layer includes at least one compound represented one of Formula 1, Formula 2 and/or Formula 3. The electron transport layer includes at least one compound represented by Formula 4 and/or Formula 5. An organic light-emitting device including the emission layer and the electron transport layer has high emission efficiency and an improved lifetime.
US11063219B2

An object is to provide an organic photoelectric conversion element having high durability. The present invention provides an organic photoelectric conversion element having an active layer between a cathode and an anode, characterized in that, the organic photoelectric conversion element includes a layer including a cured product obtained by curing a thermosetting resin composition between the anode and the active layer, and a transmittance of light with a wavelength of 380 nm to 780 nm is 10% or higher. The present invention provides the organic photoelectric conversion element in which the thermosetting resin composition includes one or more selected from the group consisting of polythiophene and derivatives thereof and a polymer compound including a repeating unit having an aromatic amine residue.
US11063218B2

A method of fabricating a memory device includes forming word lines and cell stacks with gaps between the cell stacks, forming a lower gap-fill insulator in the gaps, forming an upper gap-fill insulator on the lower gap-fill insulator, curing the lower gap-fill insulator and the upper gap-fill insulator to form a gap-fill insulator, and forming bit lines on the cell stacks and the gap-fill insulator. The lower gap-fill process may be performed using a first source gas that includes first and second precursors, and the upper gap-fill process may be performed using a second source gas that includes the first and second precursors, a volume ratio of the first precursor to the second precursor in the first source gas may be greater than 15:1, and a volume ratio of the first precursor to the second precursor in the second source gas may be less than 15:1.
US11063204B2

A method of manufacture for an acoustic resonator device. The method can include forming a topside metal electrode overlying a piezoelectric substrate with a piezoelectric layer and a seed substrate. A topside micro-trench can be formed within the piezoelectric layer and a topside metal can be formed overlying the topside micro-trench. This topside metal can include a topside metal plug formed within the topside micro-trench. A first backside trench can be formed underlying the topside metal electrode, and a second backside trench can be formed underlying the topside micro-trench. A backside metal electrode can be formed within the first backside trench, while a backside metal plug can be formed within the second backside trench and electrically coupled to the topside metal plug and the backside metal electrode. The topside micro-trench, the topside metal plug, the second backside trench, and the backside metal plug form a micro-via.
US11063199B2

A system and method are disclosed for internally heated concentrated solar power (CSP) thermal absorbers. The system and method involve an energy-generating device having at least one heating unit. At least one heating unit preheats the energy-generating device in order to expedite the startup time of the energy-generating device, thereby allowing for an increase in efficiency for the production of energy. In some embodiments, the energy-generating device is a CSP thermal absorber. The CSP thermal absorber comprises a housing, a thermal barrier, a light-transparent reservoir containing a liquid alkali metal, at least one alkali metal thermal-to-electric converter (AMTEC) cell, an artery return channel, and at least one heating unit. Each heating unit comprises a heating device and a metal fin. The metal fin is submerged into the liquid alkali metal, thereby allowing the heating device to heat the liquid alkali metal via the fin.
US11063191B2

A phosphor carrier assembly includes a substrate, a thermal or UV activated release adhesive, a layer containing a pixelated phosphor array, and a partially cured or highly viscous adhesive. The phosphor pixels on the carrier are typically all of the same color. In formation of a phosphor converted LED array the phosphor pixels on the carrier assembly are aligned with and placed in contact with corresponding LED pixels in an array of pixelated LED dice. Selected phosphor pixels on the carrier assembly may then be attached to corresponding LED pixels, and released from the substrate, by powering (activating) the corresponding LED pixels to heat the selected phosphor pixel to a temperature that releases the thermal release adhesive and that cures or partially cures the adhesive on the selected phosphor pixels in contact with the corresponding LED pixels.
US11063186B2

A method for producing an optical wavelength conversion member (9) composed of a sintered body containing, as main components, Al2O3 and a component represented by formula A3B5O12:Ce; an optical wavelength conversion member; an optical wavelength conversion component including the optical wavelength conversion member; and a light-emitting device including the optical wavelength conversion member or the optical wavelength conversion component. The production method of the sintered body includes firing in a firing atmosphere having a pressure of 104 Pa or more and an oxygen concentration of 0.8 vol. % or more and less than 25 vol. %.
US11063185B2

A light emitting diode with a zinc oxide layer and a method of fabricating the same are disclosed. The light emitting diode includes: a light emitting structure including a gallium nitride based first conductivity type semiconductor layer, a gallium nitride based second conductivity type semiconductor layer, and an active layer interposed therebetween; and a ZnO transparent electrode layer disposed on the second conductivity type semiconductor layer, wherein the ZnO transparent electrode layer comprises a ZnO seed layer and a ZnO bulk layer formed on the ZnO seed layer, wherein the ZnO bulk layer is porous compared to the ZnO seed layer, wherein an interface between the ZnO seed layer and the second conductivity type semiconductor layer is flatter than an interface between the ZnO seed layer and the ZnO bulk layer, and wherein the interface between the ZnO seed layer and the ZnO bulk layer has an irregular concavo-convex shape.
US11063183B2

A light emitting element includes a semiconductor layer which is in a planar shape of a polygon at least of a pentagon, a second electrode provided on the semiconductor layer, and a first electrode provided on the semiconductor layer and having a first pad portion, a first extension portion that extends from the first pad portion along an imaginary circle to which the first pad portion is tangent on the inside and whose center is at the same location as center of gravity of the polygon shape, and a second extension portion that extends along the imaginary circle from the first pad portion on the opposite side from the first extension portion.
US11063182B2

An optoelectronic component includes first and second semiconductor layers and an active layer that generates electromagnetic radiation, wherein the active layer is disposed between the first and second semiconductor layers, a recess in the first semiconductor layer, a front side provided for coupling out the electromagnetic radiation, a first electrical connection layer and a second electrical connection layer disposed on a rear side opposite the front side, wherein the first electrical connection layer is arranged at least partially in the recess, and a contact zone with a dopant of a second conductivity type different from the first conductivity type, wherein the contact zone adjoins the recess, and the first semiconductor layer and the second semiconductor layer are highly doped to prevent diffusion of the dopant from the contact zone into the first semiconductor layer and diffusion of the dopant from the contact zone into the second semiconductor layer.
US11063181B2

A patterned epitaxial substrate includes a substrate and a plurality of patterns. The substrate has a first zone and a second zone surrounding the first zone. The first zone and the second zone are disposed in a concentric manner. The patterns and the substrate are integrally formed, and the patterns are disposed on the substrate. The patterns include a plurality of first patterns and a plurality of second patterns. The first patterns are disposed in the first zone. The second patterns are disposed in the second zone. Sizes of the first patterns are different from sizes of the second patterns.
US11063180B2

A support structure for a light-emitting diode utilizes the configuration of a sacrifice structure to achieve safe separation of a light-emitting diode from a carrier substrate. Specifically, when an external force is applied on the light-emitting diode or the carrier substrate, a breaking layer of the sacrifice structure is the first layer to be broken, so that the light-emitting diode and carrier substrate will become separated from each other.
US11063179B2

Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.
US11063175B2

A substrate for displays including a base, a plurality of first interconnects disposed on the base, a plurality of second interconnects disposed on the base to intersect with the first interconnects, and a plurality of sub-pixels disposed on the base and including one or more of the first and second interconnects, each of the sub-pixels including at least one interconnect extension protruding from at least one side of the second interconnect, first and second mounting portions formed between the at least one interconnect extension and the first interconnect, and a light emitting diode mounted on the first mounting portion, in which the second mounting portion is configured to mount another light emitting diode thereon.
US11063166B2

A solar device includes a first string of first solar wafers, wherein a plurality of the first solar wafers each overlap with at least one vertically adjacent solar wafer from the first string. Additionally, the solar device includes a second string of second solar wafers, wherein a plurality of the second solar wafers each overlap with at least one vertically adjacent solar wafer from the second string, wherein a plurality of the first solar wafers overlap with one or more of the plurality of second solar wafers to electrically connect horizontally adjacent solar wafers in parallel.
US11063163B1

An infrared detector and a method for manufacturing it are disclosed. The infrared photo-detector contains a photo absorber layer responsive to infrared light, a first barrier layer disposed on the absorber layer, wherein the first barrier layer substantially comprises AlSb, a second barrier layer disposed on the first barrier layer, wherein the second barrier layer substantially comprises AlxGa1-xSb and a contact layer disposed on the second barrier layer.
US11063154B2

The invention allows stable fabrication of a TFT circuit board used in a display device and having thereon an oxide semiconductor TFT. A TFT circuit board includes a TFT that includes an oxide semiconductor. The TFT has a gate insulating film formed on part of the oxide semiconductor and a gate electrode formed on the gate insulating film. A portion of the oxide semiconductor that is covered with the gate electrode 104 and a portion of the oxide semiconductor that is not covered with the gate electrode are both covered with a first interlayer insulating film. The first interlayer insulating film is covered with a first film 106, and the first film is covered with a first AlO film.
US11063152B2

A semiconductor device including a source/drain region having a V-shaped bottom surface and extending below gate spacers adjacent a gate stack and a method of forming the same are disclosed. In an embodiment, a method includes forming a gate stack over a fin; forming a gate spacer on a sidewall of the gate stack; etching the fin with a first anisotropic etch process to form a first recess adjacent the gate spacer; etching the fin with a second etch process using etchants different from the first etch process to remove an etching residue from the first recess; etching surfaces of the first recess with a third anisotropic etch process using etchants different from the first etch process to form a second recess extending below the gate spacer and having a V-shaped bottom surface; and epitaxially forming a source/drain region in the second recess.
US11063144B2

A semiconductor component includes a SiC semiconductor body. A drift zone of a first conductivity type and a semiconductor region are formed in the SiC semiconductor body. Barrier structures extending from the semiconductor region into the drift zone differ from the gate structures.
US11063143B2

A method of manufacturing an insulated-gate semiconductor device includes: digging a dummy trench and digging a gate trench so as to have a U-like shape in a planar pattern to surround the dummy trench into the U-like shape; forming a dummy electrode and a gate electrode in the dummy trench and the gate trench via a gate insulating film; forming a projection for testing connected to the dummy electrode via an opening of the U-like shape and a wiring layer for testing; and testing an insulating property of the gate insulating film in the dummy trench by applying a voltage between the wiring layer for testing and a charge transport region.
US11063139B2

Structures for a heterojunction bipolar transistor and methods of forming a structure for a heterojunction bipolar transistor. A collector layer includes an inclined side surface, and a dielectric layer is positioned in a lateral direction adjacent to the inclined side surface of the collector layer. An intrinsic base is disposed over the collector layer, and an emitter is disposed over the intrinsic base. An airgap is positioned between the dielectric layer and the inclined side surface of the collector layer in the lateral direction, and an extrinsic base is positioned in the lateral direction adjacent to the intrinsic base. The extrinsic base is positioned over the airgap.
US11063136B2

A semiconductor device structure and fabrication method thereof are disclosed. The method may include providing a substrate; forming a gate structure on the substrate; forming a spacer structure on the gate structure, and forming a contacting conductive structure on the spacer structure. The spacer structure may cover a side wall of the gate structure, and may include a first spacer layer having a first dielectric constant and a second spacer layer having a second dielectric constant different from the first dielectric constant. The contacting conductive structure may cover a side wall of the spacer structure that is defined by a first side surface of the first spacer layer and a second side surface of the second space. The ratio of the area of the second side surface of the second spacer layer to the total area of the side wall of the spacer structure may be in a range from 78% to 98%.
US11063123B2

At an upper surface of a gate electrode, a recess occurs due to etching back of poly-silicon for forming the gate electrode. At an upper surface of an interlayer insulating film, a recess occurs in a portion that opposes in a depth direction, the recess of the upper surface of the gate electrode. A barrier metal includes sequentially stacked first to fourth metal films. The first metal film is a titanium nitride film that covers the surface of the interlayer insulating film and has an opening that exposes the recess of the upper surface of the interlayer insulating film. The second metal film is a titanium film that covers the first metal film and the source electrode, and is in contact with the interlayer insulating film, in the opening of the first metal film. The third and fourth metal films are a titanium nitride film and a titanium film, respectively.
US11063116B2

A RESURF isolation structure surrounds an outer periphery of the high-side circuit region to isolate the high-side circuit region and the low-side circuit region from each other. The RESURF isolation structure includes a high-voltage isolation region, a high-voltage N-ch MOS, and a high-voltage P-ch MOS. The high-voltage isolation region, the high-voltage N-ch MOS, and the high-voltage P-ch MOS include a plurality of field plates (9,19a,19b,19c). An inner end of the field plate (19c) of the high-voltage P-ch MOS located closest to the low-side circuit region is positioned closer to the low-side circuit region than an inner end of the field plate (19b) of the high-voltage N-ch MOS located closest to the low-side circuit region.
US11063109B2

A display unit includes a first substrate, a transistor, first and second wiring layers, and an insulating film. The first substrate is provided with a display region and a peripheral region. The transistor is provided in the display region, and includes a semiconductor layer, a gate electrode facing the semiconductor layer, a gate insulating film between the gate electrode and the semiconductor layer, and a source-drain electrode electrically coupled to the semiconductor layer. The first wiring layer is provided in the peripheral region, electrically coupled to the transistor, and disposed closer to the first substrate than the same layer as the gate electrode and the source-drain electrode. The second wiring layer is provided on the first substrate and has an electric potential different from the first wiring layer. The insulating film is provided between the second wiring layer and the first wiring layer.
US11063108B2

An organic light emitting diode array substrate and an electronic device. The organic light emitting diode array substrate includes a display region, and a first package test electrode and a first package test lead which are outside the display region. The display region includes a first power supply line and a first signal line; the first package test lead is configured to connect the first package test electrode with the first power supply line to provide a first supply voltage for the display region; the first signal line is configured to provide a first electrical signal for the display region; and a thermal conductivity of the first package test lead is higher than a thermal conductivity of the first signal line.
US11063102B2

The present invention provides a TFT that has a channel length particularly longer than that of an existing one, specifically, several tens to several hundreds times longer than that of the existing one, and thereby allowing turning to an on-state at a gate voltage particularly higher than the existing one and driving, and allowing having a low channel conductance gd. According to the present invention, not only the simple dispersion of on-current but also the normalized dispersion thereof can be reduced, and other than the reduction of the dispersion between the individual TFTs, the dispersion of the OLEDs themselves and the dispersion due to the deterioration of the OLED can be reduced.
US11063100B2

A display device is disclosed, which may prevent an inorganic film formed in an organic film open area from being damaged and prevent a cathode electrode from being shorted. The display device includes a substrate including a display area on which pixels area arranged, and a non-display area surrounding the display area; a first metal layer formed in the non-display area of the substrate; at least one insulating film arranged on the first metal layer; a second metal layer arranged on the at least one insulating film and connected with the first metal layer through a contact hole that passes through the at least one insulating film formed in the non-display area; a cover layer arranged on the contact hole and formed to overlap the contact hole; and an encapsulation film formed to cover the display area and the cover layer.
US11063095B2

The present application discloses an array substrate having a subpixel region and an inter-subpixel region. The array substrate includes a base substrate; a thin film transistor on the base substrate and including a drain electrode; a passivation layer on a side of the thin film transistor distal to the base substrate; a pixel electrode layer on a side of the passivation layer distal to the base substrate; a pixel definition layer in the inter-subpixel region; and an organic light emitting layer in the subpixel region on a side of the pixel electrode layer distal to the passivation layer. The array substrate includes a via extending through the passivation layer. The pixel electrode layer is electrically connected to the drain electrode of the thin film transistor through the via. The via is in the subpixel region.
US11063094B2

A highly reliable display device. A first flexible substrate and a second flexible substrate overlap each other with a display element positioned therebetween. Side surfaces of at least one of the first substrate and the second substrate which overlap each other are covered with a high molecular material having a light-transmitting property. The high molecular material is more flexible than the first substrate and the second substrate.
US11063093B2

An organic light emitting diode display device includes a substrate, a buffer layer, a first circuit structure, a sub-pixel structure, and a first signal wire. The substrate includes a display region including a plurality of sub-pixel regions and a peripheral region surrounding the display region. The buffer layer is disposed in the display region and peripheral region on the substrate. The first circuit structure is disposed in the peripheral region on the buffer layer. The sub-pixel structure is disposed in each of the sub-pixel regions on the first circuit structure. The first signal wire is disposed in the peripheral region between the substrate and the buffer layer, and overlaps the first circuit structure when viewed from a plan view in a thickness direction of the substrate.
US11063080B2

An image sensor is disclosed. The image sensor includes an epitaxial layer, a plurality of plug structures and an interconnect structure. Wherein the plurality of plug structures are formed in the epitaxial layer, and each plug structure has doped sidewalls, the epitaxial layer and the doped sidewalk form a plurality of photodiodes, the plurality of plug structures are used to separate adjacent photodiodes, and the epitaxial layer and the doped sidewalls are coupled to the interconnect structure via the plug structures. An associated method of fabricating the image sensor is also disclosed. The method includes: providing a substrate having a first-type doped epitaxial substrate layer on a second-type doped epitaxial substrate layer; forming a plurality of isolation trenches in the first-type doped epitaxial substrate layer; forming a second-type doped region along sidewalk and bottoms of the plurality of isolation trenches; and filling the plurality of isolation trenches by depositing metal.
US11063078B2

Implementations of semiconductor packages may include: a semiconductor die having a first side and a second side. A first side of an optically transmissive lid may be coupled to the second side of the semiconductor die through one or more dams. The packages may also include a light block material around the semiconductor package extending from the first side of the semiconductor die to a second side of the optically transmissive lid. The package may include an opening in the light block material on the second side of the optically transmissive lid that substantially corresponds with an active area of the semiconductor die.
US11063073B2

A method of fabricating a curved focal plane array (FPA) includes forming an epitaxial layer including a semiconductor on a release layer. The release layer includes a two-dimensional (2D) material and is disposed on a first substrate. The method also includes forming a metal layer on the epitaxial layer and transferring the epitaxial layer and the metal layer to a second substrate including an elastomer. The method also includes fabricating a plurality of photodetectors from the epitaxial layer and bending the second substrate to form the curved FPA.
US11063070B2

A method of fabricating a substrate is provided. The method of fabricating the substrate includes forming a first conductive pattern; forming a first insulating layer, and forming a first blind hole in the first insulating layer; forming a conductive film layer, and removing at least a portion of the conductive film layer in the first blind hole; thinning a portion of the first insulating layer at a bottom of the first blind hole to form a second blind hole; forming an intermediate insulating layer, and forming a second via hole in the intermediate insulating layer; removing the portion of the first insulating layer and forming a first via hole in the first insulating pattern layer; and forming a second conductive pattern. The second conductive pattern directly contacts the first conductive pattern through the first via hole and the second via hole and insulates from the intermediate conductive pattern.
US11063062B2

In one embodiment, a semiconductor device includes a first chip and a second chip. The first chip includes a first substrate, a control circuit provided on the first substrate, and a first pad provided above the control circuit and electrically connected to the control circuit. The second chip includes a second pad provided on the first pad, a plug provided above the second pad, extending in a first direction, and including a portion that decreases in diameter in a cross-section perpendicular to the first direction with increasing distance from the first substrate, and a bonding pad provided on the plug, intersecting with the first direction, and electrically connected to the second pad by the plug.
US11063059B2

Semiconductor structures may include a stack of alternating dielectric materials and control gates, charge storage structures laterally adjacent to the control gates, a charge block material between each of the charge storage structures and the laterally adjacent control gates, and a pillar extending through the stack of alternating oxide materials and control gates. Each of the dielectric materials in the stack has at least two portions of different densities and/or different rates of removal. Also disclosed are methods of fabricating such semiconductor structures.
US11063057B2

A three-dimensional semiconductor memory device includes a substrate, an electrode structure including a plurality of gate electrodes sequentially stacked on the substrate in a first direction that extends perpendicular to an upper surface of the substrate, a source conductive pattern between the substrate and the electrode structure, a vertical semiconductor pattern penetrating the electrode structure and the source conductive pattern, and a data storage pattern extending in the first direction between the vertical semiconductor pattern and the electrode structure. A lower surface of the data storage pattern contacts the source conductive pattern. A portion of the lower surface of the data storage pattern is at a different height from the upper surface of the substrate, in relation to a height of another portion of the lower surface of the data storage pattern from the upper surface of the substrate.
US11063050B2

The present application discloses a semiconductor device and a method for fabricating the semiconductor device. The semiconductor device includes a substrate, a plurality of plugs positioned above the substrate, a plurality of air gaps positioned adjacent to the plurality of plugs, and a plurality of capacitor structures positioned above the substrate.
US11063048B2

Multi-port semiconductor memory cells including a common floating body region configured to be charged to a level indicative of a memory state of the memory cell. The multi-port semiconductor memory cells include a plurality of gates and conductive regions interfacing with said floating body region. Arrays of memory cells and method of operating said memory arrays are disclosed for making a memory device.
US11063047B2

A semiconductor device with a large storage capacity per unit area is provided. The disclosed semiconductor device includes a plurality of gain-cell memory cells each stacked over a substrate. Axes of channel length directions of write transistors of memory cells correspond to each other, and are substantially perpendicular to the top surface of the substrate. The semiconductor device can retain multi-level data. The channel of read transistors is columnar silicon (embedded in a hole penetrating gates of the read transistors). The channel of write transistors is columnar metal oxide (embedded in a hole penetrating the gates of the read transistors and gates, or write word lines, of the write transistors). The columnar silicon faces the gate of the read transistor with an insulating film therebetween. The columnar metal oxide faces the write word line with an insulating film, which is obtained by oxidizing the write word line, therebetween, and is electrically connected to the gate of the read transistor.
US11063044B2

The present disclosure relates to a method of forming an integrated chip. The method includes forming an isolation structure within a substrate. The isolation structure surrounds a device region of the substrate. A sacrificial gate material is formed over the isolation structure and the device region of the substrate. A part of the sacrificial gate material is removed and a second metal is deposited where the part of the sacrificial gate material was removed. A remainder of the sacrificial gate material is subsequently removed and a first metal is deposited where the remainder of the sacrificial gate material was removed. The first metal is different than the second metal.
US11063038B2

A three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, a first IC die comprises a first bonding structure and a first interconnect structure over a first semiconductor substrate. A second IC die is disposed over the first IC die and comprises a second bonding structure and a second interconnect structure over a second semiconductor substrate. A seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate. A plurality of through silicon via (TSV) coupling structures is arranged in the peripheral region of the 3D IC along an inner perimeter of the seal-ring structure and closer to the 3D IC than the seal-ring structure. The plurality of TSV coupling structures respectively comprises a TSV disposed in the second semiconductor substrate and electrically coupling to the 3D IC through a stack of TSV wiring layers and inter-wire vias.
US11063035B2

An ESD protection circuit includes a first fin structure having fins of a first conductivity type and a second fin structure having fins of a second conductivity type, the second fin structure being opposed to the first fin structure. A first power interconnect connected with the first fin structure and a signal interconnect connected with the second fin structure are formed in a first interconnect layer, and a second power interconnect connected with the first power interconnect is formed in a second interconnect layer. The width occupied by the second fin structure is greater than that of the first fin structure, and the width of the signal interconnect is greater than that of the first power interconnect.
US11063030B2

A display device includes a plurality of scan lines and a plurality of data lines; and a plurality of pixels connected with the scan lines and the data lines, wherein at least one pixel of the plurality of pixels includes a pixel circuit having at least one transistor, an insulating layer covering the pixel circuit, a first electrode disposed on the insulating layer and electrically connected to the pixel circuit, a second electrode disposed on the insulating layer and spaced apart from the first electrode, and a light-emitting element electrically connected to the first electrode and the second electrode. The first electrode includes a first region having at least one first resistance and a plurality of second regions having a second resistance higher than the first resistance, the second electrode includes a third region having at least one third resistance and a plurality of fourth regions having a fourth resistance higher than the third resistance, and the light-emitting element is electrically connected to the first electrode at one of the first regions and the second electrode at one of the third regions.
US11063029B2

An optoelectronic device includes an optical integrated circuit having a first surface and a second surface opposite the first surface. The optical integrated circuit has an optical zone of the first surface of the optical integrated circuit. The device includes an electrically insulating material disposed over the optical integrated circuit, where he electrically insulating material partially covers the first surface so as to expose the optical zone.
US11063026B2

A method of manufacturing a display module is provided. The method may include providing a substrate including a pixel region on which a plurality of electrodes are disposed and a peripheral region that is a region other than the pixel region on the substrate; forming an adhesive layer on the pixel region of the substrate; transferring a plurality of micro light emitting diodes (LEDs) onto the adhesive layer; pre-curing the adhesive layer to shift the adhesive layer on the pixel region to the peripheral region; and bonding the plurality of micro LEDs to the plurality of electrodes.
US11063013B2

A semiconductor package structure includes a first semiconductor die having an active surface and a passive surface opposite to the active surface, a conductive element leveled with the first semiconductor die, a first redistribution layer (RDL) being closer to the passive surface than to the active surface, a second RDL being closer to the active surface than to the passive surface, and a second semiconductor die over the second RDL and electrically coupled to the first semiconductor die through the second RDL. A first conductive path is established among the first RDL, the conductive element, the second RDL, and the active surface of the first semiconductor die.
US11063010B2

Provided is a redistribution layer (RDL) structure including a substrate, a pad, a dielectric layer, a self-aligned structure, a conductive layer, and a conductive connector. The pad is disposed on the substrate. The dielectric layer is disposed on the substrate and exposes a portion of the pad. The self-aligned structure is disposed on the dielectric layer. The conductive layer extends from the pad to conformally cover a surface of the self-aligned structure. The conductive connector is disposed on the self-aligned structure. A method of manufacturing the RDL structure is also provided.
US11063003B2

The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor wafer, a plurality of semiconductor chips, and a plurality of first protection dams. The semiconductor wafer has a plurality of functional regions separated by a plurality of vertical streets and a plurality of horizontal streets. The semiconductor chips are mounted on the functional regions, respectively. The first protection dams are disposed on the vertical streets and the horizontal streets and spaced from the semiconductor chips. A height of the first protection dam is not less than a height of the semiconductor chip.
US11062998B2

A semiconductor package includes dies, a redistribution structure, a conductive structure and connectors. The conductive plate is electrically connected to contact pads of at least two dies and is disposed on redistribution structure. The conductive structure includes a conductive plate and a solder cover, and the conductive structure extend over the at least two dies. The connectors are disposed on the redistribution structure, and at least one connector includes a conductive pillar. The conductive plate is at same level height as conductive pillar. The vertical projection of the conductive plate falls on spans of the at least two dies.
US11062997B2

A method for forming a chip package structure is provided. The method includes forming a conductive pillar over a redistribution structure. The method includes bonding a chip to the redistribution structure. The method includes forming a molding layer over the redistribution structure. The molding layer surrounds the conductive pillar and the chip, and the conductive pillar passes through the molding layer. The method includes forming a cap layer over the molding layer and the conductive pillar. The cap layer has a through hole exposing the conductive pillar, and the cap layer includes fibers. The method includes forming a conductive via structure in the through hole. The conductive via structure is connected to the conductive pillar.
US11062981B2

A bidirectional switch includes: a first lateral transistor including a first semiconductor layer on the surface of a first conductive layer; a second lateral transistor including a second semiconductor layer on the surface of a second conductive layer; a connection member; a first conductor member; and a second conductor member. The connection member connects the first lateral transistor and the second lateral transistor together in anti-series. The first conductor member electrically connects the first source electrode of the first lateral transistor to the first conductive layer. The second conductor member electrically connects the second source electrode of the second lateral transistor to the second conductive layer.
US11062977B2

Various embodiments of the present application are directed towards an integrated circuit (IC) in which a shield structure blocks the migration of charge to a semiconductor device from proximate a through substrate via (TSV). In some embodiments, the IC comprises a substrate, an interconnect structure, the semiconductor device, the TSV, and the shield structure. The interconnect structure is on a frontside of the substrate and comprises a wire. The semiconductor device is on the frontside of the substrate, between the substrate and the interconnect structure. The TSV extends completely through the substrate, from a backside of the substrate to the wire, and comprises metal. The shield structure comprises a PN junction extending completely through the substrate and directly between the semiconductor device and the TSV.
US11062976B2

An exemplary assembly includes a top circuit substrate; a bottom circuit assembly that underlays the top circuit substrate and is attached to the top circuit substrate by an adhesive layer as a stiffener, the adhesive layer, and a plurality of conductive balls. The top circuit substrate includes a plurality of upper vias that extend through the top circuit substrate. The bottom circuit assembly includes a plurality of lower vias that extend through the bottom circuit assembly. The adhesive layer includes internal connections that electrically connect the upper vias to the lower vias. The conductive balls are housed in the lower vias. The bottom circuit assembly has an elastic modulus at least six times the elastic modulus of the top circuit substrate, and has a coefficient of thermal expansion at least two times the coefficient of thermal expansion of the top circuit substrate.
US11062975B2

Package structures and methods of forming the same are disclosed. The package structure includes a package, a device and a screw. The package includes a plurality of dies, an encapsulant encapsulating the plurality of dies, and a redistribution structure over the plurality of dies and the encapsulant. The device is disposed over the package, wherein the dies and the encapsulant are disposed between the device and the redistribution structure. The screw penetrates through the package and the device.
US11062974B2

A bonded body of the present invention includes a ceramic member formed of ceramics and a Cu member formed of Cu or a Cu alloy. In a bonded interface between the ceramic member and the Cu member, a Cu—Sn layer which is positioned on the ceramic member side and in which Sn forms a solid solution in Cu, a first intermetallic compound layer which is positioned on the Cu member side and contains Cu and Ti, and a second intermetallic compound layer which is positioned between the first intermetallic compound layer and the Cu—Sn layer and contains P and Ti are formed.
US11062969B2

A wafer level chip scale package (WLCSP) structure and a manufacturing method are disclosed. The WLCSP structure comprises a semiconductor die and a stack. The stack comprises a protective tape and a molding compound. A portion of a first interface surface between the molding compound and the protective tape is curved. The manufacturing method comprises the steps of forming a semiconductor structure; attaching the semiconductor structure on a dummy wafer; performing a first dicing process using a first cutting tool; depositing a molding compound; removing the dummy wafer; performing a second dicing process with a second cutting tool. A first aperture of the first cutting tool is larger than a second aperture of the second cutting tool. The portion of the first interface surface being curved reduces the possibility of generation of cracks in the WLCSP structure.
US11062957B2

A method includes providing a device structure having a substrate, an isolation structure over the substrate, and two fins extending from the substrate and through the isolation structure, each fin having two source/drain (S/D) regions and a channel region; depositing a first dielectric layer over top and sidewall surfaces of the fins and over the isolation structure; forming a gate stack over the first dielectric layer and engaging each fin at the respective channel region; treating surfaces of the gate stack and the first dielectric layer such that the surfaces of the gate stack are more attachable to a second dielectric layer than the surfaces of the first dielectric layer are; after the treating of the surfaces, depositing the second dielectric layer; and etching the first dielectric layer to expose the S/D regions of the fins.
US11062951B2

A process for fabricating a field-effect transistor includes providing a structure including a first silicon layer and a second layer, made of SiGe alloy, covering the first silicon layer. The method further includes forming a sacrificial gate covered with a hardmask on top of the second layer made of SiGe alloy and etching the second layer made of SiGe alloy, following the pattern of the hardmask in order to delimit an element made of SiGe alloy in the second layer. The method also includes forming spacers on top of the first silicon layer on either side of the sacrificial gate and of the element, removing the sacrificial gate, and enriching the first layer arranged beneath the element in germanium using a germanium condensation process.
US11062948B2

A wafer processing method includes a polyester sheet providing step of positioning a wafer in an inside opening of a ring frame and providing a polyester sheet on a back side of the wafer and on a back side of the ring frame, a uniting step of heating the polyester sheet as applying a pressure to the polyester sheet to thereby unite the wafer and the ring frame through the polyester sheet by thermocompression bonding, a dividing step of cutting the wafer by using a cutting apparatus to thereby divide the wafer into individual device chips, and a pickup step of picking up each device chip from the polyester sheet.
US11062947B1

Disclosed herein are inorganic dies with organic interconnect layers and related structures, devices, and methods. In some embodiments, an integrated circuit (IC) structure may include an inorganic die and one or more organic interconnect layers on the inorganic die, wherein the organic interconnect layers include an organic dielectric.
US11062940B2

An organometallic precursor includes tungsten as a central metal and a cyclopentadienyl ligand bonded to the central metal. A first structure including an alkylsilyl group or a second structure including an allyl ligand is bonded to the cyclopentadienyl ligand or bonded to the central metal.
US11062932B2

A method of transferring a plurality of micro devices is provided. The method includes: arranging the micro devices on a carrier substrate in a hexagonal manner; arranging a plurality of pick-up portions of a transfer head in a rectangular manner; and picking up the micro devices from the carrier substrate by the pick-up portions.
US11062930B2

A substrate processing apparatus according to an embodiment includes a carrier mounting part, a substrate mounting part, a first transfer device, a plurality of processing parts, a second transfer device and a controller. The carrier mounting part mounts a carrier that accommodates a plurality of substrates. The first transfer device transfers the substrates between the carrier and a substrate mounting part. The controller causes the first transfer device to execute a take-out operation for taking out the substrate from the carrier to mount the substrate on the substrate mounting part at time intervals equal to or longer than a time required for the first transfer device to take out the substrate from the carrier to mount the substrate on the substrate mounting part and to take out the substrate from the substrate mounting part to accommodate the substrate in the carrier.
US11062926B2

Apparatus and method for monitoring wafer charges are proposed. A conductive pin, a conductive spring and a conductive line are configured in series to connect the backside surface of the wafer and the sample conductor so that the backside surface of the wafer and the surface of the sample conductor have identical charge density. Hence, by using a static electricity sensor positioned close to the surface of the sample conductor, the charges on the wafer may be monitored. Note that the charges appeared on the frontside surface of the wafer induces charges on the backside surface of the wafer. The sample conductor is a sheet conductor and properly insulated from the surrounding environment. As usual, the sample conductor and the static electricity sensor are positioned outside the chamber where the wafer is placed and processed, so as to simplify the apparatus inside the chamber and reduce the contamination risk.
US11062922B2

A substrate liquid processing apparatus includes a processing tub 34A which is configured to store therein a processing liquid in a boiling state and in which a processing of a substrate 8 is performed by immersing the substrate in the stored processing liquid; a concentration sensor 55B configured to detect a concentration of a chemical liquid component contained in the processing liquid; a concentration control unit 7 (40, 41) configured to control the concentration of the chemical liquid component to a set concentration by adding the chemical liquid component or a diluting solution to the processing liquid based on a detection concentration of the concentration sensor; a head pressure sensor 86B configured to detect a head pressure of the processing liquid within the processing tub; and a concentration set value correction unit 7 configured to correct, based on a detection value of the head pressure sensor, the set concentration.
US11062912B2

A process for etching a film layer on a semiconductor wafer is disclosed. The process is particularly well suited to etching carbon containing layers, such as hardmask layers, photoresist layers, and other low dielectric films. In accordance with the present disclosure, a reactive species generated from a plasma is contacted with a surface of the film layer. Simultaneously, the substrate or semiconductor wafer is subjected to rapid thermal heating cycles that increase the temperature past the activation temperature of the reaction in a controlled manner.
US11062909B2

An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
US11062898B2

A particle removal apparatus is provided. The particle removal apparatus includes a reticle holder configured to hold a reticle. The particle removal apparatus further includes a robotic arm. The particle removal apparatus also includes a particle removal device disposed on the robotic arm, and the particle removal device includes a solution spraying module. In addition, the robotic arm and the particle removal device are configured to align with a particle on a backside of the reticle, and the solution spraying module is configured to spray a solution onto the particle to remove the particle.
US11062892B2

The objective of the present invention is to provide a charged particle detector and a charged particle beam device with which it is possible to acquire a high luminous output while rapidly eliminating charged particles that are incident to a scintillator. In order to achieve said objective the present invention proposes: a charged particle detector provided with a light-emitting unit including a laminated structure obtained by laminating a GaInN-containing layer and a GaN layer, and provided with a conductive layer that is in contact with the GaInN-containing layer on the charged particle incidence surface side of the laminated structure; and a charged particle beam device.
US11062891B2

The disclosure relates to a method which is suitable for the quality control and signal correction of mass spectrometry data of biological tissue samples and is based on the analysis of the chemical background signal observed in a spectrum. It exploits the fact that the chemical background signal contains components from a plurality of polymer molecules, whose chemical structure has strong regularities. These regularities mean that the observed masses are subject to certain statistical distributions, which are each characteristic of the class of molecule. By analyzing these statistical properties, it is possible to detect and correct any mass shifts which may be present.
US11062889B2

A method of making a metal or metal alloy target having the steps of providing a billet, the billet having a generally cylindrical configuration and having a central axis, cutting the billet in half parallel to the central axis to form at least a half cylindrical blank, and cross rolling the half cylindrical blank to form a target.
US11062882B2

A plasma processing apparatus according to an exemplary embodiment includes a chamber, a substrate support, an upper electrode, a radio frequency power source, and a direct-current power source device. The substrate support includes a lower electrode. The lower electrode is provided in the chamber. The upper electrode is provided above the substrate support. The radio frequency power source generates a plasma in the chamber. The direct-current power source device is electrically connected to the upper electrode. The direct-current power source device is configured to periodically generate a pulsed negative direct-current voltage. An output voltage of the direct-current power source device is alternately switched between a negative direct-current voltage and zero volts.
US11062863B2

The temperature sensitive pellet type thermal fuse includes a cylindrical case which has a first end and a second end, a temperature sensitive pellet, an insulating tube, a first lead which is inserted into the insulating tube and has an inner end serving as a contact portion, a movable contact which is electrically connected to the cylindrical case, a weak compression spring, a strong compression spring, and a second lead which is disposed on the second end of the cylindrical case. The movable contact includes a projecting contact portion which is provided at a central part of the movable contact, and the projecting contact portion and the contact portion of the first lead are in contact with each other inside the insulating tube.
US11062857B2

A switching device including a frame, a first fixed contact member having a first contact area, and a first movable contact member having a first contact arm provided with a contact area. The first movable contact member is adapted to pivot relative to the frame around a first pivoting axis between a first position and a second position. The switching device includes a spreader member that is adapted to provide a first intermediate position for the first movable contact member in which a projection of the contact area of the first contact arm overlaps at least partially with a projection of the first contact area on a switch plane perpendicular to the first pivoting axis while the contact area of the first contact arm is spaced apart from the first contact area.
US11062849B2

A method of manufacturing a multilayer ceramic electronic component includes: preparing a dielectric magnetic composition including base material powder particles including BaTi2O5 or (Ba(1-x)Cax)Ti2O5 (0≤x<0.1), the base material powder particles having surfaces coated with one or more of Mg, Mn, V, Ba, Si, Al and a rare earth metal; preparing ceramic green sheets using dielectric slurry including the dielectric magnetic composition; applying an internal electrode paste to the ceramic green sheets; preparing a green sheet laminate by stacking the ceramic green sheets to which the internal electrode paste is applied; and preparing a ceramic body including dielectric layers and a plurality of first and second internal electrodes arranged to face each other with each of the dielectric layers interposed therebetween by sintering the green sheet laminate.
US11062843B2

A method for producing a sintered R-T-B based magnet includes the steps of: providing a sintered R1-T-B based magnet work (where R1 is a rare-earth element; T is Fe, or Fe and Co); providing a powder of an alloy in which a rare-earth element R2 accounts for 40 mass % or more of the entire alloy, the rare-earth element R2 always including Dy and/or Tb; subjecting the powder to a heat treatment to obtain a diffusion source; and heating the sintered R1-T-B based magnet work with the diffusion source to allow the at least one of Dy and Tb contained in the diffusion source to diffuse from the surface into the interior of the sintered R1-T-B based magnet work. The alloy powder is a powder produced by atomization.
US11062841B2

Provided are an electromagnetic shield device, a wireless charging transmitting terminal, a wireless charging receiving terminal and a system. By providing an electromagnetic shielding device between a power transmitting coil and a power receiving coil and making a magnetic sheet comprised in the electromagnetic shielding device not cover the power receiving coil, the magnetic field acting on the metal material is reduced on one hand and the coupling coefficient between the power transmitting coil and the power receiving coil is increased on the other hand, which reduces the intensity of the emitted magnetic field without changing the required voltage. This reduces an amount of heat and loss during wireless charging and improves charging efficiency.
US11062840B2

An alternating hybrid excitation assembly and its application to a rotary motor, linear motor and transformer, including: an even number of iron cores and a plurality of magnetic isolation layers arranged between, forming a loop, each core includes one or two notches wherein permanent magnets are inlaid, the two magnetic pole faces are attached to two opposite sides of the notch of the corresponding core, and a gap is reserved between one side face of each magnet and the side edge of the notch of the core; the magnets have opposite magnetic polarity directions, and an excitation coil surrounds the cores. A permanent magnetic potential and an excitation magnetic potential are superimposed to form an alternating hybrid excitation magnetic field, and thus electromagnetic energy efficiency is improved. Further, embodiments of the alternating hybrid excitation assembly applied to the rotary motor, the linear motor and the transformer.
US11062835B2

A vehicle transformer has a transformer core with two opposed yokes and at least two limbs extending in between them along a parallel limb axis, wherein a support structure is provided at each of the yokes for carrying the vehicle transformer with horizontal oriented limb axis, wherein a hollow cylindrical coil with at least one respective electrical winding is arranged around at least one of the limbs. The coil may be rigidly connected with the limb so that the flexural resistance of the rigid combination of both is improved therewith compared to a combination of both without rigid connection.
US11062832B2

A cavity is formed in a surface of a dielectric component on the permanent magnet side. The cavity has a bottom surface extending in a direction along one main surface and a side surface extending in a thickness direction crossing the bottom surface. At least a part of the permanent magnet is disposed in the cavity. A surface of at least a part of the permanent magnet disposed in the cavity is fixed to both of the bottom surface and the side surface through an adhesive.
US11062829B2

A soft magnetic alloy powder includes a first pulverized powder which has a particle diameter of 20 μm or more, a value of major diameter/minor diameter of 1.2 or more and 1.8 or less, and a flat plate shape, and a second pulverized powder which has a particle diameter of less than 3 μm, a value of major diameter/minor diameter of 1.1 or more and 1.6 or less, and a flat plate shape. A production method of a soft magnetic alloy powder, includes first processing of processing a soft magnetic alloy ribbon into a coarse powder, and second processing of pulverizing the coarse powder with a pulverizer.
US11062827B2

A method of making a rare earth magnet containing zero heavy rare earth elements includes a step of mixing the fine grain powder with the lubricant having a weight content of at least 0.03 wt. % and no greater than 0.2 wt. % for a period of between 1 and 2 hours. The step of pulverizing is further defined as jet milling the alloy powder with the lubricant using a carrier gas of argon or nitrogen. The method further includes a step of controlling oxygen content during the steps of melting, forming, disintegrating, mixing, pulverizing, molding, and sintering whereby the impurities including Carbon (C), Oxygen (O), and Nitrogen (N) satisfies 1.2C+0.6O+N≤2800 ppm. A rare earth magnet composition including C, O, and N whereby C, O, and N satisfies 1.2C+0.6O+N≤2800 ppm and has zero heavy rare earth elements.
US11062826B2

Nanocomposite magnetic materials, methods of manufacturing nanocomposite magnetic materials, and magnetic devices and systems using these nanocomposite magnetic materials are described. A nanocomposite magnetic material can be formed using an electro-infiltration process where nanomaterials (synthesized with tailored size, shape, magnetic properties, and surface chemistries) are infiltrated by electroplated magnetic metals after consolidating the nanomaterials into porous microstructures on planar substrates. The nanomaterials may be considered the inclusion phase, and the magnetic metals may be considered the matrix phase of the multi-phase nanocomposite.
US11062823B2

An insulated wire capable of changing color when overheated under a current load includes an insulated core, at least one thermochromic strip, and a transparent plastic protective layer. The thermochromic strip is wound and fixed on the peripheral surface of the insulated core. The transparent plastic protective layer clads the peripheral surface of the insulated core and/or the top surface of the thermochromic strip. When the insulated core is overloaded and generates heat, the heat is transmitted to, and thereby changes the color of, the thermochromic strip. The color change is visible through the transparent plastic protective layer and can therefore alert the wire user in real time that the load on the insulated wire should be lowered.
US11062816B2

Apparatuses and methods for production of molybdenum targets, and the formed molybdenum targets, used to produce Tc-99m are described. The target includes a copper support plate having a front face and a back face. The copper support plate desirably has dimensions of thickness of about 2.8 mm, a length of about 65 mm and a width of about 30 mm; and the copper support plate desirably has either a circular or an elliptical cavity centrally formed therein by pressing molybdenum powder into the front face with a depth of about 200-400 microns. Also, the copper support plate includes cooling channels dispensed at the back face; wherein the copper support plate is water cooled by a flow of water during irradiation by a proton beam. Molybdenum powder is embedded and compressed onto the cavity of the copper support plate thereby creating a thin layer of molybdenum onto the copper support plate.
US11062814B1

A box-type structure includes a structure having neutron beam shielding performance. It is possible to accommodate an organism to be irradiated in the structure. The box-type structure includes shielding plates, which include a lithium-fluoride sintered body having neutron shielding performance. Edge portions of the shielding plates are joined by abutting against one another. The edge portions of the shielding plates have a halving joint structure, and the halving joint structure has a stepped or inclined cutout shape. The box-type structure has a plurality of surfaces, and at least one of the faces may be removable or there may be an opening portion in part of the surface.
US11062812B2

A floating nuclear power reactor including one or two nuclear power reactors positioned in a floating vessel such as a barge or the like. Means is disclosed for flooding the containment structure of the nuclear reactor and for flooding the reactor vessels to cool the same.
US11062810B2

The invention relates generally to uranium fuel in a nuclear reactor and, more particularly, the inclusion of a fuel additive component to the bulk fuel material. The fuel additive component is selected and provided in an amount such that it is effective to improve one or more properties of the bulk fuel material. The fuel additive component has a grain size that is less than the grain size of the bulk fuel material. The granular fuel additive component coats or covers the granular bulk fuel material.
US11062807B1

A method for assessing a user's health comprises receiving a first biometric parameter from the user's wearable device and determining whether the first biometric parameter was collected for a time period satisfying a time threshold. The method comprises, upon the time threshold being satisfied, calculating a second biometric parameter based on the first biometric parameter and/or user's health attributes provided by the user. The method comprises determining a health score for the user based on the health score, the first biometric parameter, and/or the second biometric parameter. The method further comprises transmitting and populating a user interface associated with the user with the health score, the first biometric parameter, and/or the second biometric parameter.
US11062802B1

Systems, methods and computer-readable media are provided for determining appropriate staffing levels above acuity-based forecast baseline values, to provide compliance with regulatory ‘patient-to-nurse’ ratio thresholds within a given service level or statistical probability. A non-zero and optionally stochastically varying leadtime may be provided for sourcing nurses and may ascertain whether significant patient demand and labor supply chain interdependencies exist via the bullwhip ratio, using predictive modeling based on a ‘safety-stock-over-leadtime’ (SSL). Variations that may arise according to different healthcare institutions' policies for shift-bidding, scheduling, use of contract nursing resources, and other aspects, may be accounted for in the predictive models. Further, some embodiments include providing decision support recommendations for adjusting health services staff to evolving patient needs in near real-time, and may further include automatically scheduling these employees and/or notifying them of work schedule changes.
US11062768B2

A semiconductor memory apparatus may include a memory bank, a global buffer array, and an input and output circuit. The memory bank includes a local data circuit, and the global buffer array includes a global data circuit. The local data circuit is operably coupled to the global data circuit. The global buffer array may be operably coupled to the input and output circuit. The memory bank is disposed in a core region, and the global buffer array and the input and output circuit may be disposed in a peripheral region separated from the core region.
US11062762B2

A data reading error is reduced. A memory cell array in a storage device includes a write word line, a read word line, a write bit line, a read bit line, a source line, and a gain cell. For example, a read transistor in the gain cell can include a metal oxide in a channel formation region. A cancel circuit is electrically connected to the read bit line. The cancel circuit has a function of supplying, to the read bit line, current for canceling leakage current supplied to the read bit line from the gain cell in a non-selected state. In read operation, a potential change of the read bit line due to leakage current is compensated for by the current from the cancel circuit, so that a data reading error is reduced.
US11062761B1

A position of a memory cell to be accessed within a memory field of a memory device is identified. A region associated with the memory field within which the position is located is identified. A compensation parameter comprising a fixed electric step value for the region is identified. The compensation parameter may be selected from a set of compensation parameters or may be calculated based upon the position of the memory cell. The compensation parameter is applied to an action performed on a line connected to the memory cell during the access of the memory cell.
US11062755B2

Memory with partial bank refresh is disclosed herein. In one embodiment, a memory system includes a memory controller and a memory device operably connected to the memory controller. The memory device includes (i) a memory array having a memory bank with a plurality of memory cells arranged in a plurality of memory rows and (ii) circuitry. In some embodiments, the circuitry is configured to disable at least one memory row of the memory bank from receiving refresh commands such that memory cells of the at least one memory row are not refreshed during refresh operations of the memory device. In some embodiments, the memory controller is configured to track memory rows that include utilized memory cells and/or to write data to the memory rows in accordance with a programming sequence of the memory device.
US11062735B2

A radiation image display apparatus that includes: a hardware processor that generates the moving image for preview based on the pieces of image data of the plurality of frames obtained by moving image photographing of an object with radiation; and a holder that holds the moving image, wherein the hardware processor further: performs reproduction control on the moving image, performs image adjustment on the moving image, displays the moving image on the display during photographing the moving image, and displays the moving image according to the reproduction control or the moving image subjected to the image on the display.
US11062725B2

This specification describes computer-implemented methods and systems. One method includes receiving, by a neural network of a speech recognition system, first data representing a first raw audio signal and second data representing a second raw audio signal. The first raw audio signal and the second raw audio signal describe audio occurring at a same period of time. The method further includes generating, by a spatial filtering layer of the neural network, a spatial filtered output using the first data and the second data, and generating, by a spectral filtering layer of the neural network, a spectral filtered output using the spatial filtered output. Generating the spectral filtered output comprises processing frequency-domain data representing the spatial filtered output. The method still further includes processing, by one or more additional layers of the neural network, the spectral filtered output to predict sub-word units encoded in both the first raw audio signal and the second raw audio signal.
US11062720B2

An information encoder for encoding an information signal includes: a converter for converting the linear prediction coefficients of the predictive polynomial A(z) to frequency values f1 . . . fn of a spectral frequency representation of the predictive polynomial A(z), wherein the converter is configured to determine the frequency values f1 . . . fn by analyzing a pair of polynomials P(z) and Q(z) being defined as P(z)=A(z)+z−m−lA(z−1) and Q(z)=A(z)−z−m−lA(z−1), wherein m is an order of the predictive polynomial A(z) and l is greater or equal to zero, wherein the converter is configured to obtain the frequency values by establishing a strictly real spectrum derived from P(z) and a strictly imaginary spectrum from Q(z) and by identifying zeros of the strictly real spectrum derived from P(z) and the strictly imaginary spectrum derived from Q(z).
US11062714B2

The present invention relates to an ambisonic encoder for a sound wave having a plurality of reflections. The ambisonic encoder according to the invention makes it possible to improve the sensation of immersion in a 3D audio scene. The complexity of encoding of the reflections of sound sources for an ambisonic encoder according to the invention is less than the complexity of encoding of the reflections of sound sources of an ambisonic encoder according to the prior art. The ambisonic encoder according to the invention makes it possible to encode a greater number of reflections of a sound source in real time. The ambisonic encoder according to the invention makes it possible to reduce the power consumption related to ambisonic encoding, and to increase the life of a battery of a mobile device used for said application.
US11062713B2

In general, techniques are described by which to specify spatially formatted enhanced audio data for backward compatible audio bitstreams. A device comprising a memory and one or more processors may be configured to perform the techniques. The memory may store the backward compatible bitstream that conforms to a legacy transport format. The processor(s) may obtain, from the backward compatible bitstream, legacy audio data that conforms to a legacy audio format and a spatially formatted extended audio stream. The processor(s) may process the spatially formatted extended audio stream to obtain extended audio data that enhances the legacy audio data. The processor(s) may next obtain, based on the legacy audio data and the extended audio data, enhanced audio data that conforms to an enhanced audio format. The processor(s) may output the enhanced audio data to one or more speakers.
US11062711B2

Systems and methods for establishing communication connections using speech, such as establishing calls between speech-controlled devices, are described. A first speech-controlled device receives a communication request in the form of audio and sends audio data corresponding to the captured audio to a server. The server performs speech processing on the audio data to determine a recipient, a subject for the call, and a device associated with the recipient. The server then sends a message indicating the communication request and audio data corresponding to the communication topic to the recipient's speech-controlled device. The recipient device outputs audio to the recipient requesting whether the recipient accepts the communication request. The recipient audibly refuses or accepts the communication request, and the recipient's speech-controlled device sends an indication of the recipient's audible decision to the server. If the recipient accepted the communication request, the server causes a communication connection be established between the two speech-controlled devices.
US11062710B2

Disclosed herein are system, apparatus, article of manufacture, method and/or computer program product embodiments, and/or combinations and sub-combinations thereof, for distributing the performance of speech recognition among a remote control device and a voice platform in the cloud. In some embodiments, the remote control device operates to receive a voice input from a user. The remote control device detects a trigger word in the voice input. The remote control device then processes the voice input. The remote control device then transmits the voice input to a voice platform based on the detecting in order to determine an intent associated with the voice input.
US11062705B2

According to one embodiment, an information processing apparatus includes one or more processors configured to detect a trigger from a voice signal, the trigger indicating start of voice recognition; and to perform voice recognition of a recognition sound section subsequent to a trigger sound section including the detected trigger, referring to a trigger and voice recognition dictionary corresponding to the trigger.
US11062704B1

Embodiments relate to systems and methods that retrieve, from the one or more computer storage memory, dialogue data associated with a plurality of utterances from two or more entities. A target concept in one or more dialogue segments of the transcribed dialogue data can be determined, where the one or more dialogue segments comprising a first dialogue segment associated with a first utterance by a first entity, and where the first dialogue segment includes the target concept. A dialogue goal can be determined for the first dialogue segment comprising the target concept. In addition, a structured link can be generated, associating the extracted concept to the dialogue goal.
US11062702B2

Disclosed herein are system, apparatus, article of manufacture, method and/or computer program product embodiments, and/or combinations and sub-combinations thereof, for providing voice control using multiple digital assistants. In some embodiments, a voice platform operates to receive a voice input from a user. The voice platform selects a digital assistant from a plurality of digital assistants based on a trigger word. The voice platform then generates an intent from the voice input using the selected digital assistant. The voice platform then transmits the intent to a media device for processing.
US11062692B2

An audio processing system for generating audio including emotionally expressive synthesized content includes a computing platform having a hardware processor and a memory storing a software code including a trained neural network. The hardware processor is configured to execute the software code to receive an audio sequence template including one or more audio segment(s) and an audio gap, and to receive data describing one or more words for insertion into the audio gap. The hardware processor is configured to further execute the software code to use the trained neural network to generate an integrated audio sequence using the audio sequence template and the data, the integrated audio sequence including the one or more audio segment(s) and at least one synthesized word corresponding to the one or more words described by the data.
US11062684B2

A lighted pedal board includes a main body and a rotatable lighted arm that can be positioned between a horizontal, resting position and any other angle above the main body. In one embodiment, the arm is upright over a top face of the main body so that light shines on the top face of the pedal board.
US11062680B2

Systems, apparatuses, and methods for implementing raster order view enforcement techniques are disclosed. A processor includes a plurality of compute units coupled to one or more memories. A plurality of waves are launched in parallel for execution on the plurality of compute units, where each wave comprises a plurality of threads. A dependency chain is generated for each wave of the plurality of waves. The compute units wait for all older waves to complete dependency chain generation prior to executing any threads with dependencies. Responsive to all older waves completing dependency chain generation, a given thread with a dependency is executed only if all other threads upon which the given thread is dependent have become inactive. When executed, the plurality of waves generate a plurality of pixels to be driven to a display.
US11062676B2

A brightness adjustment method and a brightness adjustment apparatus are provided. The brightness adjustment method is applied to an augmented reality device and includes acquiring at least one of position information or attitude information of the augmented reality device; determining a brightness corresponding to the acquired at least one of the position information or the attitude information according to an established correspondence relation between brightness information and at least one of position information or attitude information; and controlling the augmented reality device to display at the brightness.
US11062675B2

Systems and methods for correcting non-uniformity and for compensating for display OLED degradation utilize a correction factors k for each pixel, which is modelled and tracked based on grey level and a pixel parameter, such as temperature and time. The correction factor k is used to correct image data provided to an OLED display. To improve display uniformity for active matrix organic light emitting diode devices (AMOLED) and other emissive displays the panel luminance is a based on operating temperature, whereby the aging effect on a compensation parameter is independent of temperature.
US11062671B1

A pixel driving circuit, a driving method thereof and a liquid crystal display panel are provided. The pixel driving circuit comprising a compensating module which is connected to a driving transistor of a data-inputting module, the compensating module is configured to receive present stage scan signals and previous scan signals and to control the driving transistor to turn on with voltages generated by coupling the present stage scan signals and the previous scan signals to the driving transistor, thus coupling data signals to a first node. Based on this, a dynamic power consumption of the liquid crystal display panel can be reduced.
US11062669B2

The present disclosure provides a driving circuit and driving method for a liquid crystal display panel, and a display device. The driving circuit includes: a signal collector, configured to collect a backlight control signal; and a timing control chip, configured to determine whether a BLU is in the bright state time period or in the dark state time period, and retrieve a first gate control signal from a memory chip and output the first gate control signal to a gate driving circuit, when determining that the BLU is in the bright state time period, or retrieve a second gate control signal from the memory chip and output the second gate control signal to the gate driving circuit, when determining that the BLU is in the dark state time period.
US11062666B2

A semiconductor device with a small circuit area that consumes low power is provided. The semiconductor device includes a shift register, a sample-and-hold circuit, a first buffer circuit, and a second buffer circuit. The sample-and-hold circuit includes a first input terminal, a second input terminal, and an output terminal. An output terminal of the first buffer circuit is electrically connected to the first input terminal. The shift register is electrically connected to the second input terminal. An input terminal of the second buffer circuit is electrically connected to the output terminal of the sample-and-hold circuit. In the semiconductor device, the potential of an input analog signal is retained in the sample-and-hold circuit and the analog signal is output from an output terminal of the second buffer circuit.
US11062665B2

The invention provides a circuit and method for common voltage feedback compensation and LCD. The circuit comprises: a timing controller and a power management circuit, the timing controller and the power management circuit being electrically connected; the timing controller providing a corresponding preset feedback compensation value to the power management circuit under different images; the power management circuit comprising a common voltage compensation circuit and an adder, and the adder integrating the feedback compensation value and a feedback common voltage returned from a feedback point in a display panel through addition obtain an integration result, the common voltage compensation circuit obtaining a common voltage compensation signal based on the integration result and providing the common voltage compensation signal to the display panel. The invention generates the feedback compensation value required for the common voltage feedback and provides to the power management circuit under different images through the timing controller.
US11062663B2

A driving method for driving an electrophoretic display comprising four types of particles, the first type of particles and the third type of particles are positively charged, and the second type of particles and the fourth type of particles are negatively charged, the method comprises the steps of: (i). applying a first driving voltage to the pixel of the electrophoretic display for a first period of time at a first amplitude to drive the pixel to a color state of the fourth type of particle at the viewing side; and (ii). applying a second driving voltage to the pixel of the electrophoretic display for a second period of time, opposite to that of the first driving voltage and a second amplitude smaller than that of the first amplitude, to drive the second type particle towards the non-viewing side.
US11062655B2

The disclosure provides a pixel circuit, a display panel and a driving method thereof. The pixel circuit includes a driving transistor, a threshold storage subcircuit, a threshold storage control subcircuit, a data storage subcircuit, a data writing control subcircuit, an isolation control subcircuit, a light-emitting control subcircuit and a light-emitting diode. The threshold storage control subcircuit is coupled to the threshold storage subcircuit. The threshold storage subcircuit stores the reference voltage input by the threshold storage control subcircuit, and stores a threshold voltage of the driving transistor. The data writing control subcircuit is coupled to the data storage subcircuit. The data storage subcircuit stores the data voltage input by the data writing control subcircuit. The isolation control subcircuit is coupled between the data storage subcircuit and the threshold storage subcircuit. The driving transistor is coupled to the threshold storage subcircuit and the data storage subcircuit.
US11062651B2

A display device can include a display unit including data lines, gate lines crossing the data lines and pixels; a voltage generating unit configured to generate driving voltages for driving the display unit based on a voltage from a battery; and a data driver configured to convert input image data into data voltages and output the data voltages to the data lines, wherein the voltage generating unit includes a battery current control unit configured to control a magnitude of a low potential driving voltage applied to cathode electrodes of the pixels according to an amount of a battery output current flowing from the battery to the voltage generating unit, and wherein the battery current control unit is configured to increase the low potential driving voltage when the battery output current is equal to or greater than a predetermined threshold value.
US11062629B1

A flag display apparatus includes a frame comprising first and second support legs having upper and lower opposed ends when placed for display. A horizontal support member having a predetermined length can be connected to the upper end of the first and second support legs. A flag or banner having a predetermined length is attached to and supported by the frame. The predetermined length of the horizontal support member is less than the length of the flag or banner so that a portion of the flag or banner extends beyond the first or second support leg thereby providing a first portion of the flag or banner that is unfurled and a second portion of the flag or banner that is at least partially furled in the absence of wind moving across the flag.
US11062627B2

A tape includes: a sheet; first and second media arranged adjacent to each other in a longitudinal direction of the sheet, spaced from each other, and peelably stuck to the sheet; a first separating line extending between first and second ends of the sheet in a widthwise direction between the first and second media; and a second separating line formed at a portion of the sheet which is located between a center position of the second medium in the widthwise direction and a first end of the second medium in the widthwise direction. The second separating line is formed at at least a portion of the sheet which is located between first and second ends of the second medium in the longitudinal direction. Each of the first and second separating lines includes a portion formed through or cut in the sheet in a thickness direction.
US11062625B2

An imitating lung device includes a first liquid accommodating layer, a first elastic membrane, an airway layer, a second elastic membrane and a second liquid accommodating layer. A first liquid chamber is formed in an inner surface portion of the first liquid accommodating layer. The airway layer includes a plurality of air channels and a plurality of imitating alveolar regions. The imitating alveolar regions are communicated with the air channels. The air channels simulate a branched structure of the 15th generation to the 19th generation of a human lung, and the imitating alveolar regions simulate a branched structure of the 20th generation to the 23th generation of a human lung. A second liquid chamber is formed in an inner surface portion of the second liquid accommodating layer.
US11062616B2

Embodiments relate to a system, program product, and method for use with an intelligent (AI) computer platform to explore real-world modeling. A sensory input data signal is communicated to the AI platform and translated into a corresponding scenario. The translation is directed at an associated force and application of the force to a selected or identified object and environment. A reaction to the application is created, and reaction data is converted to a sensory output signal. Receipt of the sensory output signal by a corresponding sensory output device creates a physical manifestation of generated feedback of the reaction data to a sensory medium. The embodiments are directed at both learning and assessment, and leverage a corpus with the AI platform in support of an interactive learning experience.
Patent Agency Ranking