US11324145B2

An environmental control system for a telecom shelter integrates with a native HVAC system for exchanging interior air in a conditioned space in a machine room, telecom enclosure, or other closed machine environment by forcing or directing cooler outside air to replace interior air without active refrigeration by the native HVAC system. Primary cooling and heating of the conditioned space in the enclosure is performed by an exchange system and control logic that identifies, based on sensory input, when outside air exchange is more efficient than native AC (Air Conditioner) operation. The native AC system is suppressed or inhibited, and primary environmental control performed by fan driven exchange of outside air with air in the enclosure. Sensors and timers identify appropriate periods to defer control to the native AC system for cooling demand in excess of outside air exchange capability, and also identify ongoing suppression, or “takeback” of cooling control from the native system when erroneous, erratic or mistaken operation results in excessive or insufficient cooling, resulting from such factors as equipment failure, operator error, and environmental/disaster occurrences.
US11324142B2

The invention specifies an arrangement having at least one electrical module (2) which is arranged on a heat sink (3). The arrangement has: —first deflection elements (4) which are formed in or on the electrical module (2), —second deflection elements (5) which are formed in or on the heat sink (3), and—at least one flexible, cable- or strip-like tensioning element (1), —which is arranged between the first and second deflection elements (4, 5) under tension (F) in such a way that the electrical module (2) is pressed onto the heat sink (3). A converter and an aircraft having an arrangement of this kind and also a method for producing an arrangement of this kind are likewise specified.
US11324140B2

A thin-profile composite heat dissipating structure for a heat-generating electronic device includes a heat sink and a heat pipe, the heat sink includes a first housing, a first heat dissipation liquid, and a gas. The first housing is sealed to form a first cavity, the first heat dissipation liquid and the gas are received in the first cavity. The heat pipe is connected to the first housing and a wick structure to allow the return of the condensed heat dissipation liquid by capillary action is disposed elsewhere. An electronic device using the structure is also provided.
US11324139B2

An example apparatus is disclosed that includes a base and a wickless capillary driven constrained vapor bubble heat pipe carried by the base. The wickless capillary driven constrained vapor bubble heat pipe includes a capillary, and the capillary has a longitudinal axis and a cross-sectional shape orthogonal to the longitudinal axis. The cross-sectional shape includes a first curved wall, a second curved wall, a first corner between a first straight wall and a second straight wall, and a second corner between a third straight wall and a fourth straight wall.
US11324137B2

An air mover assembly may be configured such that during insertion of the assembly into an air mover gantry, one or more spring features integral to the gantry apply a first spring force opposite to a direction of insertion of the assembly relative to the gantry in order to maintain the assembly in an unseated position until the first spring force is overcome by an opposite force to fully seat assembly into the gantry and when the assembly is fully seated within the gantry, the one or more spring features integral to the gantry apply a second spring force to the assembly in a direction of air flow through an air mover of the assembly that biases an exhaust portion of the air mover toward a face of the gantry opposite of the one or more spring features.
US11324127B2

An electronic device includes a casing and an electrical component. The casing includes a first casing body, a second casing body and a fastener. The second casing body is located on the first casing body, and the fastener detachably clamps a side of the first casing body and the second casing body. The electrical component is located between the first casing body and the second casing body.
US11324125B2

A diversified assembly printed circuit board includes a first printed circuit board provided with a multiple first conductive metals protruding from a surface of the first printed circuit board, and a multiple second printed circuit boards each provided with a multiple second conductive metals protruding from a surface of the each of the second printed circuit boards. At a connection position, solidified conductive metal paste is arranged between each of the first conductive metals and a corresponding second conductive metal to electrically connect each of the first conductive metals and the corresponding second conductive metal. A laminated adhesive sheet is arranged between each of the second printed circuit boards and the first printed circuit board to physically connect the second printed circuit boards and the first printed circuit board.
US11324124B2

A lead component mounting method includes: a component insertion process in which two lead wires are inserted into two corresponding through-holes which are formed in a circuit board from one side of the circuit board in a state in which at least a pair of pawl portions pinches and holds each of the two lead wires which are included in a lead component; and a clinching process in which protruding portions, which are portions protruding from another side of the circuit board, of the two lead wires which are inserted into the two corresponding through-holes, are bent in a state in which the two lead wires are held by at least the pair of pawl portions.
US11324122B2

A component carrier includes a stack having at least one electrically insulating layer structure and/or at least one electrically conductive layer structure; a heat removing and electrically conductive base structure; a component which is connected to the base structure so as to at least partially protrude from the base structure and so as to be laterally at least partially covered by an electrically insulating material of the stack; and an electrically conductive top structure on or above a top main surface of the component. A method of manufacturing such a component carrier is disclosed.
US11324121B2

The method includes the steps of preparing at least three conductive elongated boards 711 made of an electrically conductive material and a resistive member 702 made of a resistive material, arranging the at least three conductive elongated boards 711 apart from each other along a width direction crossing a longitudinal direction in which one of the at least three conductive elongated boards 711 is elongated, forming a resistor aggregate 703 by bonding the resistive member 702 to the at least three conductive elongated boards 711, and collectively dividing the resistor aggregate 703 into a plurality of chip resistors by punching so that each of the chip resistors includes two electrodes and a resistor portion bonded to the two electrodes.
US11324120B2

A flexible printed circuit board includes: an electrically insulating substrate layer; an electrically conductive pattern stacked on at least one surface of the substrate layer; and a cover layer that is disposed on a stack including the substrate layer and the electrically conductive pattern and covers a surface of the stack, which surface is on the side on which the electrically conductive pattern is present. The electrically conductive pattern has a coil region including a coil. In the substrate layer or the cover layer, a high-magnetic permeability member is present in at least a region that overlaps the coil region in plan view.
US11324114B2

To provide a cylindrical printed board in which a processing shape is maintained, and a printed-board-integrated molded article in which the cylindrical printed board is integrated with an inner wall of a hole portion in a molded article. A cylindrical printed board 1 according to the present invention is a printed board 4 including an insulator substrate 2 and a conductor pattern 3 formed on the insulator substrate 2, wherein the printed board 4 is rolled beyond one full circle to form a cylindrical shape. In addition, a printed-board-integrated molded article 40 includes a molded article 20 constituting a casing that has a cylindrical part, and the cylindrical printed board 4 that is integrated with an inner wall 21a of a hole portion 21 in the cylindrical part of the molded article 20.
US11324112B2

An antenna device comprises: a printed circuit board formed with both sides in a plate shape including a first surface and a second surface and including at least one conductive layer between the first surface and the second surface; an array of conductive plates formed parallel to the first surface on or in the printed circuit board; a wireless communication circuit electrically connected to the array of conductive plates, coupled to the first surface, and capable of transmitting or receiving frequencies between 3 GHz and 300 GHz; and a conductive shielding structure mounted on the first surface of the printed circuit board and electrically connected to the at least one conductive layer when covering the wireless communication circuit, wherein the conductive shielding structure may include: a third surface facing the first surface when seen from the top of the first surface; and an electromagnetic bandgap (EBG) structure formed on the third surface.
US11324110B2

A temperature-variable standoff includes a temperature-variable electrical element. The standoff also includes a support body that supports the temperature-variable electrical element and that is configured to support a circuit board separated at a distance from another component of an electronics assembly. The support body is configured to attach to the circuit board and to project away from the circuit board with a first end proximate the circuit board and a second end spaced away from the circuit board. The standoff further includes an electrical connector supported proximate the first end. The electrical connector is configured to electrically connect within an electrical circuit of the circuit board to provide the electrical input to the temperature-variable electrical element for selectively varying the temperature thereof.
US11324105B2

Systems, devices, and methods are provided that are useful in generating a fluid suspension of nanoplasmoid bubbles. Such systems utilize a nanobubble/nanoplasmoid generator in conjunction with mechanisms for applying energy to the fluid in the form of electrolytic events, pressure waves, electrical fields, and/or magnetic fields. The nanobubble/nanoplasmoid generator is of modular construction that is readily adaptable to a wide variety of applications. Various applications of nanoplasmoid bubble suspensions so produced are described.
US11324103B2

A modular laser-produced plasma X-ray system includes a liquid metal flow system enclosed within a low-pressure chamber, the flow system including a liquid metal, wherein in at least one location on the liquid metal forms a metal target directly illuminated by laser pulses, a circulation pump within the liquid metal flow system for circulating the liquid metal, a laser pulse emitter configured to transmit laser pulses into the chamber via a laser window, focusing optics, located between the emitter and the metal target, the focusing optics directing the laser pulses to strike the metal target at a target location to form X-ray pulses, and an X-ray window positioned within the chamber to enable the X-ray pulses to exit the chamber.
US11324091B2

A constant power backup power supply for LED lighting fixtures is disclosed. The power supply includes a storage battery that is charged while an AC power source is in an ON condition. When AC power transitions to an OFF condition, a capacitor bank charged by the battery supplies current to the primary side of a flyback converter operating in discontinuous conduction mode. The secondary side of the flyback converter supplies constant output power to the LED lighting fixture for an arbitrary output voltage within a predetermined range.
US11324088B2

A lighting system comprises one or more illuminants and a control device for adjusting light parameters of the illuminants during operation. The control device is arranged to adjust the light parameters time-dependently according to a predetermined course of the light parameters. The control device is further adapted to receive a one-dimensional user setting and to change the course of the light parameters according to the one-dimensional user setting.
US11324076B2

Embodiments include apparatuses, methods, and systems that may be used in a UE in a mobile communication network to communicate with a gNB. An apparatus may include a memory and processing circuitry coupled with the memory. The processing in circuitry may cause coarse time and frequency synchronization information, obtained from primary and secondary synchronization signals (PSS/SSS), to be stored in the memory. Based on the coarse time and frequency synchronization information, the processing circuitry may decode a physical broadcast channel to obtain a first system information, and may acquire a second system information based on the first system information. Based on the first and second system information, the processing circuitry may cause a transmission of a PRACH, to trigger a transmission of a TRS by the gNB. Other embodiments may also be described and claimed.
US11324074B2

A mesh network system comprising at least a first mesh network controlled by a first central controlling unit CU and at least a second mesh network controlled by a second central controlling unit CU is disclosed. The at least first central controlling unit and the at least second central controlling unit is configured to communicate via an external network. Respective central controlling units CU are configured to facilitate interoperations between devices located in different mesh networks.
US11324071B2

There is a concern that communication failure may occur in a case that the state of a serving cell is not properly managed during communication of SPS or GF. A mobile station apparatus of a communication system including at least a base station apparatus and a mobile station apparatus configured to perform communication by using carrier aggregation that simultaneously uses multiple serving cells configured by the base station apparatus according to an aspect of the present invention, wherein the mobile station apparatus restarts a deactivation timer of a serving cell of the multiple serving cells at a timing indicated by a configured uplink grant configured for the serving cell.
US11324067B2

A communication apparatus includes an obtaining unit configured to obtain information indicating an operation state of a user equipment, and a determining unit configured to determine, based on the operation state of the user equipment, a change time taken by a changing unit to change communication between the user equipment and a wireless base station to an idle state after a predetermined condition has been met.
US11324059B2

The present application provides a method executed by user equipment (UE), comprising: receiving radio resource control (RRC) signaling, the RRC signaling comprising configuration information used for configuring, for the UE, a data radio bearer (DRB) supporting packet duplication; establishing a corresponding DRB according to the configuration information; and calculating transmittable data of a packet data convergence protocol (PDCP) entity for a logical channel corresponding to the established DRB. The present application also provides corresponding UE, a base station, and a corresponding method executed by a base station.
US11324057B2

A network device may receive a message from a device. The network device may process the message to determine identification information associated with the device. The network device may process the message to determine identification information associated with a packet data unit (PDU) session, of one or more PDU sessions, of the device. The network device may transmit based on the identification information associated with the device and the identification information associated with the PDU session of the device, the message to another network device.
US11324056B2

A method of establishing, by a communication management platform, a communication from a first communication device intended for a second communication device. When the platform sends a message to the first device that contains a call identifier dedicated to the communication to be established, the platform intercepts a call from the first device to the dedicated call identifier, then routes the call to the main call identifier of the second device, by using a secondary call identifier of the first device that the platform has previously assigned thereto. When the platform sends a message to the first device indicating the absence of a dedicated call identifier, the first device triggers a call to the main identifier of the second device, by using the main call identifier of the first device.
US11324051B2

A disclosure of the present specification provides a random access method for an unlicensed band. The method comprises the steps of: transmitting, by a user equipment (UE), a random access preamble in a first cell of the unlicensed band; and receiving, by the UE, a random access response in a second cell, wherein the second cell may be a first cell, a cell of the unlicensed band, included in a cell group to which the first cell belongs, or a cell of the unlicensed band, included in a timing advance group (TAG) within the cell group, to which the first cell belongs.
US11324047B2

New radio (NR) transmission opportunity (TxOP) structure having flexible starting points are disclosed for wireless communications. When a typical listen before talk (LBT) procedure is performed, the transmitting node will not know ahead of time when the LBT will pass and, thus, when data transmissions can start. NR systems may include a mini-slot design for accommodating transmission units smaller than a slot. Aspects of the present disclosure provide for flexibly increasing the number of potential starting transmission boundaries depending on when the LBT pass is detected. Alternative aspects of the present disclosure determine the potential starting transmission points using a mini-slot based design, a floating slot based design, or a punctured slot based design with a code block group (CBG) level retransmission mechanism.
US11324046B2

Proposed are a method and a device for transmitting data in a wireless LAN system. Specifically, a transmission device receives configuration information of a multi-band formed by aggregating first to third bands. The transmission device carries out channel sensing on the first to third bands. The transmission device transmits data to a receiving device on the basis of the result of the channel sensing. The first band comprises a first primary channel and a first secondary channel; the second band comprises a second primary channel and a second secondary channel; and the third band comprises a third primary channel and a third secondary channel.
US11324036B2

A method for being allocated a discovery resource by a user equipment (UE) in a communication system supporting a device to device (D2D) scheme is provided. The method includes determining whether a discovery resource request message may be transmitted to a network entity; transmitting the discovery resource request message to the network entity based on the determining result; and receiving a discovery resource response message as a response message to the discovery resource request message from the network entity.
US11324031B2

The present disclosure is to provide a method of configuring timing of uplink (UL) transmission, comprising, receiving, by a user equipment (UE), configuration information on carrier aggregation (CA) of at least one frequency division duplex (FDD) cell and at least one time division duplex (TDD) cell; and adjusting, by the UE, starting timing of a UL subframe in a cell participating in the CA.
US11324024B2

This disclosure provides systems, methods and apparatuses for uplink channel transmission for multiple transmit receive points (TRPs). In one aspect, a user equipment (UE) resolves overlapping physical uplink control channels (PUCCHs) in a slot or overlapping PUCCH(s) and PUSCH(s) that are mapped to a same TRP in a multi-TRP scenario and that are mapped to two or more different TRPs in the multi-TRP scenario. For example, in a multi-TRP scenario that includes two TRPs, the UE may eliminate overlap of these uplink channels for each of the two TRPs individually and may additionally eliminate overlap of these uplink channels between the two TRPs.
US11324019B2

A method of scheduling transmissions to client devices comprises receiving feedback (f1a-f3d) about a plurality of candidate downlink frequency resources (91-94) from a plurality of client devices and/or measuring channel qualities of a plurality of candidate uplink frequency resources (95-98) from receptions of transmissions, e.g. of the feedback, by the plurality of client devices. The method further comprises selecting a subset (92) of the plurality of candidate downlink frequency resources and/or a subset (96) of the plurality of the candidate uplink frequency resources based on the received feedback and/or the measured channel qualities. The method further comprises scheduling transmissions (dd1-3) to the client devices on the selected subset of candidate downlink frequency resources and/or transmissions (ud1-3) from the client devices on the selected subset of uplink frequency resources.
US11324018B2

This disclosure provides a terminal and a base station. The base station includes: a processing unit configured to determine scheduling information for a first terminal according to historical information of the first terminal; and a transmitting unit configured to transmit the determined scheduling information to the first terminal.
US11324017B2

An operation method of a first terminal performing sidelink communication may comprise receiving a first sidelink signal from a second terminal; transmitting a second sidelink signal to a third terminal; comparing feedback priorities for the first sidelink signal and the second sidelink signal in a specific period; and based on a result of comparing the feedback priorities, transmitting or receiving one sidelink feedback signal among a sidelink feedback signal for the first sidelink signal and a sidelink feedback signal for the second sidelink signal in the specific period.
US11324008B2

Methods, systems and devices for providing transmission resources that achieve transmission diversity while reducing pilot signal overhead are described. An exemplary wireless communication method may be implemented in a wireless communication system in which transmission resources are allocated on a per physical resource block (PRB) basis, where a PRB corresponds to a two dimensional resource pattern comprising a first number of subcarriers along a frequency dimension and a second number time slots along a time dimension. The method includes logically dividing subcarriers in each PRB into an integer number of sub-groups of subcarriers, wherein the integer number is greater than one, allocating, to a transmission, transmission resources corresponding to one or more of the sub-groups of subcarriers, performing the transmission in the wireless communication system.
US11324000B2

A method for information transmission, a terminal device and a chip are provided. The method includes: a terminal device sends a first message to a network device, here, the first message includes a parameter for blind detection of a downlink control channel in a target resource region by the terminal device, and the parameter is configured to determine a maximum number of blind detections of the downlink control channel in the target resource region by the terminal device in a specified time.
US11323997B2

A user terminal includes a receiving section that performs monitoring of downlink control channel candidates in at least one of a plurality of cells having a plurality of numerologies, a transmitting section that transmits a parameter indicating a capability for the monitoring, and a control section that determines at least one number of a first maximum number of blind decodings of the downlink control channel candidates within a unit of time and a second maximum number of channel estimation control channel elements within the unit of time for each of the plurality of numerologies based on the parameter to control the monitoring, based on the number.
US11323984B2

A User Equipment (UE) in a wireless communication system using a Coordinated Multi-Point transmission/reception (CoMP) scheme receives Downlink Control Information (DCI) including CoMP control information, determines a starting position of a data channel on wireless resources, based on starting position information of a data channel included in the CoMP control information and used in each of a plurality of cells, and receives data from the plurality of cells starting from the determined starting position.
US11323981B2

Methods, systems, and devices for wireless communication are described. A base station may use quasi co-located antenna ports for transmission of synchronization signal(s)/reference signal(s) and paging signals. For example, the base station may use a first antenna port configuration for transmission of the synchronization/reference signal(s) and a second antenna port configuration for transmission of the paging signal (e.g., paging indicator, paging message, etc.). The base station may transmit an indication of the quasi co-located antenna ports. A user equipment (UE) may receive the synchronization signal and, based on the antenna ports being quasi co-located, receive the paging signal. In some examples, the UE may determine which receive beam to use to receive the paging signal based on the antenna ports being quasi co-located. In some aspects, the UE may use a reference signal transmitted on antenna ports that are quasi co-located with the paging signal antenna ports.
US11323957B2

Some demonstrative embodiments include apparatuses, devices, systems and methods of channel switching. For example, an apparatus may include logic and circuitry configured to cause a wireless communication station to transmit a power save mode indication to an Access Point (AP) over a first wireless communication channel; to wait over the first wireless communication channel for a waiting period subsequent to transmission of the power save mode indication; to switch to a second wireless communication channel after the waiting period; and to adjust a duration of the waiting period based on reception of one or more frames from the AP during the waiting period.
US11323943B2

A method of cell handover, a method for determining an uplink transmit power, and an apparatus are provided, to strengthen control of a network device over a terminal device. The cell handover method includes: receiving, by a terminal device, an early handover command sent by a network device, where the early handover command is used to instruct the terminal device to determine whether to perform a cell handover; measuring, by the terminal device, a downlink signal sent by the network device and/or a downlink signal sent by another network device, and determining, based on an obtained measurement report and a handover condition carried in the early handover command, whether to perform the cell handover; and executing, by the terminal device, a handover command to hand over from a current serving cell to a target cell if the terminal device receives the handover command sent by the network device.
US11323934B2

In some example embodiments, there may be provided a method that includes receiving, at a user equipment while being served by a first system and during protocol data unit session establishment or modification procedure, a message including an access point name aggregate maximum bit rate value; and when there is an inter-system change from the first system to the second system, setting, at the user equipment, the access point name aggregate maximum bit rate value of a session management context for the second system to the received access point name aggregate maximum bit rate value received while being served by the first system. Related systems, methods, and articles of manufacture are also described.
US11323933B2

This application discloses a network handover method and a network device. The method includes: receiving, by a first access network device, first session management information from a session management network element, where the first session management information is for requesting to set up a user plane tunnel for a voice service of a terminal device; and sending, by the first access network device, a handover request to a first mobility management network element based on the first session management information and a first condition, where the handover request is for handing over the terminal device from a first network to a second network, and the first condition includes that the voice service cannot be performed in the first network. This application is applicable to the field of communication technologies.
US11323931B2

This application discloses a method applied to a scenario in which a terminal device moves from a first AN node to a second AN node. The method includes: receiving identification information of a to-be-activated session from the terminal device via the second AN node; sending a context release command to the first AN node when a signaling connection of the terminal device exits between an AMF node and the first AN node; receiving a context release complete message carrying identification information of an active session of the terminal device from the first AN node; when the to-be-activated session and the active session have a same session, sending a first request message to request to deactivate the same session to an SMF node corresponding to the same session; and after the same session is deactivated, sending, to the SMF node, a second request message to request to activate the same session.
US11323927B2

A method for determining whether a target cell has experienced interference due to Passive Intermodulation (PIM) distinguished from other forms of interference at cellular network sites during a time window. In one aspect, the method includes defining a set of N time slices and obtaining a first performance metric for each of the N time slices. The method includes selecting a subset of the N time slices using a set of N first performance metrics where the subset of N time slices includes a first time slice. For the first time slice, at least a first data point is determined using a performance metric for the target cell that was collected during the first time slice. The method includes using the first data point and a supervised learning model to determine whether the target cell has experience PIM interference during the time window.
US11323925B2

A resource selection method, a device and a computer storage medium are provided. The method includes that: auxiliary information of first access resources is acquired, wherein the first access resources include at least one of dedicated access resources or common access resources, and the auxiliary information is configured to assist the terminal device to perform resource selection; a second access resource is determined from the first access resources according to the auxiliary information of the first access resources and resource evaluation information of the first access resources, wherein the second access resource is configure for performing handover.
US11323923B2

The present disclosure is a research which has been conducted with the support of the “Cross-Departmental Giga KOREA Project” of the government (the Ministry of Science and ICT) in 2017 (No. GK17N0100, Development for mmWave-based 5G mobile communication system). The present disclosure relates to a communication technique for convergence of a 5G communication system for supporting a higher data transmission rate beyond a 4G system with an IoT technology, and a system therefor. The present disclosure may be applied to an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security and safety-related service, etc.) on the basis of a 5G communication technology and IoT-related technology. The present disclosure provides a system and a control method therefor, which can prevent, when a dual connectivity scheme is used, delay and data loss due to an operation of releasing and adding a secondary node cell or a process of resetting a user plane and updating a security key and a procedure of forwarding data between user planes through a common anchored user plane and changing (updating) a path between the user plane and a core.
US11323922B2

When a user equipment is roaming in a visited network, mid-call handover from VoWiFi to VoLTE is controlled by policies enforced in the user equipment and the home network. An inter-operator policy and a subscription policy are stored in the home network and a user equipment policy is stored in the user equipment. The roaming user equipment registers in a visited network. Later, when mid-call handover to VoLTE on the visited network is desired, and also permitted by its user equipment policy, the user equipment sends a request containing a call-specific identifier which the responsible network entity in the home network compares with the registered handover parameter having regard to the inter-operator and subscription policies. If compliance with the policies is found, then the mid-call handover is proceeded with.
US11323920B2

A handover method, including sending, by a source base station to a source core network device in a process of handing user equipment (UE) over from the source base station to a target base station, a handover required message. The message comprises identification information of a target core network device, and the identification information of the target core network device instructs the source core network device to perform a core network relocation process with the target core network device. The source base station is connected to the source core network device, and the target base station is connected to both the source core network device and the target core network device.
US11323907B2

Disclosed are techniques for addressing relation round trip time (RTT) positioning and timing advance (TA) command with user equipment (UE) receive-transmit (Rx-Tx) measurement reporting in wireless network such as in new radio (NR).
US11323905B2

A wireless device (400), a higher layer node (404) and methods therein, for handling measurement reporting in a wireless network as performed by the wireless device (400). The wireless device (400) detects (4:1) a coverage object being a cell or a beam not contained in a predefined first list of coverage objects for which the wireless device (400) is required to send measurement reports to a lower layer node (402) operable according to at least one of layer 1 and layer 2. The wireless device (400) then measures a radio signal of the coverage object where the measured radio signal fulfils a predefined event condition, and sends (4:2B) a measurement report of said measuring to a higher layer node (404) operable according to one or more layers above layer 1 and layer 2.
US11323900B2

A base station for performing radio environment monitoring (REM) is described. The base station includes a REM module. The REM module includes user equipment (UE) circuitry communicatively coupled to a baseband processor and a dedicated antenna. The REM module also includes the baseband processor. The baseband processor is configured to send at least one instruction to the mobile circuitry to determine a plurality of REM parameters for a frequency band (or channel, e.g., EARFCN). The mobile circuitry is configured to determine the plurality of REM parameters for the frequency band (or channel) in response to receiving the at least one instruction.
US11323886B2

An integrated decision making and communication system includes a memory to store a list of resources necessary to execute a mission; a transceiver to send and receive data between communicatively linked devices; and a processor to identify a set of available resources capable of executing the mission based on the data received from the devices; compare the list of resources necessary to execute the mission from the memory with the set of available resources; and identify a combination of the devices to execute the mission based on the comparison of the list of resources necessary to execute the mission and the set of available resources.
US11323885B1

Methods and systems are provided for controlling access to communications with a party using a decentralized identity. A device may receive biometric information of a user, and retrieve, using the biometric information of the user, a first communication address associated with the user. The device may transmit, via the first communication address, a request to communicate with the user; and may receive, from a second device associated with the user, an identification of a second communication address controlled by the user. The device may utilize the second communication address to transmit at least one item of information to the second device associated with the user.
US11323882B2

Methods and systems are described for generating and utilizing a pattern of association. The pattern of association can comprise information that indicates to which of a plurality of network devices one or more mobile devices are likely to connect. The pattern of association can comprise information that indicates an order of association. The pattern of association can be associated with one or more factors which can be any information that provides insight into the pattern of association. The pattern of association can be used to identify a next network device that a mobile device will transition to based on which network device the mobile device is currently connected to. Data, such as authentication information, can be pushed to the identified next network device to reduce network connectivity issues that may occur by transitioning between network devices.
US11323871B2

The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for operating a user equipment, UE (10) in a wireless communication system, the method comprising: receiving, from a base station, BS (20), connection setup message requesting information on capabilities of the UE (10); transmitting, to the BS (20), the information on capabilities of the UE (10) is provided.
US11323865B2

A system is described for tracking vehicle position using a smart phone or similar device as an active transponder that communicates with roadside equipment. The system may uses existing RF transceivers on the smart-phone, such as Bluetooth® LE or WiFi to periodically transmit an identifying message. Road-based equipment detects and locates the smart phone. In a further aspect, the smart phone is alerted by roadside beacons and responds with identification information. Transaction processing may be performed either on the smart phone or by roadside or back office equipment. The system may be used for automated roadway tolling and monitoring and also for access control. A coded card may be scanned by the smart card to enter identification for access control.
US11323861B2

An in-vehicle communication system including independent communication hub devices each incorporating a function of relaying communication and a function of controlling a communication path among a plurality of communication connectors, in which each of the communication hub devices includes an internal power supply unit configured to generate, based on input power supply power supplied from a main power supply on a vehicle side, stabilized power supply power necessary for operation of an internal circuit, and a backup power supply output unit configured to supply the input power supply power or the stabilized power supply power generated by the internal power supply unit to the other communication hub device as backup power, in which a backup power supply line is provided which connects the backup power supply output units of the plurality of communication hub devices.
US11323842B2

A method for using location-based services for service management is discussed. The method includes receiving, at a server, a user request from a user device at a geographical location. The method includes accessing a store search to determine a store reference based on the user request and a user location corresponding to the geographical location, the store reference indicating tenant(s) accessible to the user via a user interface (UI) of the user device. The method includes accessing location data for the user device based on the store reference and a user account associated with the user, the location data indicating a service accessible via the UI and associated with a certain tenant. The method includes providing, to the user device and based on the location data, a user experience for accessing the service via the UI.
US11323841B2

Methods and apparatuses for exposure of presence reporting area (PRA) functionality are disclosed for a wireless communication system. According to an embodiment, a service capability exposure function (SCEF) entity receives, from a requesting server, a first request for initiating PRA functionality for at least one user equipment (UE). The PRA functionality is used to monitor whether the at least one UE is located in at least one area of interest. The SCEF entity obtains at least one monitored result for the at least one UE from a mobility management node via a home subscriber server (HSS) or via a policy and charging rules function (PCRF) entity. The SCEF entity sends the at least one monitored result to the requesting server.
US11323833B2

A hearing device includes an enclosure comprising a shell and a faceplate and is configured for at least partial insertion within an ear of a user. An antenna structure of the hearing device is oriented such that a direction of an electric field (E-field) of a propagating electromagnetic signal generated by the antenna structure is directed non-tangentially with respect to the user at the location of the user's ear. The antenna structure includes an antenna disposed in or on the faceplate and a ground plane at least partially supported by the faceplate. A battery and electronic circuitry are disposed within the shell. The electronic circuitry is powered by the battery and is electrically coupled to send and/or receive signals via the antenna structure.
US11323828B2

There is provided a hearing aid with a Receiver In The Ear speaker assembly comprising an connecting member with electric conductors connecting a connector at one end, and a receiver housing with a receiver at the opposite end. A microphone housing with a microphone is attached to the connecting member. Placed along the connecting member, the microphone housing with the microphone is separated by a distance from the receiver in the receiver housing, thus reducing acoustic or mechanical feedback problems. Especially, the microphone and connector may share one common housing.
US11323826B2

A hearing aid service system includes an Internet enabled personal communication device and one or more hearing aids provided with respective transceivers for establishing a wireless connection, whereby the personal communication device becomes a gateway for the hearing aids to a remote server. Each hearing aid includes a processor controlling the operation of the hearing aid, and a memory containing program code for at least one add-on program for the operation of the hearing aid. The server manages user accounts for a plurality of hearing aid users, including managing subscription status for the add-on program. The server creates a subscription status change event for the account upon change of the subscription status for the at least one add-on program and sends a status change instruction to the hearing aids for enabling or disabling one or more of the add-on programs by using the communication device as gateway.
US11323806B2

Apparatus configured to predict a diaphragm deflection signal, block-by-block, in overlapping time blocks based on the loudspeaker signal to obtain one diaphragm deflection signal block per time block. The apparatus is configured to determine a temporal position of a maximum deflection of a current diaphragm deflection signal block of a current time block within an overlap area with a subsequent time block and to calculate a level up to which the current diaphragm deflection signal block can be controlled without diaphragm over-deflection for the current time block by considering a comparison of the current diaphragm deflection signal block with a subsequent diaphragm deflection signal block or an estimation of the subsequent diaphragm deflection signal block from the current diaphragm deflection signal block at the temporal position. The apparatus is configured to attenuate the current diaphragm deflection signal block and to synthesize a modified loudspeaker signal.
US11323805B2

A microphone assembly includes a transducer element and a processing circuit. The processing circuit includes an analog-to-digital converter (ADC) configured to receive, sample and quantize a microphone signal generated by the transducer element to generate a corresponding digital microphone signal. The processing circuit includes a feedback path including a digital loop filter configured to receive and filter the digital microphone signal to provide a first digital feedback signal and a digital-to-analog converter (DAC) configured to convert the first digital feedback signal into a corresponding analog feedback signal. The processing circuit additionally includes a summing node at the transducer output configured to combine the microphone signal and the analog feedback signal.
US11323802B2

Included are a first obtainer which obtains a first signal output from a first microphone, a second obtainer which obtains a second signal output from a second microphone installed in a position different from a position where first microphone is installed, a delayer which delays the second signal, a mixed sounds estimator which estimates noises mixed in the first signal on the basis of the second signal delayed by the delayer, and an eraser which erases the noises from the first signal, the noises being estimated by the mixed sounds estimator.
US11323795B2

An in-ear earphone includes a face shell for mounting an earphone cable and a bottom shell provided with an ear cap, and the face shell and the bottom shell are detachably fixed to each other. A loudspeaker and an air valve are arranged at the bottom shell, and the bottom shell is further provided with a sound transmission channel. One end of the sound transmission channel is in communication with an inner ear canal located at a side where the ear cap is located, and another end of the sound transmission channel is connected to a sealing plug formed by the air valve and the loudspeaker. One end of the air valve is connected to the sound transmission channel, and another end of the air valve is connected to an outer ear canal, to control the communication between the sound transmission channel and the outer ear canal.
US11323785B1

The system a gas meter configured to determine a meter health factor based on a power management criteria, ageing criteria, wear out criteria, accuracy impacting criteria, and an alarm state. The gas meter can determine if the meter health factor indicates if functioning is intact, if functioning is intact or assistance and repair is needed immediately or at a future time interval based on the power management criteria, ageing criteria, wear out criteria, accuracy impacting criteria, and an alarm state. The gas meter informs a head end system that the assistance and repair is required. The head end system receives information that the assistance and repair is required, and obtains the required assistance and repair from one or more external sources.
US11323776B2

Media content recommendation systems and methods are operable to recommend one or more media content events to a user based on identified changes in the user's emotional state during a life event that is experienced by the user.
US11323772B2

Example methods, apparatus, systems, and articles of manufacture are disclosed to estimate population reach for different unions based on marginal ratings. An example apparatus includes a reach determiner to determine a population reach estimate of a union of time intervals for which media ratings data is available, the population reach estimate based on a pseudo universe estimate of a population audience corresponding to the union of the time intervals; a pseudo universe determiner to determine a pseudo universe estimate of a recorded audience corresponding to the union of the time intervals; determine the pseudo universe estimate of the population audience based on the pseudo universe estimate of the recorded audience; and iteratively update the pseudo universe estimate of the population audience to reduce an error; and a consistency checker to adjust the population reach estimate, the reach determiner to output the population reach estimate of the union.
US11323763B2

A display apparatus and a method of operating the same are provided. The display apparatus includes a display; a memory; and a processor configured to execute at least one instruction stored in the memory so as to: receive a channel control input; identify an image providing source of the display apparatus in response to recognizing the channel control input as a pre-designated input; generate a channel scroll user interface (UI) based on channel information corresponding to the image providing source of the display apparatus; and control the display to display the generated channel scroll UI. The channel scroll UI includes a plurality of channel items included in the channel information corresponding to the image providing source, and a current channel indicator indicating a current channel item from among the plurality of channel items, the current channel item corresponding to content currently displayed on the display apparatus.
US11323762B2

Systems and methods are operable to control presentation of an erotica-related media content event. An exemplary embodiment is a media device that receives information from a user sensor that is configured to sense a physical characteristic of a user viewing the erotica-related media content event, and automatically changes presentation of the erotica-related media content event based on the received information corresponding to the sensed physical characteristic of the viewing user.
US11323753B2

Systems and methods select and provide video snippets in a matrix interface. Example methods include obtaining a portion of a live video stream, assigning the portion to a class, determining that the portion is preview-eligible, and generating a snippet of the live video stream using the portion. Other example methods include determining, using a trained video classifier, a set of live broadcasts that have at least one portion that is classified as preview-eligible, calculating, for each of the live broadcasts in the set, an aggregate score for the live broadcast, selecting live broadcasts with highest aggregate scores, generating a snippet for each of the selected live broadcasts, and providing the snippets in a user interface. Methods may also include selecting portions of live video streams that are responsive to a user-provided parameter and generating a snippet for each live video stream that has a preview-eligible portion.
US11323750B2

A video system, a video processing method, a device and a computer readable medium are disclosed. The system includes: a front-end device and a cloud server; the front-end device is configured to collect video stream data, and set a video identifier and a service scenario identifier for the video stream data, upload the video identifier, the video stream data and the service scenario identifier to the cloud server; the cloud server is configured to generate a video file corresponding to the video identifier according to the service scenario identifier, the video identifier and the video stream data; and store the video file.
US11323743B2

Aspects of the disclosure provide methods, apparatuses, and non-transitory computer-readable storage mediums for video encoding/decoding. In a method, prediction information of a current block of a coding unit tree in a coded bit stream is decoded. The prediction information indicates at least one allowed block partitioning structure for the current block. A sub-block transform (SBT) mode is determined for the current block based on the prediction information indicating that SBT is used for the current block. A partition of the current block based on the SBT mode is different from a partition of the current block based on the at least one allowed block partitioning structure. The current block is reconstructed based on the SBT mode.
US11323742B2

A video processing method includes performing or skipping following processing based on whether a size of a coding unit is not smaller or is smaller than 8×8. The processing includes dividing the coding unit into sub-blocks each having a fixed size of 8×8, scanning a left neighboring block and determining a reference motion vector of the coding unit, determining a related reference block of a sub-block in the co-located reference image according to the reference motion vector, determining a scaling factor of a motion vector of the related reference block, scaling the motion vector of the related reference block using the scaling factor, determining motion information of the sub-block according to the scaled motion vector, and performing prediction for the coding unit according to the motion information.
US11323741B2

A video processing method is provided to include determining, for a current video block of a video, a final prediction block for the current video block by refining one or more initial predictions for the current video block using an optical flow calculation based on a gradient of initial prediction samples according to a precision rule; and performing a conversion between the current video block and a coded representation using the final prediction block, wherein the optical flow calculation includes a prediction refinement with optical flow (PROF) procedure or a bi-directional optical flow (BDOF) procedure, wherein the precision rule specifies to use a same precision for representing the gradient for both the PROF procedure and the BDOF procedure.
US11323729B2

Methods and devices are described for a parallel multi-processor encoder system for encoding video data, wherein the video data comprises a sequence of frames, wherein each frame comprises a plurality of blocks of pixels in sequential rows. For each frame, the system may divide the plurality of blocks into a plurality of subsets of blocks, wherein each subset of blocks is allocated to a respective processor of the parallel multi-processor system. Each respective processor of the parallel multi-processor system may sequentially encode rows of the subset of blocks allocated to the respective processor and sequentially transmit each encoded row of blocks as a bit stream to a decoder on a channel. For each row, the respective encoded row of blocks may be transmitted to the decoder for each processor prior to transmission of the next sequential respective encoded row of blocks for any processor. Additionally, a similar parallel multi-processor decoder system is described.
US11323726B2

A computing device performs a method of decoding video data by reconstructing a luma block corresponding to a chroma block; searching a sub-group of a plurality of reconstructed neighboring luma samples in a predefined order to identify a maximum luma sample and a minimum luma sample; computing a down-sampled maximum luma sample corresponding to the maximum luma sample; computing a down-sampled minimum luma sample corresponding to the minimum luma sample; generating a linear model using the down-sampled maximum luma sample, the down-sampled minimum luma sample, the first reconstructed chroma sample, and the second reconstructed chroma sample; computing down-sampled luma samples from luma samples of the reconstructed luma block, wherein each down-sampled luma sample corresponds to a chroma sample of the chroma block; and predicting chroma samples of the chroma block by applying the liner model to the corresponding down-sampled luma samples.
US11323723B2

A method comprising obtaining a full-picture track or bitstream including a motion-constrained tile set; and constructing a full-picture-compliant tile set track or bitstream on the basis of the motion-constrained tile set or generating instructions to construct a full-picture-compliant tile set track or bitstream on the basis of the motion-constrained tile set.
US11323722B2

Expressions of artistic intent are identified (e.g. by signaling or content analysis) and expressed as a set of artistic intent positions P.sub.ART and artistic intent characteristics C.sub.ART, Artistic intent characteristics C.sub.ART may be signaled and used to identify artistic intent positions P.sub.ART. Artistic intent preservation coding and processing may be applied to sample positions P.sub.ART to preserve characteristics C.sub.ART. A coding user interface may permit a user to specify an artistic set (e.g. P.sub.ART and/or C.sub.ART) and to select and/or configure treatment of pixels and/or blocks associated with an artistic set, such as a fidelity enhancement, QP adjustment value and/or postprocessing. Content priority or importance levels may be impliedly and/or expressly indicated at fine (e.g. pixel, sample) and/or coarse (e.g. block) levels of content for varying (e.g. enhanced, reduced) levels of treatment in content coding, delivery, processing and/or error resilience/robustness.
US11323719B2

Devices, systems and methods for digital video coding, which includes matrix-based intra prediction methods for video coding, are described. In a representative aspect, a method for video processing includes performing a first determination that a luma video block of a video is coded using a matrix based intra prediction (MIP) mode in which a prediction block of the luma video block is determined by performing, on previously coded samples of the video, a boundary downsampling operation, followed by a matrix vector multiplication operation, and selectively followed by an upsampling operation, performing, based on the first determination, a second determination about a chroma intra mode to be used for a chroma video block associated with the luma video block, and performing, based on the second determination, a conversion between the chroma video block and a bitstream representation of the chroma video block.
US11323715B2

A method for decoding an encoded data stream representative of at least one image, which is divided into blocks. The decoding method includes, for a current block: evaluating a plurality of value hypotheses of at least one description element of the current block, by calculating a likelihood measurement per hypothesis; calculating a disparity in the likelihood measurements obtained; determining at least one parameter of a decoder based on the calculated disparity; decoding, using the determined decoder, complementary information for identifying at least one of the hypotheses; and identifying at least one of the hypotheses using the decoded complementary information and obtaining a value of the at least one description element for the current block, from the at least one identified hypothesis.
US11323714B2

The present principles relate to a method and device for context-adaptive binary arithmetic coding a sequence of binary symbols representing a syntax element related to video data or a syntax element relative to a video data. The method comprises, for each binary symbol of the sequence of binary symbols:—obtaining (100) a context value from a context model defined for the binary symbol, said context value comprising bits representing the probability, called a first probability p, for the binary symbol to be equal to a binary value;—determining (110) a second probability p′ by modifying said first probability p according to at least one previously coded binary symbol of the sequence of binary symbols;—arithmetic coding (120) the binary symbol based on said second probability p′; and—updating and storing (130) the first probability p of said context value
US11323705B2

There is provided an image encoding/decoding method and apparatus. The image encoding method of the present invention includes: determining whether or not to apply filtering to a filtering target sample; determining a filter type on the basis of the determination; and applying filtering to the filtering target sample by using the determined filter type.
US11323695B2

Devices and methods for video coding are described. One method comprises receiving a bitstream, wherein the bitstream comprises prediction related information, and wherein the prediction related information includes at least one of: numbers and positions of available primary reference samples, an intra prediction mode index, or a size of the current coding block; determining whether a bidirectional intra prediction (BIP) flag is signaled in the bitstream based on the prediction related information; and reconstructing the picture.
US11323688B2

An information processing apparatus is configured to perform at least based on a first parameter set according to an operation on a first operation unit, and also based on an operation on a second operation unit, changing at least either of a position and a direction of a virtual viewpoint corresponding to a virtual viewpoint image, receiving a switching input for switching a parameter set according to an operation on the first operation unit from the first parameter to a second parameter, and based on the second parameter set according to an operation on the first operation unit performed after the switching input is received, and also based on an operation on the second operation unit, changing at least either of the position and the direction of the virtual viewpoint.
US11323687B2

Structured light approaches utilize a laser to project features, which are then captured with a camera. By knowing the disparity between the laser emitter and the camera, the system can triangulate to find the range. Four, 185 degree field-of-view cameras provide overlapping views over nearly the whole unit sphere. The cameras are separated from each other to provide parallax. A near-infrared laser projection unit sends light out into the environment, which is reflected and viewed by the cameras. The laser projection system will create vertical lines, while the cameras will be displaced from each other horizontally. This relative shift of the lines, as viewed by different cameras, enables the lines to be triangulated in 3D space. At each point in time, a vertical stripe of the world will be triangulated. Over time, the laser line will be rotated over all yaw angles to provide full a 360 degree range.
US11323684B2

A relay apparatus for transferring image data transmitted from a transmission source to a transmission destination, including circuitry to: receive video image data from a first apparatus being the transmission source; determine whether a second apparatus being a transmission destination is capable of reproducing the video image data received from the first apparatus; based on a determination that the second apparatus is not capable of reproducing the video image data received from the first apparatus, apply image processing to the video image data to generate image data compatible with the second apparatus; and transfer the image data compatible with the second apparatus, to the second apparatus.
US11323679B2

A multi-camera system, including a first camera apparatus, a second camera apparatus, and an information processing apparatus. The information processing apparatus includes a communication interface and processing circuitry. The processing circuitry is configured to receive a predetermined user input and in response to the predetermined user input, send, via the communication interface, a first control signal to the first camera apparatus that captures a first video, and send, via the communication interface, a second control signal to the second camera apparatus that captures a second video. The first control signal causes the first camera apparatus to assign first unique identifiers to frames of the first video captured by the first camera apparatus. The second control signal causes the second camera apparatus to assign second unique identifiers to frames of the second video captured by the second camera apparatus.
US11323673B2

A method for operating a control apparatus that controls a projector includes causing the projector to project a first image on a display surface, generating brightness information based on captured image data generated by causing an image sensor to capture an image of the first image on the display surface via a bandpass filter, and generating color correction data for correcting the colors of an image projected by the projector based on the brightness information. The bandpass filter includes a first bandpass filter that transmits the red light, a second bandpass filter that transmits the green light, and a third bandpass filter that transmits the blue light, and the wavelength region of the light that the first bandpass filter transmits, the wavelength region of the light that the second bandpass filter transmits, and the wavelength region of the light that the third bandpass filter transmits are separate from one another.
US11323670B2

A light emitting apparatus includes a first light source, a first angle converter, a second angle converter, and a diffuser that is provided on a light incident or exiting side of the first angle converter and diffuses the first light. The first angle converter includes a first light incident section on which the first light is incident, a first light exiting section via which the first light exits out of the first angle converter, and a first reflection section that reflects the first light incident via the first light incident section toward the first light exiting section. The second angle converter includes a second light incident section on which the first light having exited is incident, a second light exiting section via which the first light exits, and a second reflection section that reflects the first light incident via the second light incident section toward the second light exiting section. The area of the first light incident section is greater than the area of the first light exiting section, and the area of the second light incident section is smaller than the area of the second light exiting section.
US11323656B2

A device and system can physically position a camera lens between the eyes of the image of the person onscreen in a video conference. To position the lens, a mechanical device may position or move the camera lens. The mechanical device can include a movable armature that can move a small camera head (i.e., a lens with or without supporting electronics) from a first position of the computer monitor (e.g., the frame of the monitor) to a second position onscreen. The second position can place the lens near or over the image of the other party, for example, between the eyes of the onscreen image of the other party.
US11323655B2

A network interface device includes a passive path between an entry port and a first port. The network interface device also includes an active path between the entry port and a second port. The network interface device also includes a buffer in the active path configured to absorb, attenuate, terminate, or isolate radio-frequency (RF) signals. The network interface device also includes a switching element in the active path configured to cause the RF signals to bypass the buffer when the network interface is in a first state that exists during powered operation of the network interface device, and direct the RF signals to the buffer when the network interface device is in a second state that exists during non-powered operation or faulted operation of the network interface device.
US11323648B2

The present invention relates to a solid-state image sensor including a pixel array section including a plurality of unit pixels each having a photoelectric conversion unit, the plurality of unit pixels being arranged in a matrix, a sample-and-hold unit configured to sample and hold a pixel signal output from the unit pixel through a vertical signal line provided in association with column arrangement of the pixel array section, and an analog-to-digital conversion unit configured to convert a pixel signal output from the sample-and-hold unit into a digital signal. Then, the sample-and-hold unit has two sample-and-hold circuits in parallel for one vertical signal line, and at least one of the two sample-and-hold circuits has at least two sampling capacitors.
US11323635B2

An imaging device that reduces differences between a bird's eye image and an actually measured distance includes imaging cameras mounted on a ship to capture peripheral images of the ship and combines the peripheral images captured by the imaging cameras to create the bird's eye image as a composite image. The imaging device includes an auxiliary camera adjacent to at least one of the imaging cameras, and a distance calculator that calculates a distance in a lateral direction using the auxiliary camera and the at least one of the imaging cameras adjacent to the auxiliary camera.
US11323634B2

Disclosed are systems, methods, and computer-readable storage media to enhance an image on a mobile computing device. In some aspects, a user interface on the mobile computing device provides a plurality of image filters, each of the image filters associated with a different replacement sky type. Upon application of one of the plurality of image filters to an image, the mobile computing device is configured to identify a sky portion of the image, modify a color mapping of a non-sky portion of the image, and replace the sky portion of the image with replacement sky data corresponding to the applied image filter.
US11323632B2

An electronic device and a method of controlling the electronic device are provided. The electronic device includes a camera configured to generate a detection signal by photoelectrically converting incident light, and one or more processors configured to control operations of the camera and process the detection signal, wherein the one or more processors are further configured to generate a plurality of input images from the detection signal, determine a first parameter applied to the camera, based on brightness information of each of the plurality of input images, detect at least one feature from each of the plurality of input images, determine whether to update the first parameter, based on a result of detecting the at least one feature, and adjust the first parameter, based on a brightness of the at least one feature upon determining to update the first parameter.
US11323621B2

An image communication system includes a first communication terminal and a second communication terminal. The first communication terminal acquires an image captured by an image capturing device. The second communication terminal receives the image from the first communication terminal via a network, and displays the image on a screen of a display. The first communication terminal includes first circuitry that, in response to receipt of an operation of switching a view mode related to viewing of the image, transmits the image and first viewable area information to the second communication terminal. The first viewable area information is related to a viewable area of the image to be displayed on the screen. The second communication terminal includes second circuitry that receives the image and the first viewable area information and displays the viewable area of the image on the screen based on the first viewable area information.
US11323615B2

An image is captured using an image recorder. A set of contextual data associated with the image is also captured. The image is annotated with information describing the set of contextual data. A user is notified of the image and the set of contextual data, based on the annotated information that describes the set of contextual data.
US11323605B2

A system that incorporates teachings of the present disclosure may include, for example, receiving location information associated with a mobile communication device, determining a first location of the mobile communication device based on the location information, selecting a first camera from a group of cameras based on the determined first location, receiving at least one first image from the selected first camera that captures at least a portion of the first location, performing image recognition on at least one second image to identify a user associated with the mobile communication device, selecting another camera from the group of cameras based on a determined position of the identified user, and receiving at least another image from the selected other camera. Other embodiments are disclosed.
US11323580B2

An information processing apparatus includes a controller. The controller performs control such that, when a logged-in user is located within a first predetermined range from the apparatus, a second user approaching the apparatus is notified that the apparatus is in use.
US11323571B1

Systems and methods provide a resident of a controlled-environment facility with a visitation service that include messaging capabilities, where the message are managed on behalf of the resident based on the visitation sessions in which the resident participates. In one scenario, the resident issues an initial visitation request for a visitation session with a particular non-resident. In response to the non-resident not accepting this initial visitation request, the resident is allowed to record and store a message, such as a voice message or video message, for retrieval and playback by the non-resident. At a later time, the resident issues a second visitation request for a visitation session with the same non-resident. The non-resident accepts the second request and the requested visitation session between the non-resident and the resident is conducted. In response to the visitation session being conducted, the stored message may be marked for deletion.
US11323554B2

According to various embodiments of the present invention, an electronic device may comprise: a housing which comprises a first surface facing in a first direction, a second surface facing in a second direction opposite to the first direction, and a side wall at least partially surrounding a space between the first surface and the second surface; at least one seating part formed to be partially surrounded by a part of the side wall inside the housing; a guide member disposed adjacent to a part of the side wall inside the housing and surrounding another part of the seating part; and at least one electronic component comprising a body part and a protrusion part formed on one surface of the body part, wherein the electronic component may be guided by the guide member to enter the seating part along a direction inclined with respect to the side wall or the first surface and then to be mounted in the seating part. The electronic device as described above may vary depending on embodiments.
US11323553B2

An electronic device includes a first device housing and a second device housing. A hinge couples the first device housing to the second device housing. The first device housing is pivotable about the hinge relative to the second device housing. The hinge separates a first chamber defined by the first device housing and a second chamber defined by the second device housing. A flexible substrate passes through the first chamber and the second chamber. The flexible substrate spans the hinge, either by passing through or around a hinge housing. The flexible substrate deforms to a curvilinear deformed state within one or both of the first chamber or the second chamber when the first device housing and the second device housing pivot about the hinge from a closed position to an axially displaced open position.
US11323551B2

The invention proposes a method of encoding data packet by encoding type information and size information of said data packet into the same field. The invention also proposes a method of processing data packets received. The data packet comprises a header part and a message part. The header part comprises at least one bit for indicating the type of said data packet, said method comprising a step 101 of obtaining the size information of said data packet based on said at least one bit.
US11323541B2

A data processing method includes determining whether or not it is possible to perform a new processing task within the new processing task's time limit if execution of one or more current processing tasks is continued based on the one or more current processing tasks' configurations. In case the new task's performing is determined not to be possible within the new task's time limit, resources are released from the current tasks so as to still enable performing the current tasks within their respective time limits.
US11323540B1

Media, methods, and systems are disclosed for mitigating network resource contention. Event scheduling details are received regarding one or more virtual events. In response to determining that an upcoming virtual event will begin within a predetermined time threshold, various steps are performed. First, a predicted number of event participants is determined. Next, database artifacts associated with the upcoming virtual event are prefetched. Then static event display resources are accessed prior to a start of the upcoming virtual event, and the database artifacts and the static event display resources are cached. A network protocol request to access network resources is received from a client device. The database artifacts and the static event display resources are pushed to a client-side cache associated with the client device, and a minimal network response is transmitted to the client device.
US11323539B2

Apparatus and methods for ensuring delivery of geographically relevant content to IP-enabled user devices associated with a content distribution network. In one embodiment, the network (or designated content source) determines a geographic context or location of the user device, and uses this information to manage the packaging and delivery of content thereto so as to obey blackout restrictions and/or provide content which is relevant to the geographic context/location. In one variant, the user device comprises a mobile device such as a tablet computer or smartphone, and the content is delivered thereto over either a managed or unmanaged network infrastructure.
US11323532B1

Methods, systems, and devices for data packaging at an application server are described. According to the techniques described herein, a device (e.g., an application server) may receive a link to a data stream package that defines metadata of a data source and an import schedule associated with importing streaming data from the data source to a data target associated with the application server. The device may install the data stream package based on the received link and import the streaming data from the data source according to the import schedule based on installing the data stream package. The device may then map, based on the metadata of the data source defined in the data stream package, a set of source data fields of the data source to a set of target data fields of the data target.
US11323531B2

A comprehensive approach to streaming backups for virtual machines (“VMs”) in a storage management system comprises improvements to the assignment of data agent proxies for VM secondary copy operations. New considerations in performing a VM streaming backup job include without limitation: determining and enforcing a system-wide per-proxy limit of concurrent data streams; generating an ordered priority list of the VMs to be backed up as a basis for choosing which proxies will back up the respective VM, though the illustrative system may not strictly adhere to the priority list based on further considerations; identifying a next available proxy based on data stream utilization at the proxy; and dynamically re-generating the priority list and re-evaluating considerations if some VMs become “stranded” due to a failure to be backed up. Secondary copy operations are distributed to proxies in ways that improve the chances of successfully completing VM streaming backups.
US11323510B2

A load-balancing cluster includes a switch having a plurality of ports; and a plurality of servers connected to at least some of the plurality of ports of the switch. Each server is addressable by the same virtual Internet Protocol (VIP) address. Each server in the cluster has a mechanism constructed and adapted to respond to connection requests at the VIP by selecting one of the plurality of servers to handle that connection, wherein the selecting is based, at least in part, on a given function of information used to request the connection; and a firewall mechanism constructed and adapted to accept all requests for the VIP address for a particular connection only on the server that has been selected to handle that particular connection. The selected server determines whether it is responsible for the request and may hand it off to another cluster member.
US11323508B2

A system for providing a web service on a network of addressable nodes, said web service comprising a plurality of discrete, individually-addressable microservices, said system comprising: (a) at least one load balancer configured for routing a request from a node for a microservice to one of a plurality of virtual addresses, each virtual address corresponding to a unique microservice, and (b) one or more physical nodes associated with each virtual address, each physical node comprising one or more microservices, each microservice comprising a microservice-specific module for executing a particular function, said microservice-specific module linked to an interface for communicating over said network, each microservice being one of a plurality of individually-addressable microservices constituting a web service.
US11323507B2

A server system including a first server to execute first role, other server to execute at other role, spare server and management layer server. The management layer server is configured to allocate first group of users to access first server and other group of users to access other server, receive status information sent by first server and status information sent by other server, analyse status information to determine an operational status of first server and operational status of other server, update role of spare server to first role when operational status of first server indicates failed state and reallocate first group of users to the spare server, and update a role of another spare server to the other role when the operational status of the other server indicates a failed state and reallocate the other group of users to the other spare server.
US11323505B2

The computer networks provided herein may facilitate the delivery of interactive data units to selective client nodes. A client node may be associated with, and/or be accessible by, a user. The interactive data units received at a client node may be activated by the user associated with the client node. In some instances, a computer network may facilitate delivery of an interactive data unit to a client node based on the user, and/or user information, associated with the client node.
US11323503B1

Various example implementations are directed to circuits, apparatuses, and methods for providing virtual computing services. One example involves a data storage device and a set of computing servers communicatively coupled to the data storage device. The set of computer servers provide a respective virtual data center for each of a plurality of accounts, and the respective virtual data center for each account provides virtual services specified in a respective settings file for the account stored in the data storage device. The virtual data center for at least one of the accounts includes a set of virtual desktops and a set virtual servers, including at least one Voice-over-IP (VoIP) server. The VOIP server provides VOIP service for a plurality of users of the account.
US11323502B2

Methods and apparatus, including computer program products, are provided for transport method selection of asynchronous notifications. In some example embodiments, there may be provided a method that includes sending, by a client, a hypertext transfer protocol request for at least one asynchronous notification to be sent by a server to the client, the hypertext transfer protocol request including at least one proposed transport method for carrying the at least one asynchronous notification; determining, by the client, whether a first transport method selected by the server from the at least one proposed transport method is successfully established; and when the determination is that the first transport method is not established successfully, sending, by the client, another hypertext transfer protocol request to the server, the other hypertext transfer protocol request including at least one other proposed transport method. Related systems, methods, and articles of manufacture are also described.
US11323488B2

Systems and methods are disclosed herein that relate to secure monitoring or interception of traffic in a wireless communications system. In some embodiments, a method of operation of a network node comprises receiving a list of one or more obfuscated target identifiers from a monitoring node, where each obfuscated target identifier is a user identifier of a target user that is encrypted using a first encryption key that is unknown to the network node. The method further comprises receiving an encrypted packet from another network node and determining whether an encrypted user identifier of the encrypted packet matches one of the obfuscated target identifiers. The method further comprises, if the encrypted user identifier matches one of the obfuscated target identifiers, further encrypting the encrypted packet using a second encryption key negotiated between the network node and the monitoring node and transmitting the further encrypted packet to the monitoring node.
US11323482B2

Methods, systems, and media for protecting computer systems from user-created objects are provided. In some embodiments, the method comprises: detecting, at a second user device, that an object has been accessed on the second user device; determining whether an exception has occurred by scanning the object on the second user device; in response to determining that the exception has occurred, transmitting, from the second user device to a server, a request for a security policy to be applied by the second user device in connection with the object, wherein the request includes an identifier of the object; receiving, from the server, the security policy; determining, based on the security policy, that the object was created by a first user device associated with an organization the second user device is also associated with; determining whether to allow the object to be accessed by the second user device based on the security policy; and in response to determining that the object is allowed to be accessed, allowing the object to be accessed on the second user device.
US11323472B2

Systems, methods, and software described herein provide security actions based on related security threat communications. In one example, a method of operating an advisement system includes identifying a security threat within the computing environment, wherein the computing environment comprises a plurality of computing assets. The method further provides obtaining descriptor information for the security threat, and retrieving related communication interactions based on the descriptor information. The method also includes generating a response to the security threat based on the related communication interactions.
US11323458B1

One variation of a method for end-to-end encryption of electronic mail includes: receiving an email encrypted according to a first encryption protocol and designating a recipient within an external domain; verifying encryption protocol supported by the recipient's mail client; in response to a recipient exclusion database identifying the recipient, encrypting the email to a less-robust encryption protocol supported by the recipient mail client and transmitting the email to the recipient; in response to the recipient exclusion database excluding the recipient and the recipient mail client supporting the first encryption protocol, transmitting the email encrypted according to the first encryption protocol to the recipient; and, in response to the recipient exclusion database excluding the recipient and the recipient mail client not supporting the first encryption protocol, generating a notification email including a hyperlink to a secure webpage containing content of the email and transmitting the notification email to the recipient.
US11323453B2

Data processing methods, devices, access control systems, and storage media are provided in the present disclosure. In a data processing method, isolated sessions corresponding to a same source IP address in a preset time period are identified. When the number of isolated sessions meets a preset condition, the source IP address is determined to be a target IP. In implementations, based on activities of isolated sessions, a method of reverse identification of whether a source IP address of the isolated sessions is a target IP is not easily bypassed by the target IP, and is advantageous for accurately identifying the target IP that satisfies a condition.
US11323448B1

Techniques for managing redundant or overlapping access rules are provided. Access rules are determined for evaluation. Performance metrics for the access rules prior to implementation and post implementation are determined. Overlapping access rules are identified. Performance of the overlapping access rules are evaluated to determine actions to be applied to the overlapping access rules. Recommended actions and adjustments can be automatically provided by the system based on the performance analysis.
US11323446B2

Provided is an information processing device including a real name information acquisition unit that acquires real name information from a real name server that stores a user ID and personal information in association with the real name information. The information processing device further includes an anonymous information acquisition unit that acquires anonymous information from an anonymous server that stores an anonymous ID in association with the anonymous information. The information processing device further includes a screen generation unit that generates a display screen including the real name information and the anonymous information.
US11323438B2

Protocol-agnostic configuration of an identity claim policy that is to be implemented in one or more applications according to one of multiple identity authentication protocols and verification of the protocol-agnostic claims configuration. First, one or more protocol-agnostic identity claim policies are generated and applied to one or more applications. Each of the one or more applications implement one of the multiple identity authentication protocols. For each of the one or more applications, the implemented identity authentication policy is determined. Based on the determined identity authentication protocol, one or more identity claims of the corresponding application that corresponds to the at least one identity claim policy is then construed.
US11323437B1

A device may determine that a first link of the device is active. The device may determine whether a Media Access Control Security (MACsec) session is established on the first link. The device may selectively enable or disable a second link of the device based on determining whether the MACsec session is established on the first link.
US11323432B2

A system provides for automatically populating a sign-on page with sign-on credentials and automatically submitting the sign-on credentials without revealing at least one of the sign-on credentials to a user. The system includes an access management server which stores sign-on credentials for accessing the application. An application access tool, which is associated with a browser extension of a web browser executed on the user's device, provides a network address for a sign-on page of the application, and the system automatically redirects the user to this sign-on page. The system uses a source code database to identify object identifiers in html source code of the sign-on page that corresponds to form fields or other objects in the sign-on page for appropriately entering and submitting sign-on credentials in the sign-on page. The credentials are entered in an anonymized format that is not readable to the user.
US11323423B2

Aspects of the subject disclosure may include, for example, a method in which a processing system parses a network trace to collect packet information for an encrypted adaptive bite rate (ABR) video stream encoded into a plurality of tracks; detects request packets corresponding to a sequence of requests for video segments to be downloaded at a network client; and determines a traffic volume downloaded at the network client to obtain a sequence of traffic volumes. The processing system identifies, for each of the sequence of traffic volumes, a set of candidate segments each having a size meeting a size-matching criterion; selects a segment from the set of candidate segments to determine a segment sequence meeting an index-matching criterion; and infers characteristics of the sequence of traffic volumes based on the segment sequence. Other embodiments are disclosed.
US11323421B2

A method of transmitting messages from a sender to a recipient over a wireless channel, the messages including a sequence counter and a frame counter. The method comprises establishing initial values of the sequence counter and the frame counter at the sender. Initial values of the frame counter and the sequence counter are provided to the recipient. The sender sends compressed messages including the value of the sequence counter and not the frame counter and monitors for an acknowledgement of receipt by the recipient. When no acknowledgment is received, the sender sends uncompressed messages until an acknowledgement of receipt is received from the recipient. The sequence counter is incremented and the next value of the frame counter is established as the integer next larger than previous value of the frame counter which is congruent to the sequence counter modulo 256.
US11323415B2

Various implementations described herein are directed to technologies for providing over the top streaming for one or more clients of a network. A network is formed among the network among customer premises equipment. The customer premises equipment may include at least a gateway and the one or more clients. A user selection for over the top (OTT) content is received. The OTT content is received and includes one or more cue points. The gateway is marked as a proxy server in response to receiving the one or more cue points. Proxy data is received from the gateway corresponding to the one or more cue points.
US11323414B2

A Domain Name System (DNS) resolver node receives a first DNS query from a first client device. The resolver node determines that it cannot answer the query using its local cache so it performs a recursive query to obtain the answer. The answer is sent to the first client and stored in its local cache. The resolver node further transmits the answer to multiple other resolver nodes that are part of the same cluster so they can update their respective local cache with the information. Upon receiving a message from another resolver node that includes a set of resource record(s) not in its local cache, the resolver node stores that set of resource record(s) in its local cache so that it can locally answer subsequent requests for those resource record(s) locally.
US11323412B2

A method of generating a routing table containing information as to the weighted distance between client's that use a resolver and each rack gateway, taking into account how traffic to each client can egress from the CDN AS. The routing table is generated from matrix multiplication of two matrices. One matrix contains information as to the proportion of each client's use of each resolver in a first autonomous system. The second matrix contains information as to the distance between each client and each rack, with respect to an egress gateway, in a second autonomous system. The resulting routing table is used to identify a gateway from which to serve content to a client.
US11323403B2

A method of determining locations for social media postings may include: retrieving, by communicating with at least one application programming interface (API) of a social media system over one or more first communication networks, at least one social media posting; determining at least one location mention in the at least one social media posting; determining at least one location based on the at least one location mention; determining a primary location from the at least one location; storing, in at least one database on a non-transitory machine-readable storage medium, at least one set of geo-coordinates for the primary location in at least one posting object for the at least one social media posting; and outputting, by communicating with a user system over one or more second communication networks, the at least one social media posting with the stored at least one set of geo-coordinates for display on the user system.
US11323397B2

Systems and methods are provided that intercept access to mainframe computing systems' messaging systems. For example, a method may include using a replacement messaging interface adapter to intercept a messaging request being directed from a client program to a messaging interface module of a messaging subsystem that is identified by a messaging stub interface module that implements a documented messaging interface. The method may also include performing an auxiliary function on the messaging request. The method may additionally include transmitting the messaging request to the messaging interface module of the messaging subsystem. The method may further include receiving a response from the messaging subsystem. Additionally, the method may include providing the response to the client program.
US11323393B2

A system and method for improving network storage accessibility, the method including: sending at least a first request for a data block to be sent from a storage device to a client device over a network connection; determining if the network is congested; initiating a client-specific buffer when it is determined that the network is congested, wherein the requested data block is stored in the client-specific buffer; and sending at least a second request for the data block stored within the client-specific buffer to be sent to the client device.
US11323392B1

Techniques are described for managing a split-brain scenario in a multihomed environment by exchanging isolation information between a leaf device and two or more spine devices to which the leaf device is multihomed via a link aggregation group (LAG). The techniques include selecting one of the spine devices as a primary spine device and determining, based on the isolation information, whether the spine devices are isolated from each other. In the split-brain scenario in which all of the spine devices are isolated from each other, the primary spine device is configured to maintain the LAG with the leaf device while the other spine devices mark the LAG with the leaf device as down. In this way, in the split-brain scenario, the leaf device may continue to send traffic to other leaf devices in the leaf layer using the LAG to the primary spine device.
US11323385B2

A communication system includes a flow collector that collects traffic of an NW edge accommodating CPE, an NFVO that provides an instruction to add or remove a resource of a VNF, a resource management device that notifies the NFVO of an increased or decreased resource amount and an addition or removal instruction of the VNF based on an increase or decrease of the traffic of the NW edge collected by the flow collector, and that decides on the VNF which becomes a redirection destination of the traffic of the NW edge in response to execution of addition or removal of the VNF by the NFVO, a VIM that adds or removes the VNF in accordance with an instruction from the NFVO, and a flow controller that instructs the NW edge to set the VNF decided by the resource management device as the redirection destination of the traffic.
US11323384B2

A system comprising one or more network elements and configured to process at least first and second packet flows. The system comprises a first packet gate selectively switchable between an open state for packet transmission and a closed state and an associated first packet queue. The first packet gate and the first packet queue are configured to handle first packet flow packets. The system further comprises a second packet queue configured to handle second packet flow packets. Moreover, the system comprises at least one processor configured to control switching of the first packet gate between the open state and the closed state based on the occurrence of a first event associated with the second packet queue to trigger transmission of the first packet flow packets in a relative transmission order among the first packet flow packets and the second packet flow packets.
US11323379B2

An adaptive monitoring method, system, and computer program product including an intelligent monitoring system which obtains at least one preference from a user, where the at least one preference includes at least one maximum monitoring overhead.
US11323377B2

According to one configuration, a network environment includes multiple communication devices and a data flow manager (such as associated with a communication gateway). During operation, the data flow manager receives multiple data flows from the multiple communication devices, each of which conveys data associated with a respective communication device in a network environment. The data flow manager controls conveyance of the multiple data flows through the communication gateway. In response to detecting occurrence of an alarm event in the network environment, the data flow manager modifies an original priority of conveying the classified data flows through the communication gateway. The modified priority provides increased bandwidth accommodating conveyance of a corresponding data flow associated with the alarm event through the communication gateway.
US11323365B2

In one example aspect, a method is provided for tearing down a label switched path (LSP) through a communications network. The method comprises sending a first message towards an egress node of the LSP informing nodes of the LSP and the egress node of a tear down of the LSP, determining that one of the nodes of the LSP has not forwarded the first message along the LSP, and sending a second message to a controller of the communications network to cause the controller to communicate directly with one of the nodes to inform the one of the nodes of the tear down of the LSP.
US11323364B2

In some examples, a network device may determine whether a first egress network device is segment routing (SR) aware. Based on the first egress network device being SR aware, the network device may initiate establishment of an SR tunnel toward the first egress network device. The network device may forward multicast traffic on the SR tunnel. The network device may also determine whether a second egress network device is SR aware. Based on the second egress network device not being segment routing aware, the network device may initiate establishment of a non-SR tunnel toward the second egress network device. The network device may forward multicast traffic on the non-SR tunnel.
US11323356B2

Various systems and methods for using strict path forwarding. For example, one method involves receiving an advertisement at a node. The advertisement includes a segment identifier (SID). In response to receiving the advertisement, the node determines whether the SID is a strict SID or not. If the SID is a strict SID, the node generates information, such as forwarding information that indicates how to forward packets along a strict shortest path corresponding to the strict SID.
US11323349B2

Certain embodiments described herein relate to a method for performing dead peer detection (DPD) by a local gateway. The method includes periodically examining one or more array elements of a timestamp array. The method further includes, for each of the examined one or more array elements, determining whether a corresponding idle timeout threshold is met. The method further includes, upon determining that the corresponding idle timeout threshold is not met, refraining from causing a notification to be transmitted to a peer gateway. The method also includes, upon determining that the corresponding idle timeout threshold is met, causing a notification to be transmitted to the peer gateway to determine whether the peer gateway is responsive with respect to a tunnel associated with the examined array element.
US11323320B2

Techniques are disclosed for managing a network. In one example, a device configuration manager is configured to generate, in accordance with a device management protocol, a configuration change request representing a transaction having a first sub-transaction specifying a first configuration change for a network device of the network and a second sub-transaction specifying a second configuration change for the same network device. The device configuration manager is further configured to output the configuration change request to the network device and receive a reply message from the network device. The reply message includes a first response element specifying whether the first configuration change is successfully committed at the network device and a second response element specifying whether the second configuration change is successfully committed at the network device.
US11323318B2

Systems and methods are disclosed for enabling Internet Protocol (IP) Multimedia Subsystem (IMS) network slicing. In some embodiments a method performed by a wireless device relating to registering with an IMS network slice or initiating a session using an IMS network slice comprises sending a message to an IMS node via a radio access network, the message comprising an identifier of a desired IMS network slice. In this manner, IMS network slicing is enabled.
US11323317B1

A technology is described for managing network communication device software capabilities. An example method may include sending a connection request from a network communication device electronically to a service provider environment. Software capabilities for the network communication device may be verified from the service provider environment. A software capabilities modification instruction for the network communication device may be received from the service provider environment. The software capabilities of the network communication device may be modified based on the software capabilities modification instruction.
US11323313B2

A network device includes circuitry configured to: generate log information; acquire a status notification from a device that records the log information, the status notification being designated by the device; change a processing mode of the log information, based on the acquired status notification; and transmit, to the device, based on the changed processing mode, the generated log information.
US11323307B2

In one aspect, a computer-networking method useful for implementing dynamic high-availability (HA) mode based on current wide area network (WAN) connectivity, comprising the steps of: providing a first edge device of a local area network (LAN) with the WAN; providing a second edge device of the LAN with the WAN; and synchronizing a state of plurality of links with the WAN that are connected to the first edge device and the second edge device.
US11323299B2

A communication signal demodulation apparatus demodulates a communication signal to generate an output signal. The communication signal demodulation apparatus includes: plural sensor circuits which sense different electrical characteristics of one same communication signal and generate corresponding sensing modulation signals respectively; plural processing filters which filter the corresponding sensing modulation signals respectively and generate corresponding filtered modulation signals respectively; plural demodulators which demodulate the plural filtered modulation signals and generate corresponding demodulation signals respectively, wherein each of the filtered modulation signals corresponds to at least one of the demodulators; and a determination circuit which receive the plural demodulation signals, determine whether each unit signal of each of the demodulation signals is correct or not according to a determination mechanism, and combine one or more correct unit signals to generate the output signal.
US11323298B2

There is disclosed integrated circuitry having a bit receiving arrangement adapted for receiving, in parallel, a plurality of data bits, the bit receiving arrangement further being adapted for receiving a data bit inversion bit associated to the plurality of data bits, the data bit inversion bit being for indicating whether the bits of the plurality of data bits are inverted. The integrated circuitry also has a bit inversion arrangement adapted for inverting the bits of the plurality of data bits based on a comparison between the received data bit inversion bit and an inversion estimate bit, the inversion estimate bit being determined based on the plurality of data bits. The disclosure also pertains to related methods and devices.
US11323291B2

A server-facing port activation system includes a core network system, a server device, and a networking device that includes at least one uplink port coupled to the core network system, and a first downlink port coupled to the server device. The networking device begin initialization operations and, in response, identifies that the first downlink port is coupled to the server device and prevents the first downlink port from being made available. While preventing the first downlink port from being made available, the networking device configures the at least one uplink port coupled to the core network system with server device information associated with the server device. The networking device then determines that the at least one uplink port coupled to the core network system is available and, in response, causes the first downlink port that is coupled to the server device to be made available.
US11323287B2

Methods, systems and software products for configuring a virtual port for a physical server to support packets transfer between the physical server and other network nodes over a virtual network, comprising transmitting one or more configuration Protocol Data Units (PDU) of an extended Link Layer Data Protocol (LLDP) to a Network Interface Card (NIC) of a physical server connected to a network, the configuration PDU(s) comprising one or more extension Type Length Values (TLV) defining one or more virtual network settings for a virtual network port mapping the physical server in a virtual network. The NIC is configured to deploy the virtual network port to support exchange of packets between the physical server and one or more of a plurality of nodes of the virtual network by processing outgoing and incoming packets according to one or more virtual network virtualization protocols using one or more of the virtual network settings.
US11323285B1

An architecture for a multichannel geophysical data acquisition system is provided in the field of electrical resistivity tomography. Individual and autonomous node operating systems are provided. Separate communication channels for upstream and downstream data transfer, high voltage transfer and synchronization signals are provided. A novel use of high voltage isolation barriers is also provided. A direct memory access data transfer process is provided.
US11323279B1

An example network device includes memory configured to store packet data and processor circuitry coupled to the memory. The processing circuitry is configured to determine that a first host device has moved from a first access network of an Ethernet virtual private network (EVPN) associated with the first PE router to a second access network of the EVPN, wherein the first host device is interested in receiving traffic of a first multicast group. The processing circuitry is configured to determine whether any other host device on the first access network of the network device is interested in receiving traffic of the first multicast group. Based on no other host device on the first access network of the network device being interested in receiving multicast traffic of the first multicast group, the processing circuitry is configured to delete state associated with the first multicast group.
US11323271B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for enhancing blockchain network security. Implementations include receiving a request for data from the data source, transmitting the request to a relay system that is external to the blockchain network and that includes a multi-node cluster including a plurality of relay system nodes, receiving a result provided from a relay system node, the result being digitally signed using a private key of the relay system node, verifying that the relay system node is registered, verifying an integrity of the result based on a public key of the relay system node and a digital signature of the result in response to verifying that the relay system node is registered, and transmitting the result to a client in response to verifying the integrity of the result.
US11323270B2

The present disclosure relates to security risk warning system that a recipient may acknowledge and act accordingly. Security insights may be provided explicitly in a security insight panel that may clearly identify vulnerabilities specific to a particular authenticable communication. This may limit risk that a recipient would ignore or not understand the risk. Security insights may be provided for a combination of indicated source, recipients, and content, such as links, text, attachments, and images. Security insights may be provided on site, such as on or proximate to the reviewed portions of the authenticable communication.
US11323258B2

A method for providing interactive recording networks is disclosed. Multiple child networks can be established, each child network being coordinated by a respective coordinating entity. Each coordinating entity can also participate in a central parent network. A data package can be sent from one network to another. When a data package is sent to another network, additional data can be added to indicate that the data package is being escalated.
US11323256B2

A method, cryptographic device, and computer readable memory with instructions, for generating a cryptographic key from at least one prime number, by performing during runtime of the cryptographic device by obtaining from memory a challenge and at least one associated increment number, generating a seed by applying a Physically Unclonable function to said obtained challenge, generating at least one prime number from said generated seed by performing said cryptographic prime numbers generation algorithm and by performing therein as many incrementation steps as said obtained at least one increment number, and generating the cryptographic key from the generated prime number.
US11323247B2

A computer-implemented method, which comprises: receiving an input message comprising N-bit input segments, N being an integer greater than one; converting the N-bit input segments into corresponding N-bit output segments using a 2N-by-2N one-to-one mapping stored in a non-transitory storage medium; and generating an output message comprising the N-bit output segments. Also, a computer-implemented method for a recipient to validate a message received from a sender, the message including a first part and a second part. This method comprises receiving a token from a witnessing entity; obtaining a first data element by joint processing of the first part of the message and the token; obtaining a second data element by joint processing of the second part of the message using a key associated with the sender; and validating the message by comparing the first and second data elements.
US11323240B2

An interactive multi-party system for collaboratively performing homomorphic operations, such that no party has access to unencrypted data or an unencrypted operator. A first party device may add noise to encrypted data and an encrypted linear operator to generate noisy encrypted data and a noisy encrypted operator, and transmit the noisy encrypted data and operator to a second party device possessing a secret decryption key for the encryption. The second party device may decrypt the noisy encrypted data and noisy encrypted operator to generate unencrypted noisy data and an unencrypted noisy operator, solve the linear operation using the unencrypted noisy data and an unencrypted noisy operator to generate a noisy solution, encrypt the noisy solution to the linear operation, and transmit it to the first party device. The first party device may then cancel the noise of the encrypted noisy solution to generate the encrypted solution to the linear operation.
US11323236B2

Narrowband (NB) Physical Downlink Control Channel (PDCCH) demodulation reference signals (DMRS) bundling coverage enhancements are disclosed. In some aspects, NB PDCCH DMRS bundling resources and timing are allocated in a virtual domain by a transmitting device, such as a base station. In some aspects the allocated resources are control channel elements (CCEs); the CCEs are allocated according to a pattern in the virtual domain. The base station may transmit NB PDCCH transmissions and corresponding DMRS transmissions in physical domain resources that correspond to the virtual domain resources, the CCE allocation pattern. In some aspects, the NB PDCCH DMRS can be used with PDCCH repetitions. To illustrate, a base station may repeat a PDCCH transmission (e.g., payload data thereof) in multiple particular PDCCH candidates of a plurality of PDCCH candidates. The particular PDCCH candidates may be identified based on PDCCH candidate number or a reference slot or search space set occasion.
US11323234B2

Methods and apparatus for sounding reference signal (SRS) power control for a wireless transmitter/receiver unit (WTRU) are disclosed. These methods and apparatus include methods and apparatus for carrier-specific and carrier-common SRS power control in WTRUs that utilize carrier aggregation techniques. These methods and apparatus also include methods and apparatus for SRS power control in WTRUs utilizing both carrier aggregation and time division multiplexing (TDM) techniques. Additionally, these methods and apparatus include methods and apparatus for SRS power control for WTRUs utilizing multiple input multiple output MIMO operation. Methods and apparatus for SRS overhead reduction and power management in a WTRU are also disclosed.
US11323224B2

A method, network node and wireless device for receiving and/or mapping a physical downlink control channel, PDCCH, to resource elements of a time-frequency grid are provided in which the PDCCH is mapped to resource elements of the time-frequency grid by configuring resource element groups, REGs, each REG spanning one orthogonal frequency division multiplex, OFDM, symbol, and the PDCCH being at least two OFDM symbols. In accordance with one embodiment, the method includes receiving the PDCCH from the network node on one of a plurality of sets of physical resource blocks, PRBs.
US11323222B2

This application provides a communication method and an apparatus. The communication method includes: receiving, by user equipment, first indication information from a network device, where the first indication information indicates a first resource; determining, by the user equipment, a second resource, where the second resource and the first resource belong to a same resource set configured by the network device, and the first resource and the second resource are used to transmit a first downlink reference signal; and receiving, by the user equipment on a third resource, a second signal and/or channel transmitted by using a third antenna port, where the third antenna port has a quasi co-location QCL relationship with a second antenna port used when the first downlink reference signal is transmitted on the second resource.
US11323221B2

Various embodiments provide a method for receiving reference signal and a method for sending a reference signal. In those embodiments, a terminal device can determine a location of a resource element to which a reference signal is mapped. The terminal device can determine a reference signal sequence corresponding to the resource element. The index of each element in the reference signal sequence is determined based on a resource block index of a resource block corresponding to the resource element, a quantity of resource elements that carry the reference signal in the resource block, a resource block offset, or an inter-symbol offset. The terminal device can receive the reference signal by using the resource element, and performing channel estimation or channel sounding based on the received reference signal and the reference signal sequence. Therefore, the terminal device can complete channel estimation without learning of a system bandwidth.
US11323203B2

User equipments, radio network nodes, and related methods, are provided for enabling reporting of channel quality indicator values corresponding to a particular error rate level among a plurality of error rate levels and to a particular modulation and coding scheme among a plurality of modulation and coding schemes.
US11323200B2

The embodiments of the invention relate to a method of allocating a radio resource and a device utilizing the same. The method comprises: a transmitter determines, according to an identification (ID) of a receiver at a present state, and based on a redefined rule, a channel time-frequency location where a control channel associated with the present state of the receiver is; and the transmitter transmits, via the control channel at the channel time-frequency location, and to the receiver, data time-frequency location indication information, a size of time-frequency resource occupied by data, and a data modulation and coding scheme. In the method of allocating the radio resource and the device utilizing the same according to the embodiments of the invention, the transmitter determines, according to the ID of the receiver at the present state, the time-frequency location where the control channel associated with the present state of the receiver is, and indicates, via the control channel, and to the receiver, the time-frequency location for transmitting data, flexibly allocating control channels for use by a transmitter and receiver by actual requirements, increasing efficiency, performance, and adaptability of a wireless communication system.
US11323191B2

There is disclosed a method of operating a radio node in a wireless communication network. The method includes communicating using a selected signaling beam from a set of signaling beams, the selected signaling beam being selected based on a delay characteristic and a beam signaling characteristic of the signaling beams of the set of signaling beams. The disclosure also pertains to related devices and methods.
US11323187B2

A system for monitoring passive components of a passive distributed antenna system is disclosed. The system includes a bi-directional amplifier, a public safety monitor coupled to and in communication with the bi-directional amplifier, and at least one smart node coupled to and in communication with the public safety monitor. The at least one smart node is positioned within the passive distributed antenna system and includes a processor, connected to or coupled to a spectrum analysis module configured to monitor signal characteristic information of at least one radio frequency signal passing through the passive distributed antenna system. The processor is configured to transmit the signal characteristic information to the public safety monitor and the public safety monitor generates system performance information based on a signal at the bi-directional amplifier and the transmitted signal characteristic information.
US11323181B2

A bidirectional transceiver includes a transmitter and a receiver that respectively transmits a local signal to and receives remote signal from a common bidirectional communication channel, thus the bidirectional channel signal is the superimposition of the local and remote signals. The bidirectional transceiver also includes a transmit canceller that substantially removes the local transmitted signal from the superimposed signals on the bidirectional channel before the local receiver. The remote signal is transmitted by a remote transceiver over the bidirectional channel. A sampling phase is set, based on timing information in the received remote signal, and the received signal is sampled. Timing relation of transitions in the local transmit signal relative to the receiver sampling phase is set such that transmit signal cancellation is optimum at receiver sampling phase, by changing the delay applied to the local transmit signal. To keep the timing relation of the local transmit signal relative to the remote transceiver, a second delay is applied to the local transmit signal before transmission into the bidirectional channel that provides a delay substantially same as the first delay but opposite in direction.
US11323173B2

A system includes an antenna of a ground station. The antenna is configured to generate signal beams. The signal beams define a plurality of cells in the sky. The antenna is fixed in position relative to the ground and mechanically fixed to a particular orientation. The antenna is a phased array antenna. The system also includes a processor coupled to the antenna. The processor is configured to support concurrent communication sessions with a plurality of spacecraft via the signal beams. The plurality of spacecraft is located within the plurality of cells.
US11323170B2

The present invention relates to the technical field of wireless communications, and in particular, to a beam training method and device, for use in resolving the problems in the prior art of excessive time-consuming of a beam training process, large overhead of training signals, and relatively low efficiency. According to embodiments of the present invention, a transmit device sends beam training signals in two times. The first sending of a transmit beam training signal is for a receive device to select a transmit beam using a selected receive beam and report the transmit beam. The second sending is that the transmit device sends a receive beam training signal according to the transmit beam information report of the receive device, so as to train the received beam of the receive device. According to the embodiments of the present invention, an interactive beam training method is used to gradually search for the best transmit beam and receive beam, thereby avoiding completing beam training all at once, reducing beam training time and overhead, and improving efficiency.
US11323155B2

A near field communication (NFC) reader module is provided for mounting over a metal panel of a vehicle. A housing of the module is configured to mount adjacent the metal panel. The housing contains a planar array of non-magnetic RF filter elements in the housing proximate to the metal panel. The housing contains a planar antenna coil configured to couple with an external NFC device carried by a user, wherein the array of RF filter elements is disposed between the planar antenna coil and the metal panel to magnetically decouple the planar antenna coil from the metal panel. The housing further contains receiver circuitry configured to decode NFC signals from the external NFC device.
US11323151B2

A communication system includes one or more chargers and a server capable of communicating with the one or more chargers. The server obtains first information from a first vehicle via a first charger included in the one or more chargers, during charging of the first vehicle by the first charger, and supplies second information based on the first information to a second vehicle via a second charger included in the one or more chargers, during charging of the second vehicle by the second charger.
US11323147B1

A switch is provided for a communication device operating in the RF or microwave frequency range. The switch can include one or more PIN diodes and a biasing circuit that includes one or more inductors. When operating at RF and/or microwave frequencies, the switch can be configured as a low pass filter using the parasitic inductances and capacitances of the PIN diodes and inductors to minimize the insertion loss of the switch. The parasitic capacitances for the low pass filter can be provided by operating the inductors of the switch above their self-resonant frequency such that the inductors operate like capacitors. The parasitic inductances for the low pass filter can be provided by the PIN diodes.
US11323127B2

A digital-to-analog conversion circuit, a digital-to-analog conversion method, and a display device are provided. The digital-to-analog conversion circuit includes a first digital-to-analog conversion sub-circuit and a second digital-to-analog conversion sub-circuit. The second digital-to-analog conversion sub-circuit includes least-significant-bit voltage selection modules whose quantity is a, a weighed summation operational amplifier, switching control modules whose quantity is a and energy storage modules whose quantity is a. The weighted summation operational amplifier includes a reverse-phase input end, an operational amplification output end, and same-phase input ends whose quantity is a. The reverse-phase input end is connected to the operational amplification output end, and a is an integer greater than 1. The weighted summation operational amplifier is configured to perform weighted summation on voltages inputted by the a same-phase input ends at a digital-to-analog conversion stage to acquire an analog voltage, and output the analog voltage via the operational amplification output end.
US11323125B2

A transceiver circuit is configured to couple an oscillation crystal. The transceiver circuit includes a local oscillator, a filter circuit, a control circuit, and a radio frequency signal generator circuit. The local oscillator includes a capacitive element. The local oscillator generates a phase locked loop signal based on an oscillation frequency of the oscillation crystal and a capacitance value of the capacitive element. The filter circuit generates a filtered signal according to the phase locked loop signal. The control circuit adjusts the capacitance value to be an adjusted capacitance value according to the filtered signal and the phase locked loop signal. The local oscillator further generates a calibrated local oscillation signal according to the oscillation frequency and the adjusted capacitance value. The radio frequency signal generator circuit generates a radio frequency signal according to the calibrated local oscillation signal and a baseband signal.
US11323122B2

The present invention provides a fractional frequency divider, wherein the fractional frequency divider includes a plurality of registers, a control signal generator and a clock gating circuit. Regarding the plurality of registers, at least a portion of the registers are set to have values. The control signal generator is configured to generate a control signal based on an input clock signal and values in the at least a portion of the registers, wherein the control generator sequentially generates the control signal during each cycle of the input clock signal. The clock gating circuit is configured to refer to the control signal to mask or not mask the input clock signal to generate an output clock signal.
US11323121B2

A programmable device structure based on a mixed function storage unit includes a storage unit SRAM and a mixed function unit, wherein the storage unit comprises n register units and at least one selection control bit, wherein n=2{circumflex over ( )}x, and x is natural number; the register units are selected according to the selection control bit; and when the selection control bit selects the mixed function unit to serve as a lookup table, a logic function is achieved; or when the selection control bit selects the mixed function unit to serve as a multiplexer, a routing function is achieved. By multiplexing the register units, the programmable device structure achieves a routing function of a traditional FPGA and also provides a logic function, and the waste of resources is greatly reduced.
US11323118B1

A combinational logic circuit includes input circuitry to receive a first input signal that transitions between upper and lower voltages of a first voltage domain, and to generate, in response to the transitions of the first input signal, a first localized signal that transitions between upper and lower voltages of a second voltage domain. The combinational logic circuit additionally includes output circuitry to generate a first output signal that transitions between the upper and lower supply voltages of the first voltage domain based at least in part on the transitions of the first localized signal.
US11323117B1

Various embodiments provide for data sampling with loop-unrolled decision feedback equalization. In particular, some embodiments provide for an unrolled first-tap Decision Feedback Equalizer (DFE) loop that comprises parallel data samplers that each include a tri-state output.
US11323116B2

The disclosed multi-level driving data transmission circuit and operating method include: a first driving module including a first signal generating unit and a first three-state driver, and a second driving module, including a second three-state driver. The first input terminal of the second three-state driver is coupled to the output terminal of the first three-state driver. The first signal generating unit includes a first and second input terminals, and an output terminal. The output terminal of the first signal generating unit couples to the second input terminal of the first three-state driver. The first signal generating unit receives the first signal through its first input terminal and the first feedback signal of the first signal from the second driving module through its second input terminal. The resultant first control signal has an effective signal width wider than the first signal. The first control signal inputs to the first three-state driver.
US11323115B1

A high-speed multiplexor comprises a set of differential input pairs to receive and mix a set of differential input signals at a differential output node pair. The high-speed multiplexer further comprises an active inductive load pair driven by the input stage using the mixed set of differential input signals. Each active inductive load comprises a p-channel field effect transistor (pFET) device connected to one of the differential output node pairs and a resistor connected between a gate node and a drain node of the pFET device. The multiplexer further comprises a first cross-coupling capacitor connected between the gate node of a first inductive load and a second output node of the differential output node pair and a second cross-coupling capacitor connected between the gate node of a second inductive load and a first output node of the differential output node pair.
US11323102B2

A multiphase signal generator includes an input port. Furthermore, the multiphase signal generator includes a plurality of phase shifters. Each phase shifter of the plurality of phase shifters is configured to provide an identical phase shift Δφ. At least one phase shifter is connected to the input port. Furthermore, the multiphase signal generator includes a first phase interpolator and at least a second phase interpolator. Each phase interpolator has a respective output terminal. Each phase interpolator is configured to weight a phase of a signal at a respective first input terminal of the phase interpolator with a respective first weighting factor wi,1 and to weight a phase of another signal at a respective second input terminal of the phase interpolator with a respective second weighting factor wi,2 to generate an interpolated phase signal at the respective output terminal of the phase interpolator. A first subset of the plurality of phase shifters includes n>1 serially connected phase shifters. The first subset of phase shifters is coupled between the first input terminal and the second input terminal of the first phase interpolator. A different second subset of the plurality of phase shifters includes n serially connected phase shifters. The second subset of phase shifters is coupled between the first input terminal and the second input terminal of the second phase interpolator.
US11323099B2

Electronic circuits are disclosed. One electronic circuit includes: a transistor device having a load path and a drive input; a first drive circuit configured to receive a supply voltage and generate a drive signal for the transistor device based on the supply voltage; and a biasing circuit connected in parallel with the load path of the transistor device. The biasing circuit includes a bias voltage circuit configured to receive the supply voltage and generate a bias voltage higher than the supply voltage based on the supply voltage.
US11323093B2

A bulk-acoustic wave resonator includes: a resonator comprising a central portion in which a first electrode, a piezoelectric layer, and a second electrode are sequentially stacked on a substrate, and an extension portion disposed along a periphery of the central portion; and an insertion layer disposed below the piezoelectric layer in the extension portion to raise the piezoelectric layer. The insertion layer may have a first inclined surface formed along a side surface facing the central portion, and the first electrode may have a second inclined surface extending from a lower end of the first inclined surface of the insertion layer.
US11323088B2

An acoustic wave resonator includes a resonating part disposed on and spaced apart from a substrate by a cavity, the resonating part including a membrane layer, a first electrode, a piezoelectric layer, and a second electrode that are sequentially stacked. 0 Å≤ΔMg≤170 Å may be satisfied, ΔMg being a difference between a maximum thickness and a minimum thickness of the membrane layer disposed in the cavity.
US11323075B2

An envelope tracking (ET) amplifier apparatus is provided. The ET amplifier apparatus includes a distributed ET integrated circuit (DETIC) configured to generate a distributed ET voltage. The DETIC may be coupled to a higher-bandwidth (HB) amplifier circuit and a lower-bandwidth (LB) amplifier circuit configured to amplify an HB radio frequency (RF) signal and an LB RF signal, respectively. In examples discussed herein, the DETIC may be configured to selectively provide the ET voltage to one of the HB amplifier circuit and the LB amplifier circuit, depending on which of the HB amplifier circuit and the LB amplifier circuit is activated. By providing the DETIC in proximity to the HB amplifier circuit and the LB amplifier circuit, it may be possible to reduce potential distortion to the HB RF signal and the LB RF signal, without significantly increasing footprint of the ET amplifier apparatus.
US11323065B2

Accordingly the embodiments herein provide a method for fabricating a neuron oscillator (200a). The neuron oscillator (200a) includes a thermal insulating device connected with a resistor and a capacitor in series to produce self-sustained oscillations, where the resistor and the capacitor are arranged in parallel manner. The neuron oscillator (200a) eliminates a requirement of an additional compensation circuitry for a consistent performance over a time under heating issues. Additionally, an ON/OFF ratio of the neuron oscillator (200a) improves to a broader resistor range. Further, a presence of tunable synaptic memristor functionality of the neuron oscillator (200a) provides a reduced fabrication complexity to a large scale ONN. An input voltage required for the neuron oscillator (200a) is low (2-3 V) which makes it suitable to use with existing circuitries without using any additional converters. Additionally, an amplitude of the oscillations is a significant fraction of an applied bias which eliminates a need for an amplification.
US11323062B2

The present invention relates to an apparatus and method for the localized capture, storage and specialized use of power generated from natural sources, such as solar power or hydropower. The apparatus can be used, for example, on a deck or a side of a marine vessel, or on a land-based structure, where there is a requirement for managed power generation and storage.
US11323054B2

A motor control device includes a driving circuit, a generator configured to generate a pulse-width modulation (PWM) signal, a resistor, an amplifier, a detector configured to detect a driving current flowing through a winding based on the signals output from the amplifier, a phase determiner configured to determine a rotational phase using the driving current detected by the detector and a control value set in advance, a controller configured to control the driving current based on a torque current component so that a deviation between the rotational phase and an instruction phase becomes small, and a setting unit configured to set the control value based on both a local maximum value and a local minimum value of the driving current flowing through the winding by a voltage applied to the winding based on the PWM signal of which a duty cycle is set to a predetermined value.
US11323052B2

Automated speed ramp control of stepper motor acceleration and deceleration using direct memory access (DMA) and core independent peripherals (CIPs) comprises a numerically controlled oscillator (NCO) controlled through direct memory access (DMA) transfers of prescale values used in combination with a clock oscillator to generate clock pulses that are a function of the clock oscillator frequency and the prescale values. This automates changing the frequency of the NCO, thereby controlling steeper motor speed, without requiring computer processing unit (CPU) overhead. The DMA module is enabled during a first number of clock pulses for step speed acceleration, disabled during a second number of clock pulses for normal operation at full step speed, and then re-enabled during a third number of clock pulses for step speed deceleration. A table in memory may store and provide a plurality of acceleration and deceleration prescale values for DMA transfers to the NCO.
US11323051B2

A fluid sprayer includes a housing, a pump, a nozzle, a high voltage direct current (HVDC) brushed electric motor that drives the pump, and a motor controller electrically connected to the motor. The motor controller drives the motor with a high speed pulse width modulated (PWM) drive signal that switches current through the motor on and off. The motor controller varies the PWM signal as a function of a spray setting input and sensed current through the motor.
US11323046B2

In a vibration unit, a piezoelectric element enters an internal space of a through hole; and thereby, a second case member can be arranged proximate to a first case member. Therefore, a thickness of the vibration unit can be reduced, namely, a height of the vibration unit can be reduced. As described above, since the thickness of the vibration unit is reduced, a size of the vibration unit can be reduced.
US11323032B2

A power conversion device according to the present invention is provided with two or more sets of power modules each of which includes a switching element and a switching element control circuit having a third electrode voltage control part and a temperature detection part. The power modules PM1, PM2 are connected in parallel to each other. The switching element control circuit includes a temperature comparison part which calculates an average operation temperature of the switching element, and compares an operation temperature of the corresponding switching element and the average operation temperature. The third electrode voltage control part controls a third electrode voltage based on information including an average operation temperature, an operation temperature of the switching element, and a threshold voltage during operation.
US11323028B2

A voltage converting apparatus includes a comparison circuit, a compensation signal generator, and a voltage converter. The comparison circuit generates a comparison result according to an output voltage, an input voltage, and a compensated feedback signal. The compensation signal generator provides a compensation signal held to be equal to a reference voltage at a first time interval in an enable period in a working cycle and sets the compensation signal to be a ramp signal at a second time interval in the enable period. The compensation signal generator generates the compensated feedback signal according to a feedback signal and the compensation signal. The voltage converter generates a control signal according to the comparison result, performs a voltage converting operation through an inductor according to the control signal, and generates the output voltage. The feedback signal is generated according to a current on the inductor.
US11323025B2

A DC capacitor and a leg are connected in parallel to a high-voltage-side power line and a low-voltage-side power line. The leg includes a plurality of semiconductor switching elements connected in series between the power lines with an output end, connected to a load, between the plurality of semiconductor switching elements. An attenuator for attenuating a resonance is connected to a main circuit loop formed of the DC capacitor, the high-voltage-side power line, the low-voltage-side power line, a semiconductor switching element in ON state, and a drain-source parasitic capacitance of a semiconductor switching element in OFF state.
US11323024B2

A switched-mode AC-DC converter intended to deliver a DC output voltage Vout between a first output terminal and a second output terminal, the converter comprising at least one conversion chain intended to convert an AC input voltage applied between an input terminal and a neutral point, the conversion chain comprising: a first output capacitor comprising one terminal connected to the first output terminal and another terminal connected to a second terminal of the input switch, a second output capacitor with the same capacitance as the first output capacitor and with a higher capacitance than the capacitance of the link capacitor, the second output capacitor comprising one terminal connected to the second output terminal and another terminal connected to the second terminal of the input switch.
US11323021B2

A snubber circuit configured to be coupled to a switching circuit, comprises a snubber capacitor; a diode; and a coil, wherein the switching circuit includes an upper switch element coupled between a high potential node and a switch node, a lower switch element coupled between the switch node and a reference potential node, and a bypass capacitor coupled between the high potential node and the reference potential node, a positive electrode of the snubber capacitor is configured to be coupled to the high potential node, an anode of the diode is coupled to a negative electrode of the snubber capacitor, and a cathode of the diode is coupled to the switch node, and one end of the coil is coupled to the negative electrode of the snubber capacitor, and another end of the coil is coupled to the reference potential node.
US11323020B2

A circuit device has a power converter, which includes power semiconductor switches and a capacitor which is connected to a first and a second intermediate circuit conductor in an electrically conductive manner, and having a capacitor discharge device for the electrical discharging of the capacitor. The capacitor discharge device includes an actuation device, an electrical discharge resistor and a first semiconductor switch having a first and a second load current terminal, and having a control terminal. The first load current terminal of the first semiconductor switch is connected to the first intermediate circuit conductor via the discharge resistor, and the second load current terminal of the first semiconductor switch connects to the second intermediate circuit conductor. The actuation device on the control terminal of the first semiconductor switch generates an actuating voltage, in accordance with a control signal, for the closing and opening of the first semiconductor switch, and having a capacitor discharge monitoring device, which is designed to monitor an electric monitoring voltage which is present between the first load current terminal of the first semiconductor switch and the second intermediate circuit conductor and, in the event that the monitoring voltage is lower than a monitoring voltage limiting value, to generate a capacitor discharge signal.
US11323017B2

A flyback converter is provided that dynamically adjusts a drain threshold voltage for a current cycle of a synchronous rectifier switch transistor based upon operating conditions in a previous cycle of the synchronous rectifier switch transistor. A differential amplifier drives a gate voltage of the synchronous rectifier switch transistor during an on-time of the current cycle so that a drain voltage of the synchronous rectifier switch transistor equals the drain threshold voltage during a regulated portion of the current cycle.
US11323012B2

The invention is a device (1) for cooling a power electronic system (EP) comprising at least one power electronic component (2) mounted on at least one circuit board (3), the cooling device (1) comprises a hose (4) for circulating a flow (5) at an ambient temperature. The cooling device (1) comprises a first heat exchange surface (6) that is thermally connected to the power electronic components (2) and at least one second heat exchange surface (7). The second heat exchange surface (7) is for heat exchange with the flow (5) circulating through the hose. The second heat exchange surface (7) is fitted inside the circulation hose (4) to remove heat by convection with the circulating flow (5). The second heat exchange surface (7) is thermally connected to the first heat exchange surface (6).
US11323009B2

A rotating electric machine unit includes a rotating electric machine, a high heat generation circuit and a low heat generation circuit both of which are electrically connected with the rotating electric machine, a first cooler, a first-coolant supplier, a second cooler and a second-coolant supplier. The first cooler is configured to cool both the high heat generation circuit and the low heat generation circuit with a first coolant. The first-coolant supplier is configured to supply the first coolant to the first cooler. The second cooler is configured to cool the rotating electric machine with a second coolant. The second-coolant supplier is configured to supply the second coolant to the second cooler. The second-coolant supplier is formed integrally with a low heat generation circuit-cooling part of the first cooler. The second-coolant supplier includes a heat exchanger via which heat is exchanged between the first coolant and the second coolant.
US11323007B2

A magnetic levitation bearing, a magnetic levitation rotor support assembly, and a compressor. The magnetic levitation bearing is used for supporting a rotor by interacting with a thrust disc on the rotor, and comprises: a radial stator core having an annular structure, which is disposed on a radial outer side of the thrust disc and corresponds to the thrust disc in an axial direction of the rotor, the radial stator core and the thrust disc being separated by a first radial gap X1; and a radial control coil, which is disposed on the radial stator core and can generate a radial electromagnetic force to the thrust disc in a radial direction of the rotor.
US11323002B2

A rotary electric machine includes magnetic poles to which a coil is attached. A connection portion between a conductive member and a coil end of the coil is arranged in an inter-pole gap between the magnetic poles. The rotary electric machine may include a rotor and a stator. The magnetic poles may be magnetic poles of the stator.
US11323000B2

A winding method for a stator module applicable to a motor having z slots, 2p poles, and m phases. The stator module includes a stator core and a winding coil. The winding coil is made of a flat wire. The winding method includes: forwardly winding some stator slots by means of the arrangement and connection of multiple U-shaped conductor sections, and then reversely winding the stator slots; afterwards, forwardly winding the remaining stator slots, and then reversely winding the stator slots; and cycling in this way.
US11322991B2

A safety supervision system for wireless power transmission, comprising a transmitter having an optical beam generator with safe states for transmitting power to receivers that convert the beam into electrical power. The system control unit stores previously known signatures categorized by predetermined parameters associated with one or more unwanted situations, stores data from sensors, compares this stored data to the signatures, and executes one or more responses based on this comparison. The system may comprise transmitter and/or receiver malfunction detection systems adapted to monitor the transmitter and receiver control units and to cause the optical beam generator to switch to a safe state upon detection of a transmitter or receiver control unit malfunction, and may further comprise a hazard detection system preventing human exposure to beam intensity above a predefined safe level.
US11322984B2

A coil device includes a base, a cover facing the base and forming a receiving space between the base and the cover, a casing disposed inside the receiving space and containing a coil therein, a substrate disposed inside the receiving space and having a through hole passing through the substrate along a facing direction of the base and the cover, and a support portion disposed in the through hole, wherein the support portion has a strength greater than a strength of the substrate and wherein the support portion has a height greater than a thickness of the substrate.
US11322983B2

A polyphase inductive power transfer system primary or secondary apparatus includes a magnetic coupling coil associated with each phase and a compensation network associated with each magnetic coupling coil for providing power to or receiving power from the respective coil. At least one of the compensation networks has a different power transfer characteristic to one or more of the other compensation networks.
US11322981B2

Electrochromic windows powered by wireless power transmission are described, particularly, the combination of low-defectivity, highly-reliable solid state electrochromic windows with wireless power transmission. Wireless power transmission networks which incorporate electrochromic windows are described.
US11322978B2

A method of energy harvester reconfiguration for a simultaneous wireless information and power transfer (SWIPT) receiver including receiving an input power from an RF signal, determining whether a Nblock-th energy block is activated based on a condition for operating the Nblock-th energy block having a maximum valid input power, among Nblock energy blocks each having a predetermined valid input power, in response to the Nblock-th energy block being determined activated, determining a number of energy harvesting circuits that are activated, among a plurality of energy harvesting circuits included in the Nblock-th energy block, based on power conversion efficiency, and reconfiguring power input in the Nblock-th energy block and the plurality of energy harvesting circuits included in the Nblock-th energy block, based on the determination and result of determination.
US11322976B1

Operational events associated with a target physical device can be detected for mitigation by implementing some aspects described herein. For example, a system can apply a sliding window to received sensor measurements at successive time intervals to generate a set of data windows. The system can determine a set of eigenvectors associated with the set of data windows by performing principal component analysis on a set of data points in the set of data windows. The system can determine a set of angle changes between pairs of eigenvectors. The system can generate a measurement profile by executing an integral transform on the set of angle changes. One or more trained machine-learning models are configured to detect an operational event associated with the target physical device based on the measurement profile and generate an output indicating the operational event.
US11322972B2

Shade mitigation systems and devices to mitigate adverse effects of shade on a primary photovoltaic cell powering a load via an output terminal. The shade mitigation devices include a relay switch and a secondary photovoltaic cell. The relay switch selectively completes a circuit between the primary photovoltaic cell and the load when energized. The secondary photovoltaic cell is electrically coupled to the relay switch and is mounted in a position to monitor illumination on the primary photovoltaic cell. The secondary photovoltaic cell energizes the relay switch to selectively complete the circuit between the primary photovoltaic cell and the load when the secondary photovoltaic cell is illuminated by at least a threshold illumination. The secondary photovoltaic cell stops energizing the relay switch to selectively open the circuit between the primary photovoltaic cell and the load when the secondary photovoltaic cell is shaded sufficiently to illuminate it below the threshold illumination.
US11322963B2

A control method for a power supply, in which a link capacitor is connected between an external load and a power relay assembly (PRA) that includes a precharge resistor to control a power flow between a battery and the external load, the control method including: initiating precharge; after the initiating of the precharge, measuring voltages of the link capacitor by measuring a first voltage V1 of the link capacitor at a first time T1, measuring a second voltage V2 of the link capacitor at a second time T2, and measuring a third voltage V3 of the link capacitor at a third time T3, the first time T1, the second time T2, and the third time T3 each being different times; calculating a capacitance C of the link capacitor using the first voltage V1, the second voltage V2, and the third voltage V3; and terminating the precharge.
US11322957B2

The present disclosure provides a charger capable of improving the portability thereof. The charger is a charger including a second charging terminal configured to be magnetically connected to a first charging terminal provided on a mobile body to supply power to the first charging terminal, the charger further including: a stand; a suspension member configured to suspend the second charging terminal from the stand; and a displacement inducing mechanism configured to induce, in order to reduce a magnetic connecting force between the first and the second charging terminals, relative displacement between the first and the second charging terminals in a direction different from an axial direction of the second charging terminal.
US11322950B2

A method of operating an ESS with optimal efficiency includes: collecting charge/discharge efficiency data of a PCS; collecting charge/discharge efficiency data of a battery depending on current state of charge of the battery; creating charge/discharge efficiency data of a unit BESS including the PCS and the battery by using the collected data; determining optimal charge/discharge levels of at least two unit-BESSs included in the ESS by using charge/discharge efficiency data of the at least two unit-BESSs to satisfy commanded input/output power values of the whole ESS at a current point of time; and charging or discharging the at least two unit-BESSs depending on the determined optimal charge/discharge power values.
US11322940B2

System for controlling voltage supply to a portion of a distribution grid. The portion of the grid includes a substation providing one or more transformers operable to increase or decrease the voltage supplied to consumers within the portion of the grid. The voltage control system providing a data set can include a previously measured power consumption associated with previously measured values of (a) property(ies) for a portion of the grid, the property(ies) being one of voltage, current, frequency or load, or a combination thereof. The voltage control system can provide a measurement device to measure the property(ies) supplied within the portion of the grid. The voltage control system can provide a processing device to determine from the previously measured values of the property(ies) in the data set a most likely effect of altering the value of the property(ies) from a first value to a second value, on the power consumption.
US11322932B2

A crowbar device has a first terminal and a second terminal, the terminals being connectible to a medium to high impedance AC voltage source including a trigger circuit configured to output a trigger signal responsive to exceeding a threshold voltage across at least one trigger element of the trigger circuit; a positive-side signaling circuit and a negative-side signaling circuit configured to output a positive or a negative clamping signal, respectively, according to a positive-voltage or a negative-voltage signal, respectively, input from the trigger circuit; and a positive-side overvoltage clamping circuit and a negative-side overvoltage clamping circuit configured to control their respective semiconductor element to be in a conducting state, when the clamping signal from the corresponding signaling circuit is present, and configured to control their semiconductor element to be in a non-conducting state, when the corresponding clamping signal has not been present for a predetermined time period.
US11322928B2

Embodiments of the present disclosure provide an over-voltage protection method, an over-voltage protection device and a display device. When the voltage value of the output signal is greater than the first preset voltage threshold, it is determined whether the voltage value of the output signal meets the preset over-voltage protection condition. If the voltage value of the output signal is detected to meet the preset over-voltage protection condition, the first control signal is output to stop output of the output signal or lower the voltage value of the output signal.
US11322920B2

An extruded aluminum conduit comprising a substantially cylindrical body including defining a conduit interior. The body may include an exterior surface defined by an outer diameter and an interior surface defined by an inner diameter. The conduit may include one or more protrusions protruding from the interior surface of the body toward the conduit interior and away from the exterior surface. The one or more protrusions may run substantially continuously from a first end of the body to a second end of the body.
US11322919B2

A gland (1) for an electrical cable inside a threaded protective conduit, the gland includes a tubular body (2) enclosing a sealing ring (3), an annular nut (4) screwed on to the body to compress the sealing ring, a tubular connecting sleeve connected to the nut, an end portion of the nut (4) opposed to the body (5) having a threaded part (51) for connection to the threaded conduit, the sleeve having a connecting bore (52) mounted by force-fitting on an outer surface (42) of the end portion of the nut, the connecting sleeve having an annular groove (54) on an inner surface (53) of the connecting bore; the outer surface of the nut (4) having a relief surface (43) which engages in the groove (54) during the force-fitting, so as to retain the sleeve on the end portion of the nut while allowing the sleeve to rotate freely around the nut.
US11322917B2

An arrangement includes: a module insertable into a housing or removable from a housing; and a slide-in compartment for receiving the module. The module is reversibly removable from the slide-in compartment. At least one side wall and/or a compartment rear wall and/or a compartment base of the slide-in compartment in an inserted state of the module forms or form a side wall and/or rear wall and/or a base wall and/or a roof of at least one module.
US11322916B2

A solid-state circuit breaker (SSCB) with galvanic isolation capability includes an electrical bus with line-side and load-side terminals and a solid-state device connected in series with a closeable air gap between the line-side and load-side terminals. During normal operating conditions, the solid-state device is switched ON and the SSCB forces movable contacts inside the SSCB to close the air gap, so that an electrical current path is maintained between the line-side and load-side terminals and electrical current is allowed to flow through the SSCB and an attached load. Upon a short circuit or overload of unacceptably long duration occurring in the load circuit, the SSCB switches the solid-state device OFF to prevent current from flowing through the load, and releases the movable contacts to open the air gap and thereby establish galvanic isolation between the line-side and load side terminals.
US11322915B1

Methods and assemblies to stabilize and reduce an electric field in an environment are provided that include an elongated member and a head member. The head member is coupled to the elongated member. The head member includes a floating electrode, a ground electrode, and an insulator portion. The ground electrode spaced apart from the floating electrode. The ground electrode is in communication with the elongated member to receive a charge with a polarity of a earth system. The insulator portion is positioned between the floating and ground electrodes to insulate the floating electrode from the ground electrode. The floating electrode induces an electrical charge from the environment surrounding the head member. The floating electrode balances an existing charge on the ground electrode using an electromagnetic induction to collect a plurality of charges in the environment such that the floating and ground electrodes generate a balanced electric field.
US11322910B2

An optoelectronic device includes a carrier substrate, with a lower distributed Bragg-reflector (DBR) stack disposed on an area of the substrate and including alternating first dielectric and semiconductor layers. A set of epitaxial layers is disposed over the lower DBR, wherein the set of epitaxial layers includes one or more III-V semiconductor materials and defines a quantum well structure and a confinement layer. An upper DBR stack is disposed over the set of epitaxial layers and includes alternating second dielectric and semiconductor layers. Electrodes are coupled to apply an excitation current to the quantum well structure.
US11322906B2

Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
US11322905B2

A single longitudinal mode ring Raman laser including: a pump source outputting a pump light power, resonantly coupled to a first ring resonator; a optical measurement and piezo-actuator for stabilising the resonant coupling of the pump light power to a first ring resonator; a first ring resonator including a Raman gain medium, wherein the Raman gain medium receives the pump light power and undergoes Raman lasing generating resonated Stokes power at the corresponding Stokes output wavelength; the first ring resonator acting as a feedback loop for the pump light power and the resonated Stokes power and outputting a portion of the Stokes power as the laser output.
US11322890B2

Power outlet wall plates having retention components are described herein that are configured to be mounted around power outlets to thereby retain power cords in electrical engagement with sockets of the power outlets. The retention components can be secured to the structure using any suitable mechanism, such as by using fasteners, snap fit, and so forth.
US11322888B2

A lever (24) is formed with a separating cam surface (30) and an escaping space (31) disposed in a region more distant from a rotary shaft (13) than the separating cam surface (30). The separating cam surface (30) presses cam projections (23) of a moving plate (18) in a direction away from the rotary shaft (13) to separate both housings (10, 40) in the process of rotating the lever (24) to an initial position with the both housings (10, 40) connected. The cam projections (23) are accommodated into the escaping space (31) while being separated from the separating cam surface (30) in the process of rotating the lever (24) from the initial position to a connection position with the both housings (10, 40) separated and the moving plate (18) located at a protection position.
US11322884B2

An apparatus for connecting and disconnecting an electrical connection, comprising a socket, a male plug that can be connected to the socket, and a coupling mechanism which is designed for locking the socket to the male plug and for separating it therefrom.
US11322882B2

A connector seal for use in a submersible connection apparatus may include a shell comprising an internal channel and a groove disposed on an external surface of shell. The connector seal may also include an annular seal member disposed in the groove of the shell. The annular seal member may be configured to hermetically piston seal the connector seal within the submersible connection apparatus. The connector seal may also include a first interconnect disposed within the internal channel at a first end of the shell, a second interconnect disposed within the internal channel at a second end of the shell, a conductive pin configured to make an electrical connection through the connector seal. The conductive pin may extend between and disposed within the first interconnect and the second interconnect.
US11322880B2

A packing mounting structure includes a casing having a passage part on a wall part facing a power detection terminal; packing including a seal part and an portion to be held; and a cover installed on the casing in a state in which the portion to be held is held by a hole part, and closing the passage part by the packing. The portion to be held includes a shaft part and a first flange part. The hole part includes a narrow part; an insertion hole part through which the first flange part is capable of passing; and a holding hole part configured to hold the shaft part in a state in which a gap is formed between the holding hole part and the shaft part.
US11322873B2

A connecting assembly for electrically connecting a ribbon cable in an aircraft. The assembly has a housing with a slot-shaped opening through which an end section of a ribbon cable can be inserted into a housing interior into a predetermined insertion position. The assembly has a first and a second engagement section which are arranged in the interior. The first engagement section is mounted such that it can be optionally moved between a first and a second position, such that by moving the first engagement section into its second position, the end section can be clamped tight optionally between the first second engagement sections and conductor tracks of the ribbon cable are then in contact with a corresponding number of electrical contacts provided on the first engagement section. In the second position, the first engagement section is releasably secured by a latching device.
US11322867B1

A connector for receiving a ribbon cable is provided. The connector includes a housing with an open top, and a cable organizer configured to be positioned within an interior of the housing and the open top and to receive the ribbon cable. The cable organizer includes a surface with a first cable grab hook adjacent a first end thereof, configured to receive a first portion of the ribbon cable via a snap-fit engagement. The connector also includes cover configured to selectively cover the open top of the housing to enclose the cable organizer within the interior of the housing. The cover includes a notch extending therethrough, sized to receive an upper detent of the cable organizer so that the upper detent extends through the notch and remains viewable when the cover encloses the cable organizer within the interior of the housing.
US11322854B2

The present invention relates to: a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present invention provides an antenna module comprising: an antenna array for radiating beams through a top surface thereof; a dielectric disposed to be spaced apart from the top surface of the antenna array by a first preset length; a first reflector comprising a metallic material, and disposed to be spaced apart from the bottom surface of the dielectric by a second preset length; and a second reflector comprising a metallic material and disposed in the partial region of the bottom surface, of the dielectric, which faces the top surface of the antenna array.
US11322844B2

Embodiments of a circuit, system, and method are disclosed. In an embodiment, a circuit includes a first microstrip transmission line, a second microstrip transmission line, and a slotline formation, wherein the slotline formation extends between the first microstrip transmission line and the second microstrip transmission line so that the slotline formation is configured to electromagnetically couple the first microstrip transmission line to the second microstrip transmission line during operation of the circuit. In addition, the circuit includes at least one controllable capacitance circuit electrically connected to at least one of the first microstrip transmission line and the second microstrip transmission line, wherein a magnitude of capacitance of the at least one controllable capacitance circuit is controllable (e.g., in response to a capacitance control signal received at a control interface).
US11322836B2

The present disclosure provides a shield wall for shielding multiple individual antenna modules of a massive MIMO antenna from each other. A shield wall according to at least one embodiment of the present disclosure is formed by a plurality of staple-shaped unit partitions arrayed longitudinally of the shield wall, wherein the unit partitions are designed to have optimal widths and heights according to the frequency band in use, and are arranged at a predetermined interval or less with reference to the frequency band in use, thereby providing an antenna structure which satisfies both the X-POL isolation and CO-POL isolation characteristics and can be easily fabricated in a compact, lightweight design.
US11322827B2

A dual-polarized radiating element for a base station antenna includes a first dipole that extends along a first axis, the first dipole including a first dipole arm and a second dipole arm and a second dipole that extends along a second axis, the second dipole including a third dipole arm and a fourth dipole arm and the second axis being generally perpendicular to the first axis, where each of the first through fourth dipole arms has first and second spaced-apart conductive segments that together form a generally oval shape.
US11322824B2

Disclosed are an antenna assembly and a wireless terminal. The antenna assembly includes: a metal frame, wherein a first partition gap and a second partition gap are spacedly arranged on the metal frame, and the metal frame positioned between the first partition gap and the second partition gap forms a first radiator; and a radio frequency module, wherein the radio frequency module is coupled to the first radiator by a radio frequency signal feeder, wherein the metal frame between the first partition gap and the second partition gap is provided with a first ground point.
US11322820B2

The present disclosure relates to the field of television receiving antennas, and discloses an outdoor antenna, comprising a main body and a pair of reflective nets, wherein the reflective net comprises an assembly body, the main body comprises a fixing base, the assembly body and the fixing base are plugged into each other, and the assembly body and the fixing base are connected by a snap-connection, which allows the assembly body and the fixing base to be tightly combined with each other after being plugged in. The reflective nets can be detached from the main body, so that the entire outdoor antenna can be disassembled, which avoids packaging of the entire outdoor antenna and reduces the packaging volume. Furthermore, through the snap-connection, the assembly body and the fixing seat will not be loosened after being plugged in, and can be tightly combined with each other.
US11322819B2

An antenna module according to an embodiment of the present disclosure includes a dielectric substrate, a first antenna element, a first radio-frequency element, and a first heat-dissipating component. The first antenna element is provided on the dielectric substrate. The first radio-frequency element supplies electric power to the first antenna element. The first heat-dissipating component directs heat from the first radio-frequency element to the outside. The dielectric substrate, the first radio-frequency element, and the first heat-dissipating component are stacked in this order in the Z-axis direction, which is the direction normal to the dielectric substrate. The first heat-dissipating component includes metal. The first heat-dissipating component has a first width at its first position that differs from a second width at its second position located away from the first position in the Z-axis direction.
US11322815B2

Disclosed are various embodiments for a pre-matched power resistance system including a pre-matching network for use with a passive electrical device, such as a Lange coupler or a Wilkinson power splitter, where the system provides a predetermined input impedance across a predetermined target bandwidth. The pre-matched power resistance system network further includes an on-chip thin film resistor disposed on a substrate comprising a plurality of coplanar sub-resistors electrically isolated from one another and a manifold portion comprising a plurality of manifold traces in a tiered arrangement terminating in an electrical connection to a respective one of the coplanar sub-resistors.
US11322810B2

A battery with a layers including a first layer which is electrically conductive, a second layer consisting essentially of carbon-fiber-reinforced plastic, a third layer of glass-fiber-reinforced plastic, a fourth layer of carbon-fiber-reinforced plastic and LiFePO4, where the ratio by weight of LiFePO4 to carbon fiber is from 2:1 to 2.5:1, and a fifth layer which is electrically conductive, wherein the battery has substantially been jacketed by a layer made of glass-fiber-filled polyester.
US11322809B2

A cell module stores electrical energy, a battery has such a cell module and a module housing for such a cell module. The module housing includes an internal space in which n cells each having at least one positive and at least one negative electrode are arranged. In this case, n≥2 and the module housing here has at least three external electrical connection poles. The battery includes at least two such cell modules. The module housing includes at least three apertures through which electrical conductors are guided from the inside of the module housing to the outside.
US11322807B2

Provided are an electrode plate and a battery cell of a wound lithium-ion battery and a method for manufacturing same. The electrode plate comprises an electrode plate body and at least two groups of tabs arranged on the electrode plate body, with each group of tabs including multiple tabs, wherein the multiple tabs have equal intervals therebetween, and the widths of the multiple tabs are successively increased by 2πΔt, with Δt being the sum of the thicknesses of a positive electrode plate, a negative electrode plate and two layers of a separation film of the battery cell of the lithium-ion battery. The present invention can avoid the problem in the prior art of burrs on an electrode plate due to secondary die-cutting, and can reduce the possibility of self-discharge of the battery. Since the body of each tab is completely coated with an electrode material, the energy density is high, thereby improving the safety of the battery. By means of slightly adjusting the widths of the tabs, continuous production is realized.
US11322804B2

Articles containing electrodes and current collectors arranged such that at least one electrode can be electronically isolated from other components of the article and/or an electrochemical device, and associated systems and methods, are provided. In some cases, the articles contain substrates for which a change in volume of the substrate causes at least one electrode to become electronically isolated from other components of the article and/or an electrochemical device. In certain cases, heating the substrate causes the change in volume of the substrate.
US11322802B2

A wiring module that can account for tolerance in an alignment direction of a plurality of power storage devices includes: a first unit row including a plurality of first units linked by a first warping linking portion and a first slide linking portion that enable adjustment of an interval between the plurality of first units, the first warping linking portion having a warping portion and the linking portion having an inner wall and an outer wall; a second unit row including a plurality of second units linked by a second linking portion having an inner wall and an outer wall and enables adjustment of an interval between the plurality of second units, the second unit row being disposed side-by-side with the first unit row; and a row linking portion that has a variable row-interval portion that enables adjustment of an interval between the first and the second unit rows.
US11322797B2

A device for enabling controlled movement of ions between a first ion-containing fluid and second ion-containing fluid comprises at least one cationic exchange membrane positioned between the first and second ion-containing fluids, and at least one anionic exchange membrane in parallel with the at least one cationic exchange membrane positioned between the first and second ion-containing fluids. The one or more of the at least one cationic exchange membrane and the at least one anionic exchange membrane is a membrane electrode assembly comprising an ion exchange membrane, and one or more permeable electrodes embedded within the ionic exchange membrane. The number of cationic exchange membranes and the number of anionic exchange membranes is the same, and the ions move through the membrane electrode assembly in response to a variable capacitive charge.
US11322789B2

The aim of the disclosure is to improve a battery box to the extent that, when manufactured and used in a simple manner, the performance of the battery is ensured also over a longer period of time and responses can be made to modifications to the box, to the pressures prevailing in the box, etc. This aim is achieved, according to the disclosure, by a battery box, for a block battery, for receiving at least one battery cell having an electrode plate, said battery box comprising a main body, which is made of plastics material and has two end walls, which extend substantially in parallel with the electrode plates, and two side walls, which extend substantially at a right angle to said end walls, the end walls and side walls each having a top edge and a bottom edge and being interconnected so as to form a corner edge and the side walls having on the outer faces thereof a fastening edge extending at an angle to the corner edge.
US11322788B2

Disclosed are a laminate sheet for battery cases with improved formability, the laminate sheet for battery cases including, as a preliminary recess portion configured to receive an electrode assembly, a preliminary bottom portion and a preliminary sidewall portion constituting the side surface of the preliminary recess portion, wherein a preliminary sealing portion is located at an outer edge extending from the preliminary sidewall portion, and the thickness of the preliminary sidewall portion is formed so as to be larger than the thickness of the preliminary bottom portion, a pouch-shaped battery case manufactured by forming the laminate sheet, and a battery pack including the pouch-shaped battery case.
US11322785B2

A secondary battery includes a first electrode assembly including a first cathode and a first anode, a second electrode assembly that is disposed to be opposite the first electrode assembly and that includes a second cathode and a second anode, a cooling plate disposed between the first and second electrode assemblies for cooling of the first and second electrode assemblies, an exterior material in which the first and second electrode assemblies are disposed, a cathode tab electrically connected to the first and second cathodes and exposed outside the exterior material, and an anode tab electrically connected to the first and second anodes and exposed outside the exterior material, in which at least one of the cathode tab and the anode tab is coupled to the cooling plate.
US11322778B2

Described herein are additives for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high capacity retention during battery cycling at high temperatures. In some embodiments, a high voltage electrolyte includes a base electrolyte and one or more vinylsilane or fluorosilane additives, which impart these desirable performance characteristics.
US11322776B2

A co-fired all-solid-state battery that includes a negative electrode, a solid electrolyte layer, and a positive electrode. The negative electrode contains a negative electrode active material and a garnet-type solid electrolyte. The negative electrode active material contains Li, V, and O. The negative electrode active material has a mole ratio (Li/V) of a Li content to a V content of 2.0 or more. The garnet-type solid electrolyte contains Li, La, Zr, and O.
US11322773B2

Provided is a lithium ion secondary battery that has excellent cycle characteristics and employs a silicon material for a negative electrode. This lithium ion secondary battery is characterized by having a negative electrode comprising a plate-like artificial graphite and a material comprising silicon as a constituent element, wherein at least some of particles of the plate-like artificial graphite are bent and have a crease on a plate face.
US11322762B2

A fuel cell system includes first and second fuel cells each generating electric power using fuel gas and oxidant gas, first and second fuel gas supply devices supplying the fuel gas, first and second circulation paths circulating the discharged fuel gas to the first and second fuel cells, a communication path communicated with the first and second circulation paths, an opening/closing device causing the first and second circulation path to be communicated or to be disconnected by opening/closing the communication path, and a controller configured to determine whether there is a possibility of flooding, and when determining that there is the possibility of flooding, suspend power generation of one of the first and second fuel cells while maintaining supply of the fuel gas, and cause the opening/closing device to make the first and second circulation paths be communicated with each other.
US11322761B2

A method for enabling a fuel cell system includes the steps of: i) detecting a pressure value, which is indicative of the pressure within a section of the anode sub-system, wherein the section begins downstream of a pressure reducer; ii) relieving the pressure of the section during a pressure relief time interval, if the pressure value is greater than a pressure limit value and a release request is present; and then iii) enabling the fuel cell system if the pressure value in the section after the pressure relief is less than the pressure limit value.
US11322760B2

A fuel cell system comprises: a gas-liquid separator separating exhaust gas of a fuel cell stack into a liquid component and a gas component and storing liquid water of the liquid component; a circulation pipe; a drain pipe discharging the liquid water; and a drain valve opening and closing the drain pipe. In an end scavenging process that is executed when operation of the fuel cell system is finished, the control unit opens the drain valve when a valve opening condition for the drain valve is satisfied. The valve opening condition is set such that an amount of the liquid water stored in the gas-liquid separator at the time the drain valve is opened in the end scavenging process is larger than an amount of the liquid water stored in the gas-liquid separator at the time the drain valve is opened during normal operation of the fuel cell system.
US11322756B2

In a cooling system of a fuel cell, a first container for receiving a part of a coolant from a circulation flow path for circulating a coolant between a fuel cell and a heat exchanger is connected to the circulation flow path, a second container is connected to the first container via a pressure regulating valve, and a gas diffusion portion is provided in the second container. When a pressure inside the first container is equal to or higher than a threshold, the pressure regulating valve is opened and a gas inside the first container is released into the second container. The gas diffusion portion gradually discharges the gas released into the second container to outside of the system.
US11322753B2

Implementation of an interconnector structure for an SOEC or SOFC electrochemical device, the interconnector being formed of a conductive support element having a first face with a rough region, the roughness of which has been modified locally before being brought into contact with a seal.
US11322741B2

The present invention relates to a silicon powder, where the size of the silicon powder particles are between 3 and 30 μm, a particle size fraction D10 of the silicon powder particles is between 3 and 9 μm, and where the silicon powder particles have no, or substantially no, silicon particles with a size smaller than D10 attached to the surface. The silicon powder according to the present invention is produced by wet classifying produced silicon powders.
US11322735B2

Provided is a lithium secondary battery. The lithium secondary battery includes a negative electrode including a negative electrode active material layer, wherein the negative electrode active material layer includes a mixed negative electrode active material including graphite particles and low crystalline carbon-based particles, and the negative electrode active material layer has an apex of an exothermic peak in a temperature range of no less than 370° C. and no more than 390° C., as measured by differential scanning calorimetry (DSC).
US11322732B2

The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 μm. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
US11322713B2

The present disclosure provides a display substrate, a manufacturing method thereof, and a display device. The display substrate includes: a backplane; a transistor layer on a side of the backplane; a first planarization layer on a side of the transistor layer away from the backplane; an auxiliary cathode layer on a side of the first planarization layer away from the transistor layer; a second planarization layer on a side of the auxiliary cathode layer away from the first planarization layer; and a light-emitting element layer on a side of the second planarization layer away from the auxiliary cathode layer. The light-emitting element layer includes a primary cathode layer electrically connected to the auxiliary cathode layer.
US11322711B2

An organic EL apparatus (1) includes a plurality of pixels including a first pixel (10) and a second pixel (20), in which the first pixel (10) has a first emitting layer (15) containing a fluorescent first compound, the second pixel (20) has a second emitting layer (25) containing a delayed fluorescent second compound, and the first pixel (10) and the second pixel (20) share a common layer (50) extending across the first pixel (10) and the second pixel (20).
US11322709B2

A multicolor light-emitting element using fluorescence and phosphorescence, which has a small number of manufacturing steps owing to a relatively small number of layers to be formed and is advantageous for practical application can be provided. In addition, a multicolor light-emitting element using fluorescence and phosphorescence, which has favorable emission efficiency is provided. A light-emitting element which includes a light-emitting layer having a stacked-layer structure of a first light-emitting layer exhibiting light emission from a first exciplex and a second light-emitting layer exhibiting phosphorescence is provided.
US11322706B2

A quantum dot film, a quantum dot light-emitting assembly and a display device are provided. The quantum dot film includes: a quantum dot layer; and a conductive layer arranged on at least a side of the quantum dot layer along a thickness direction, and the conductive layer includes nano-sized metal particles, and at least a portion of the nano-sized metal particles are configured to generate a surface plasmon resonance under electromagnetic radiation. The luminescence efficiency and intensity of the quantum dot layer can be effectively improved by arranging the conductive layer on at least a side of the quantum dot layer.
US11322705B2

An organic light-emitting device including: a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; and an electron transport region between the second electrode and the emission layer, wherein the emission layer includes a first host and a second host, the first host includes a first compound represented by Formula 1, the second host includes at least one selected from a second compound represented by Formula 2 and a third compound represented by Formula 3, and the hole transport region includes an amine-based compound represented by Formula 40:
US11322702B1

Electrical device including a substrate having a surface and a radiofrequency field effect transistor (RF-FET) on the substrate surface. RF-FET includes a CNT layer on the substrate surface, the CNT layer including electrically conductive aligned carbon nanotubes, and pin-down anchor layers on the CNT layer. A first portion of the CNT layer, located in-between the pin-down anchor layers, is not covered by the pin-down anchor layers and is a channel region of the radiofrequency field effect transistor and second portions of the CNT layer are covered by the pin-down anchor layers. For cross-sections in a direction perpendicular to a common alignment direction of the aligned CNTs in the first portion of the CNT layer: the aligned CNTs have an average linear density in a range from 20 to 120 nanotubes per micron along the cross-section, and at least 40 percent of the aligned CNTs are discrete from any CNTs of the CNT layer.
US11322700B2

A highly portable and highly browsable light-emitting device is provided. A light-emitting device that is less likely to be broken is provided. The light-emitting device has a strip-like region having high flexibility and a strip-like region having low flexibility that are arranged alternately. In the region having high flexibility, a light-emitting panel and a plurality of spacers overlap with each other. In the region having low flexibility, the light-emitting panel and a support overlap with each other. When the region having high flexibility is bent, the angle between normals of facing planes of the two adjacent spacers changes according to the bending of the light-emitting panel; thus, a neutral plane can be formed in the light-emitting panel or in the vicinity of the light-emitting panel.
US11322692B2

The present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same. By comprising the organic electroluminescent compound of the present disclosure, an organic electroluminescent device having low driving voltage, high luminous efficiency, and/or improved lifespan characteristics can be provided.
US11322687B2

The present invention relates to a charge transporting semi-conducting material comprising: a) optionally at least one electrical dopant, and b) at least one cross-linked charge-transporting polymer comprising 1,2,3-triazole cross-linking units, a method for its preparation and a semiconducting device comprising the charge transporting semi-conducting material.
US11322666B2

An optoelectronic device includes an emitter of light rays and a receiver of light rays. The emitter is encapsulated within a first encapsulation layer, and the receiver is encapsulated within a second encapsulation layer. An opaque layer covers the first encapsulation layer (encapsulating the receiver) and covers the second encapsulation layer (encapsulating the emitter). The first and second encapsulation layers are separated by a region of opaque material. This opaque material may be provided by the opaque layer or an opaque fill.
US11322664B2

A method of manufacturing a light emitting device includes: providing a light emitting element including a light extraction surface, an electrode-formed surface on a side opposite to the light extraction surface, lateral surfaces positioned between the light extraction surface and the electrode-formed surface, and a pair of electrodes on the electrode-formed surface; providing a covering member including a lens portion and a first recess on a side different from the lens portion; disposing the light emitting element on a bottom surface of the first recess, with the light extraction surface and the bottom surface of the first recess facing each other; and forming a reflective member in the first recess to cover the lateral surfaces of the light emitting element while at least a part of the pair of electrodes is exposed from the reflective member.
US11322661B2

A spin-sensitive ultraviolet light-based device includes a p-type GaN layer; an n-type Gd doped ZnO nanostructure grown on the GaN layer; a first electrode formed on the GaN layer; and a second electrode formed on the Gd doped ZnO nanostructure. Electrons supplied through the first and second electrodes are spin-polarized by the Gd doped ZnO nanostructure. Polarized ultraviolet light emitted or received by the Gd doped ZnO nanostructure is correlated with the spin-polarized electrons.
US11322655B2

Optoelectronic components may include a semiconductor layer sequence on an auxiliary carrier where the sequence includes at least one n-doped layer, at least one p-doped layer, and an active layer therebetween. A first insulation layer is arranged over a surface of the n-doped layer. A first and second metallization are arranged for contacting the p-doped and n-doped layers, and the metallizations are connected to each other. The first and second metallizations are spatially separated from one another. A second insulation layer electrically insulates the first and second metallizations.
US11322653B2

A light emitting device with on-chip optical power readout includes a light emitting mesa and a light detecting mesa formed adjacent to each other on the same substrate of a chip, and a portion of the light emitted from the light emitting mesa is transmitted to the light detecting mesa at least through the substrate. The light emitting mesa and the light detecting mesa have exactly the same epitaxial structure and can be electrically isolated from each other by an insulation layer, or an airgap formed therebetween, or by ion implantation. The light emitting mesa and the light detecting mesa can also share an n-type structure and a common n-electrode while having their own p-electrode, respectively.
US11322651B2

A light-emitting element includes a first semiconductor layer, a second semiconductor layer, a light-emitting layer, a first electrode, and a second electrode. The first semiconductor layer includes gallium and nitrogen and is of an n-type. The second semiconductor layer includes gallium and nitrogen and is of a p-type. The light-emitting layer is provided between the first semiconductor layer and the second semiconductor layer. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer. The first semiconductor layer includes a first partial region and a first side surface region. The first partial region includes a first surface contacting the first electrode. The first side surface region includes a first side surface crossing a plane perpendicular to a first direction. The first direction is from the second semiconductor layer toward the first semiconductor layer.
US11322646B2

Some embodiments of the present disclosure provide a light-emitting diode package. The light-emitting diode package includes a transparent substrate. The light-emitting diode package also includes a first light-emitting diode which is disposed on the transparent substrate and has a first multiple quantum well structure. The light-emitting diode package further includes a second light-emitting diode which is disposed on the transparent substrate and has a second multiple quantum well structure. The first multiple quantum well structure and the second multiple quantum well structure are disposed to emit lights with different wavelengths.
US11322645B1

The disclosure discloses a method for manufacturing light-emitting diode (LED) chips. The manufacturing method includes: providing a plurality of LED elements; randomly mixing the plurality of LED elements; performing a mesa process on the plurality of LED elements; and forming at least one pair of electrodes on the plurality of LED elements. An electronic device includes the LED chips.
US11322644B2

A method for transferring light emitting elements during manufacture of a display panel includes providing light emitting elements; providing a first electromagnetic plate defining adsorption positions; providing a receiving substrate defining receiving areas; energizing the first electromagnetic plate to magnetically adsorb one of the light emitting elements at each adsorption position; facing the first electromagnetic plate to the receiving substrate; and transferring the light emitting elements to one corresponding receiving area of the receiving substrate.
US11322642B2

Disclosed herein are a radiation detector and a method of making it. The radiation detector is configured to absorb radiation particles incident on a semiconductor single crystal of the radiation detector and to generate charge carriers. The semiconductor single crystal may be a CdZnTe single crystal or a CdTe single crystal. The method may comprise forming a recess into a substrate of semiconductor; forming a semiconductor single crystal in the recess; and forming a heavily doped semiconductor region in the substrate. The semiconductor single crystal has a different composition from the substrate. The heavily doped region is in electrical contact with the semiconductor single crystal and embedded in a portion of intrinsic semiconductor of the substrate.
US11322641B2

The semiconductor device comprises a bipolar transistor with emitter, base and collector, a current or voltage source electrically connected with the emitter, and a quenching component electrically connected with the collector, the bipolar transistor being configured for operation at a collector-to-base voltage above the breakdown voltage.
US11322640B2

Photodetectors comprising a P type Ge region having a first region thickness and a first doping concentration and a N type GaAs region having a second region thickness and a second doping concentration smaller than the first doping concentration by at least one order of magnitude.
US11322632B2

An ultra-thin and highly transparent wafer-type plasmonic solar cell comprising a layer of a conductive transparent substrate, a layer of an n-type semiconductor; a layer made of metal nanoparticles selected from the group consisting of copper, gold or silver and a layer made of a p-type semiconductor; wherein the substrate, n-type semiconductor, metal nanoparticles and p-type semiconductor respectively are linked by covalent bonds by means of one or more molecular linker/linkers. A method for producing said plasmonic solar cell by self-assembly.
US11322627B2

According to one embodiment, a solar cell includes a first electrode, a second electrode, and a photoelectric conversion layer disposed between the first electrode and the second electrode. When a transmittance of the solar cell is measured in a wavelength range of 700 to 1000 nm, an average of the transmittance of the solar cell is 60% or more.
US11322626B2

Devices, methods and techniques are disclosed for providing a multi-layer diode without voids between layers. In one example aspect, a multi-stack diode includes at least two Drift Step Recovery Diodes (DSRDs). Each DSRD comprises a first layer having a first type of dopant, a second layer forming a region with at least ten times lower concentration of dopants compared to the adjacent layers, and a third layer having a second type of dopant that is opposite to the first type of dopant. The first layer of a second DSRD is positioned on top of the third layer of first DSRD. The first layer of the second DSRD and the third layer of the first DSRD are degenerate to form a tunneling diode at an interface of the first DSRD and second DSRD, the tunneling diode demonstrating a linear current-voltage characteristic.
US11322619B2

A semiconductor device structure is provided. The semiconductor device structure includes a first fin structure and a second fin structure formed over a substrate. The semiconductor device structure includes a first gate structure formed over the first fin structure, and the first gate structure includes a first portion of a gate dielectric layer and a first portion of a filling layer. The semiconductor device structure also includes a second gate structure formed over the second fin structure, and a first isolation sealing layer between the first gate structure and the second gate structure. The first isolation sealing layer is in direct contact with the first portion of the gate dielectric layer and the first portion of the filling layer.
US11322613B2

A structure and an operation of a transistor, which is a vertical transistor in which a nanowire-type floating body layer is vertically formed or a horizontal transistor in which a floating body layer is horizontally formed, and implements a spike operation of a neuron by storing and releasing charges inside the transistor, and a neuromorphic system using the same are provided. The vertical transistor includes a floating body layer in a form of a vertical nanowire vertically formed on a substrate, a source and a drain formed above and below the floating body layer, a gate insulating layer formed on the source and surrounding the floating body layer, a gate formed outside the gate insulating layer, and a contact metal being in contact with the source, the drain and the gate to input or output an electrical signal.
US11322611B2

A lateral DMOS transistor structure includes a substrate of a first dopant polarity, a body region of the first dopant polarity, a source region, a drift region of a second dopant polarity, a drain region, a channel region, a gate structure over the channel region, a hybrid contact implant, of the second dopant polarity, in the source region, and a respective metal contact on or within each of the source region, gate structure, and drain region. The hybrid contact implant and the metal contact together form a hybrid contact defining first, second, and third electrical junctions. The first junction is a Schottky junction formed vertically between the source metal contact and the body. The second junction is an ohmic junction formed laterally between the source metal contact and the hybrid contact implant. The third junction is a rectifying PN junction between the hybrid contact implant and the channel region.
US11322596B2

An embodiment of a semiconductor device comprises a SiC semiconductor body, a gate dielectric and a gate electrode. A first trench extends from a first surface of the SiC semiconductor body into the SiC semiconductor body. A junction material is in the first trench, wherein the junction material and the SiC semiconductor body form a diode.
US11322594B2

A semiconductor device, and methods of forming the same. In one example, the semiconductor device includes a trench in a substrate having a top surface, and a shield within the trench. The semiconductor device also includes a shield liner between a sidewall of the trench and the shield, and a lateral insulator over the shield contacting the shield liner. The semiconductor device also includes a gate dielectric layer on an exposed sidewall of the trench between the lateral insulator and the top surface. The lateral insulator may have a minimum thickness at least two times thicker than a maximum thickness of the gate dielectric layer.
US11322582B2

A semiconductor device, including a parallel pn layer formed on a semiconductor substrate, and an insulated gate structure provided on the parallel pn layer. The parallel pn layer includes a plurality of first regions and a plurality of second regions disposed repeatedly alternating one another along a first direction that is parallel to an upper surface of the semiconductor substrate. Each of the first regions and second regions has, along the first direction, an impurity concentration that has a maximum value thereof at a peak position and that decreases gradually from the peak position. Each of the first regions and second regions has, along a depth direction thereof, a first part and a second part, a gradient of the impurity concentration along the first direction being respectively symmetrical and asymmetrical in the first part and in the second part, with respect to the peak position.
US11322579B2

A semiconductor device includes a substrate and memory cell arrays arranged on the substrate in a first direction and second direction. The first direction and second direction are parallel to a top surface of the substrate and intersect each other. The memory cell arrays include a plurality of memory cells. A cell dummy pattern on the substrate is arranged between the memory cell arrays in at least one of the first direction and second direction and extends along a side of the memory cell arrays. A cell conductive pattern is included on the substrate. A cell contact plug is configured to connect the cell dummy pattern and the cell conductive pattern. The cell contact plug is arranged between the cell dummy pattern and the cell conductive pattern in a third direction that is perpendicular to the first direction and the second direction.
US11322564B2

A display device capable of reducing a non-display area includes a substrate including at least one hole area disposed within an emission area, and at least one blocking hole passing through inorganic insulating films disposed beneath a light emitting element while including upper and lower insulating films made of different materials. Side surfaces of the upper inorganic insulating film exposed through the blocking hole protrude beyond side surfaces of the lower inorganic insulating film exposed through the blocking hole, respectively. Accordingly, it is possible to minimize a bezel area, which is a non-display area, and to disconnect a light emitting stack by the blocking hole.
US11322562B2

The present disclosure provides a method of fabricating an organic light-emitting diode (OLED) display panel and an organic light-emitting diode (OLED) display panel. The OLED display panel includes a substrate; a driving circuit layer formed on the substrate; a pixel defining layer; and a light emitting functional layer, which are stacked. Protrusions are provided on a surface of the pixel defining layer away from the driving circuit layer in at least one of a plurality of pixel defining regions, and the light emitting functional layer is formed on the pixel defining layer and covers the sub-pixel regions. By forming the protrusions, a lateral transmission path of charges between adjacent sub-pixels is increased, resulting in a reduction in light leakage.
US11322555B2

The present invention provides a light-emitting device including a substrate, a first EL element, and a second EL element, the first EL element and the second EL element each including a lower electrode, an organic compound layer including a light-emitting layer, an upper electrode, and a color filter in this order from the substrate, and an insulating layer that covers an end portion of the lower electrode. A first color filter of the first EL element and a second color filter of the second EL element overlap each other when viewed in plan in an overlapping region, and an inclined portion closest to the first EL element among inclined portions of the insulating layer of the second EL element and the overlapping region overlap each other when viewed in plan.
US11322545B2

Devices and methods are provided. In one aspect, a device for driving a memristor array includes a substrate including a well having a bottom layer, a first wall and a second wall. The substrate is formed of a strained layer of a first semiconductor material. A vertical JFET is formed in the well. The vertical JFET includes a vertical gate region formed in a middle portion of the well with a gate region height less than a depth of the well. A channel region is formed of an epitaxial layer of a second semiconductor wrapped around the vertical gate region. Vertical source regions are formed on both sides of a first end of the vertical gate region, and vertical drain regions are formed on both sides of a second end of the vertical gate region.
US11322540B2

The present disclosure relates to an integrated circuit. The integrated circuit includes a plurality of interconnects within a dielectric structure over a substrate. A passivation structure is arranged over the dielectric structure. The passivation structure has sidewalls connected to one or more upper surfaces of the passivation structure. A bond pad is arranged directly between the sidewalls of the passivation structure. An upper passivation layer is disposed over the passivation structure and the bond pad. The upper passivation layer extends from over an upper surface of the bond pad to within a recess in the upper surface of the bond pad.
US11322535B2

A solid-state imaging device which includes a plurality of pixels in an arrangement, each of the pixels including a photoelectric conversion element, pixel transistors including a transfer transistor, and a floating diffusion region, in which the channel width of transfer gate of the transfer transistor is formed to be larger on a side of the floating diffusion region than on a side of the photoelectric conversion element.
US11322530B2

Provided is an image sensor including a semiconductor substrate having a first surface and a second surface opposite each other, an organic photoelectric conversion device on the first surface of the semiconductor substrate, a through electrode structure connected to the organic photoelectric conversion device, and a pixel separation structure extending from the first surface toward the second surface of the semiconductor substrate. The semiconductor substrate may include a photoelectric conversion region in the semiconductor substrate. The pixel separation structure may surround the photoelectric conversion region when viewed in plan. The pixel separation structure may include a separation conductive pattern and a first sidewall dielectric pattern. The first sidewall dielectric pattern may continuously extend from between the separation conductive pattern and the semiconductor substrate to between the semiconductor substrate and a sidewall of the through electrode structure. A portion of the pixel separation structure penetrated by the through electrode structure.
US11322526B2

A display device includes a first substrate and a second substrate comprising a color filter film. The first substrate includes a first organic resin layer, a second organic resin layer over the first organic resin layer; and a first opening portion provided by opening the first organic resin layer and the second organic resin layer. The first organic resin layer includes a first opening side surface having a first taper angle greater than 0° and less than 80° in the first opening portion. The second organic resin layer includes a second side surface having a second taper angle greater than 80° and less than 90° in the first opening portion. The first opening side surface is covered with the second organic resin layer.
US11322517B2

A semiconductor device includes a stack structure including conductive layers and insulating layers, which are alternately stacked; an opening including a first opening penetrating the stack structure and second openings protruding from the first opening; and a channel layer including channel regions located in the second openings and impurity regions located in the first opening, the impurity regions having an impurity concentration higher than that of the channel regions.
US11322514B2

According to one embodiment, storage device comprises first wiring layers stacked along a first direction and a memory pillar extending through the first wiring layers. The memory pillar includes a first semiconductor layer. A second wiring layer is above an upper end of the memory pillar. A second semiconductor layer has a first portion between the first semiconductor layer and the second wiring layer and a second portion extending away from the first semiconductor layer. A first insulating layer is between the first portion and the second wiring layer in first direction, and also between the second portion and the second wiring layer in a second direction intersecting the first direction.
US11322510B2

A vertical memory device includes a gate structure including a first gate electrode on a peripheral circuit region of a substrate, the substrate containing a cell region and the peripheral circuit region, a plurality of second gate electrodes sequentially stacked on the cell region of the substrate, the plurality of second gate electrodes spaced apart from each other in a vertical direction to an upper surface of the substrate, a channel extending in the vertical direction on the cell region of the substrate and extending through at least one of the second gate electrodes, and a first insulating interlayer covering the gate structure on the peripheral circuit region of the substrate, a cross-section in one direction of an upper surface of a portion of the first insulating interlayer overlapping the gate structure in the vertical direction having a shape of a portion of a polygon.
US11322502B2

An apparatus comprising a memory array comprising access lines. Each of the access lines comprises an insulating material adjacent a bottom surface and sidewalls of a base material, a first conductive material adjacent the insulating material, a second conductive material adjacent the first conductive material, and a barrier material between the first conductive material and the second conductive material. The barrier material is configured to suppress migration of reactive species from the second conductive material. Methods of forming the apparatus and electronic systems are also disclosed.
US11322493B2

Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device includes a semiconductor fin projecting from a substrate. Semiconductor nanostructures are disposed over the semiconductor fin. A gate electrode is disposed over the semiconductor fin and around the semiconductor nanostructures. A dielectric fin is disposed over the substrate. A dielectric structure is disposed over the dielectric fin. An upper surface of the dielectric structure is disposed over the upper surface of the gate electrode. A dielectric layer is disposed over the substrate. The dielectric fin laterally separates both the gate electrode and the semiconductor nanostructures from the dielectric layer. An upper surface of the dielectric layer is disposed over the upper surface of the gate electrode structure and the upper surface of the dielectric structure. A lower surface of the dielectric layer is disposed below the upper surface of the dielectric fin.
US11322488B2

The present invention relates to a display device and, more particularly, to a display device using a semiconductor light emitting element. The display device according to the present invention comprises a light emitting element module, wherein the light emitting element module comprises: a red semiconductor light emitting element that emits red light; a green semiconductor light emitting element that is disposed on the top surface of the red semiconductor light emitting element; a blue semiconductor light emitting element that is disposed on the top surface of the green semiconductor light emitting element; an individual electrode portion for supplying an individual signal to each of the red semiconductor light emitting element, the green semiconductor light emitting element, and the blue semiconductor light emitting element; and a common electrode portion for supplying a common signal to the red semiconductor light emitting element, the green semiconductor light emitting element, and the blue semiconductor light emitting element.
US11322486B2

Discussed is a display device including a lower substrate on which a lower electrode is disposed; a flat layer disposed on the lower substrate and having a plurality of holes; a plurality of light-emitting devices respectively disposed in of the plurality of holes; a magnetic portion disposed on the lower substrate and having an magnetic property; and a reaction portion disposed at each of the plurality of light-emitting devices and forming an attractive force with the magnetic portion, wherein a magnetization direction of the magnetic portion is perpendicular to the lower substrate.
US11322485B2

The present disclosure relates to the field of display, specifically, to a mass transfer method for a light-emitting unit, an array substrate, and a display device. The method comprises: providing a plurality of light-emitting units in an array, wherein each light-emitting unit comprises a first electrode extending to a side edge of the light-emitting unit; providing a base substrate comprising a plurality of areas in an array, each area comprising a second electrode and an electro-curable adhesive thereon; picking up the light-emitting units by a transfer device; applying voltages to the first and second electrodes respectively; aligning the transfer device with the base substrate, such that a portion of each first electrode extending to the side edge of the light-emitting unit contacts a respective electro-curable adhesive; and separating the transfer device from the light-emitting units, such that each light-emitting unit is transferred to a respective area of the base substrate.
US11322482B2

A component carrier with a first stack and a second stack. The first stack includes at least one first electrically insulating layer structure and at least one first electrically conductive layer structure having a first connection body with a first exposed planar electrically conductive surface. The second stack includes at least one second electrically insulating layer structure and at least one second electrically conductive layer structure having a second connection body with a second exposed planar electrically conductive surface. The first stack and the second stack are connected with each other so that the first exposed planar electrically conductive surface and the second exposed planar electrically conductive surface are connected to establish a vertical two-dimensional electrically conductive connection.
US11322473B2

Aspects of the invention include a method of tuning an interconnect that couples a first structure that is a first integrated circuit or a first laminate structure to a second structure that is a second integrated circuit or a second laminate structure. The method includes obtaining a compression requirement for a spring in a compliant layer of the interconnect. A longer path length of the spring leads to greater compression and mechanical support. Current and signal speed requirements for the interconnect are obtained. A shorter path length of the spring leads to greater current-carrying capacity and greater signal speed. Specifications for the spring are determined based on the compression requirement and the current and signal speed requirements. Determining the specifications includes determining a number of active coils of the spring to be less than two.
US11322469B2

An apparatus, comprising an integrated circuit (IC) package having at least one solder bond pad, a die having at least one solder bond pad, wherein the die is bonded to the IC package by at least one solder joint between the at least one solder bond pad of the die, and the at least one solder bond pad of the IC package, and an underfill material between the IC package and the die, wherein the at least one solder joint is embedded in the underfill material, and wherein the at least one solder joint comprises a first metallurgy and a second metallurgy.
US11322458B2

A semiconductor structure includes a first substrate, a second substrate, a metal layer, a buffer structure, and a barrier structure. The first substrate has a landing pad. The second substrate is disposed over the first substrate. The metal layer is disposed in the second substrate and extends from the landing pad to a top surface of the second substrate. The buffer structure is disposed in the second substrate and surrounded by the metal layer, in which a top surface of the buffer structure is below a top surface of the metal layer. The barrier structure is disposed over the metal layer and the buffer structure.
US11322450B2

A chip package including a semiconductor die, an insulating encapsulant, and a first redistribution layer is provided. The insulating encapsulant encapsulates the semiconductor die. The first redistribution layer is provided over the semiconductor die and the encapsulant and includes a first redistribution portion and a second redistribution portion in contact with the first redistribution portion. The first redistribution portion is between the second redistribution portion and the semiconductor die. The first redistribution portion includes a first dielectric portion and a plurality of first conductive features embedded in the first dielectric portion. The plurality of first conductive features electrically connects the semiconductor die to the second redistribution portion. The second redistribution portion includes a second dielectric portion and a plurality of second conductive features embedded in the second dielectric portion and connected to the first conductive features. A top surface of the second dielectric portion is substantially level with top surfaces of the plurality of second conductive features. A method of forming the chip package is also provided.
US11322448B2

An electronic module has a first substrate 11; a second substrate 21 provided in one side of the first substrate 11; and a chip module 100 provided between the first substrate 11 and the second substrate 21. The chip module 100 has an electronic element 13, 23 and a connecting body 60, 70, 80 electrically connected to the electronic element 13, 23. The electronic element 13, 23 extends along a first direction that is a thickness direction of the electronic module.
US11322439B2

Aspects of the invention include forming a semiconductor device. Gates are formed in a first direction over fins, the gates including gate material, the fins being formed in a second direction. Fin interconnects are formed in the first direction over the fins. A dielectric material is formed on the fins, and capacitor interconnects are formed over portions of the dielectric material in the first direction over the fins.
US11322438B2

A package structure including a lead frame structure, a die, an adhesive layer, and at least one three-dimensional (3D) printing conductive wire is provided. The lead frame structure includes a carrier and a lead frame. The carrier has a recess. The lead frame is disposed on the carrier. The die is disposed in the recess. The die includes at least one pad. The adhesive layer is disposed between a bottom surface of the die and the carrier and between a sidewall of the die and the carrier. The 3D printing conductive wire is disposed on the lead frame, the adhesive layer, and the pad, and is electrically connected between the lead frame and the pad.
US11322437B2

A flip chip interconnection including a circuit board is disclosed. The circuit board includes a substrate, inner leads, a T-shaped circuit line and a dummy pattern. The inner leads, the T-shaped circuit line and the dummy pattern are located on an inner bonding area of the substrate. The T-shaped circuit line includes a main segment, a branch segment and a connection segment that is connected to the main segment and the branch segment. The main segment and the branch segment are extended along a lateral direction and a longitudinal direction, respectively. The dummy pattern is located between the connection segment and the inner leads.
US11322433B2

In some examples, a package comprises first and second terminals and a conductive pathway coupling the first and second terminals. The conductive pathway is configured to generate a magnetic field. The package comprises a conductive member aligned with and coupled to the conductive pathway. The conductive pathway and the conductive member have a common shape. The package also comprises an insulative layer coupled to the conductive member and a die coupled to the insulative layer and having a circuit configured to measure the magnetic field. The circuit faces the conductive pathway.
US11322429B2

A circuit module includes a circuit board including an insulating layer, first and second signal conductors, a ground conductor, and a ground conductor layer; and an electronic component including first and second signal terminals and a first ground terminal. The ground conductor includes a first strip portion parallel to the first and second signal conductors. When a portion of the first signal conductor parallel to the second signal conductor and the first signal terminal are set as a first signal wiring line and a portion of the second signal conductor parallel to the first signal conductor and the second signal terminal are set as a second signal wiring line, the circuit board includes a first strip portion connection via conductor that connects the first strip portion and the ground conductor layer in a region where the first and second signal wiring lines are parallel to each other.
US11322426B2

The present invention generally relates to a microjet array for use as a thermal management system for a heat generating device, such as an RF device. The microjet array is formed in a jet plate, which is attached directly to the substrate containing the heat generating device. Additional enhancing features are used to further improve the heat transfer coefficient above that inherently achieved by the array. Some of these enhancements may also have other functions, such as adding mechanical structure, electrical connectivity or pathways for waveguides. This technology enables higher duty cycles, higher power levels, increased component lifetime, and/or improved SWaP for RF devices operating in airborne, naval (surface and undersea), ground, and space environments. This technology serves as a replacement for existing RF device thermal management solutions, such as high-SWaP finned heat sinks and cold plates.
US11322425B2

Provided is a semiconductor device having excellent heat radiation performance and electromagnetic wave suppression effect. A semiconductor device 1 comprises: a semiconductor element 30 formed on a substrate 50; a conductive shield can 20 having an opening hole 21; a conductive cooling member 40 located above the conductive shield can 20; a heat conductive sheet 10 formed between the semiconductor element 30 and the conductive cooling member 40 at least through the opening hole 21; and a conductive member 11 electrically connecting the conductive shield can 20 and the conductive cooling member 40.
US11322424B2

An insulated circuit board which is obtained by bonding a circuit layer onto one side of a ceramic substrate, and bonding a metal layer made of copper or copper alloy onto the other side of the ceramic substrate; and a heat sink which is bonded to the metal layer are included; the heat sink has a first metal layer made of aluminum or aluminum alloy joined to the metal layer, a ceramic board material joined to the first metal layer at an opposite side to the metal layer, and a second metal layer made of aluminum or aluminum alloy joined to the ceramic board material at an opposite side to the first metal layer; a thickness T1 of the first metal layer and a thickness T2 of the second metal layer are 0.8 mm to 3.0 mm inclusive; and a thickness ratio T1/T2 is 1.0 or more.
US11322413B2

Methods of forming an integrated device, and in particular forming one or more sample wells in an integrated device, are described. The methods may involve forming a metal stack over a cladding layer, forming an aperture in the metal stack, forming first spacer material within the aperture, and forming a sample well by removing some of the cladding layer to extend a depth of the aperture into the cladding layer. In the resulting sample well, at least one portion of the first spacer material is in contact with at least one layer of the metal stack.
US11322412B2

A method includes forming a dummy gate stack over a semiconductor region of a wafer, and depositing a gate spacer layer using Atomic Layer Deposition (ALD) on a sidewall of the dummy gate stack. The depositing the gate spacer layer includes performing an ALD cycle to form a dielectric atomic layer. The ALD cycle includes introducing silylated methyl to the wafer, purging the silylated methyl, introducing ammonia to the wafer, and purging the ammonia.
US11322404B2

A wafer processing method includes applying a laser beam of such a wavelength as to be transmitted through a wafer to the wafer from a back surface of the wafer, with a focal point of the laser beam positioned at a predetermined point inside the wafer, to form division start points along streets, the division start point including a modified layer and a crack extending from the modified layer to a front surface of the wafer; and grinding the back surface of the wafer by a grinding wheel having a plurality of grindstones in an annular pattern, to thin the wafer and divide the wafer into individual device chips. In forming the division start points, a chuck table is heated to a predetermined temperature, whereby the cracks formed inside the wafer to extend from the modified layers to the front surface of the wafer are grown.
US11322391B2

Embodiments and methods of an interconnect structure are provided. The interconnect structure includes a via, a trench that has an overlapping area with a top of the via, and a first layer of conducting material that has an overlapping area with a bottom of the via. The interconnect also includes a second layer of conducting material formed in the via, and a third layer of conducting material formed in the trench. The second layer of conducting material is in contact with the first layer of conducting material without a barrier in between the two conducting materials. The absence of the barrier at the bottom of the via can reduce the contact resistance of the interconnect structure.
US11322389B2

The present disclosure relates to a radio frequency (RF) device including a device substrate, a thinned device die with a device region over the device substrate, a first mold compound, and a second mold compound. The device region includes an isolation portion, a back-end-of-line (BEOL) portion, and a front-end-of-line (FEOL) portion with a contact layer and an active section. The contact layer resides over the BEOL portion, the active section resides over the contact layer, and the isolation portion resides over the contact layer to encapsulate the active section. The first mold compound resides over the device substrate, surrounds the thinned device die, and extends vertically beyond the thinned device die to define an opening over the thinned device die and within the first mold compound. The second mold compound fills the opening and directly connects the isolation portion of the thinned device die.
US11322376B2

A peeling apparatus includes a holding table for holding a plate-shaped workpiece having an upper surface and a lower surface, the upper surface being covered with a protective member. The lower surface of the workpiece is held on the holding table. A peeling mechanism peels off the protective member from the workpiece, and a recovery box is set in the peeling apparatus for recovering the protective member. The recovery box has an upper opening from which the protective member is put into the recovery box. The peeling apparatus further includes a removing mechanism for allowing the protective member to be put into the recovery box from the upper opening, and also allowing the protective member recovered into the recovery box to be removed from the recovery box, while operating the peeling mechanism to peel off the protective member.
US11322366B1

A method for locally annealing and crystallizing a thin film by directing ultrashort optical pulses from an ultrafast laser into the film. The ultrashort pulses can selectively produce an annealed pattern and/or activate dopants on the surface or within the film.
US11322342B2

Provided is a mass separator (100) for performing mass separation for an ion beam (IB). The mass separator (100) includes a transfer structure (30) that is a component of a yoke (13) and move at least one of an upper yoke (13a) positioned over the beam path (L), a lower yoke (13b) positioned under the beam path (L), and a side yoke (13c, 13d) positioned at a side of the beam path (L) between a normal position (P) in the traveling of the ion beam (IB) and a retracted position (Q) that does not overlap with at least a part of the normal position (P); the yoke (13) is surrounding the beam path (L) and is made of a magnetic body.
US11322337B2

A workpiece carrier is described for a plasma processing chamber that has isolated heater plate blocks. In one example, a plasma processing system has a plasma chamber, a plasma source electrically coupled with a showerhead included within the plasma chamber, a workpiece holder in a processing region of the plasma chamber having a puck to carry a workpiece, wherein the workpiece holder includes a heater plate having a plurality of thermally isolated blocks each thermally coupled to the puck, wherein each block includes a heater to heat a respective block of the heater plate, and wherein the workpiece holder includes a cooling plate fastened to and thermally coupled to the heater plate, the cooling plate defining a cooling channel configured to distribute a heat transfer fluid to transfer heat from the cooling plate, and a temperature controller to independently control each heater.
US11322335B2

A charged particle multi-beam device includes a charged particle source, a collimator lens, a multi-light-source forming unit, and a reduction projection optical system. The multi-light-source forming unit has first to third porous electrodes disposed side by side in an optical axis direction. A plurality of holes for causing the multi-beams to pass is formed in each of the first to third porous electrodes. The first porous electrode and the third porous electrode have the same potential and the second porous electrode has potential different from the potential of the first porous electrode and the third porous electrode. A diameter of the holes on the second porous electrode is formed larger further away from an optical axis such that a surface on which the multi-light sources are located is formed in a shape convex to the charged particle source side.
US11322325B2

A power relay assembly is provided. A power relay assembly according to an exemplary embodiment of the present invention comprises: a support plate having at least one electric element mounted on one surface thereof and including a plastic material having heat dissipation and insulation properties; and at least one bus bar electrically connected to the electric element and partially embedded in the support plate. Due to these features, since heat generated from the bus bar and the electric element is dissipated to the outside through the support plate, it is possible to prevent performance deterioration due to heat and breakage of electronic components.
US11322319B2

A separating device for interrupting a direct current of a current path, in particular for an on-board electrical system of a motor vehicle. The separating device has a hybrid switch with a current-conducting mechanical contact system and a first semiconductor switch connected to the hybrid switch in parallel and having a switchable resistance cascade with at least one ohmic resistor which is connected to the contact system of the hybrid switch in parallel.
US11322312B2

An energy storage device and a method of fabricating such energy storage device. The energy storage device includes a first electrode, a second electrode, and an electrolyte. The combination of the electrodes and the electrolyte is arranged to elastically deform when subjected to an external mechanical load applied to the energy storage device. The electrolyte includes a polymer matrix of at least two crosslinked structures, including a first polymeric material and a second polymeric material; and an electrolytic solution retained by the polymer matrix.
US11322306B2

A composite electronic component includes a composite body including a multilayer ceramic capacitor and a ceramic chip coupled to each other. The multilayer ceramic capacitor includes a first ceramic body in which dielectric layers and internal electrodes disposed to face each other with one of the dielectric layers interposed therebetween are stacked, and first and second external electrodes disposed on opposite end portions of the first ceramic body, respectively. The ceramic chip is disposed below the multilayer ceramic capacitor, and includes a second ceramic body including ceramic and first and second terminal electrodes disposed on opposite end portions of the second ceramic body, respectively, and connected to the first and second external electrodes, respectively. A ratio (T1/T2) of a thickness (T1) of the multilayer ceramic capacitor to a thickness (T2) of the ceramic chip satisfies 1.6≤(T1/T2)≤3.5.
US11322304B2

A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween in a stacking direction, and including a first surface and a second surface opposing each other in the stacking direction, a first through electrode penetrating the body and connected to the first internal electrode; a second through electrode penetrating the body and connected to the second internal electrode, first and second external electrodes disposed on the first surface and the second surface, respectively, and connected to the first through electrode, third and fourth external electrodes spaced apart from the first and second external electrodes and connected to the second through electrode, and an identifier disposed on the first surface or the second surface of the body, and the first and second through electrodes protrude from the first surface of the body.
US11322283B2

A diagnostic method for diagnosing a malfunction of a solenoid valve includes: a) storing reference features of a solenoid current waveform, b) detecting features of the solenoid current waveform during operation of the solenoid valve, c) comparing the reference features with the detected features, d) comparing the pressure value of fluid entering the solenoid valve inlet orifice with a predetermined range of pressure values in the event of deviation between the value of the detected features and the value of the reference features, e) adjusting the pressure value and repeating steps b) and c) in the case of deviation of the pressure value with respect to the pressure value range, and f) generating an alarm signal due to malfunction of the solenoid valve in the event of a deviation between the value of the detected features and the value of the reference and fluid pressure features within the pressure value range.
US11322278B2

A system is provided for wire processing. The wire processing system may include a wire transport, a processing station that may provide wire to the wire transport, a processing station that may move an electrical component threaded onto the wire, and a processing station that may move the electrical component to a position on the wire for further processing.
US11322268B2

A disposal device comprises a raw material conveyor, a raw material mixer, a liquid waste conveying pipeline, an additive tank, a powder waste conveyor, an output pump, a liquid supply pump, a liquid supply manifold, an output manifold, a mixed liquid conveying pipeline, a high-pressure injection pump, a high-pressure pipeline, and a wellhead sealing device. A method of employing the device includes: drilling a well; forming a fracture in the granite stratum; preparing a raw material; and injecting, by using the disposal device, a sand-carrying feed liquid from a high-pressure injection pump into the fracture of the underground granite stratum, so as to perform solidification.
US11322267B2

A generator is installed on and provides electrical power from a turbine by converting the turbine's mechanical energy to electricity. The generated electrical power is used to power controls of the turbine so that the turbine can remain in use through its own energy. The turbine can be a safety-related turbine in a nuclear power plant, such that, through the generator, loss of plant power will not result in loss of use of the turbine and safety-related functions powered by the same. Appropriate circuitry and electrical connections condition the generator to work in tandem with any other power sources present, while providing electrical power with properties required to safely power the controls.
US11322266B2

Modular flow control systems include several differently-shaped structures to achieve desired flow characteristics in fluid flow. Systems include one or many plates held in desired positions by a retainer within the flow. The plates are uniquely shaped based on their position, or vice versa, to shape flow in a desired manner. The plates may fill an entire flow area or may extend partially throughout the area. Plates can take on any shape and are useable in systems installed in any type of flow conduit. When used in a PCCS upper manifold in a nuclear reactor, a chevron plate directly below the inlet divides flow along the entire upper manifold. Perforated plates allow flow to pass at ends of the PCCS upper manifold. The plates can be installed along a grooved edge during an access period and held in static position by filling the length of the PCCS upper manifold.
US11322262B2

Systems and methods are provided for selecting colony locations. Selecting colony locations can include determine a location of a selection tool on a culture plate image, determining a location of a potential source of error on the culture plate image, comparing the location of the selection tool to the location of the potential source of error; and determining an error when the location of the selection tool overlays the location of the potential source of error.
US11322260B1

Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for collecting monitoring data and predicting outcomes for communities. In some implementations, monitoring data is received, including location tracking data that indicates locations visited by individuals in a community. Community data for the community that describes characteristics of the community and a geographic region associated with the community is received. One or more predictive models are used to evaluate regions for potential for transmission of a disease based on behavior patterns of individuals in the community. The one or more predictive models can be models trained based on training data describing a plurality of different communities and behavior patterns and disease outcomes of individuals in the different communities over time.
US11322258B2

A method includes receiving an input indicative of at least one factor that contributes to the development of pressure ulcers; determining a risk score as a function of the input; comparing the risk score to a previous risk score; and at least one of activating a therapy configured to reduce the magnitude of the factor and notifying a caregiver if the risk score is greater than the previous risk score.
US11322251B2

A hybrid ID system for a medical practitioner and patient care includes a hybrid electronic ID/key having a transmitter device having circuitry for storing ID data and transmitting a signal containing the ID data, and a key having a predetermined shape on a surface of the hybrid electronic ID/key. A radio frequency receptor device having circuitry, storing location information, that detects the signal containing ID data, a matching detection section configured to match the predetermined shape of the key, and a movement tracking portion that tracks movement of the predetermined shape as the key is rotated. A computer system including a patient database is configured to receive the ID data in conjunction with the location information from the radio frequency receptor device when the predetermined shape is completely rotated to a final position, and store the ID data, location information, together with patient data associated with the location.
US11322239B2

A method for managing use of a disposable with an infusion pump is provided. The method can include adding validity information about a particular set of disposables to a list of disposables. Subsequent to adding the validity information, the method can include modifying the validity information about the particular set of disposables on the list of disposables. The method can include an infusion pump reading identifying information from a disposable, and can include determining whether the disposable is valid for use, based at least in part upon comparison of the identifying information read from the disposable by the infusion pump with the validity information about the particular set of disposables on the list of disposables. The method can also include the infusion pump making a determination of whether to deliver or not deliver an infusate based at least in part upon the determining whether the disposable is valid for use.
US11322233B2

A contrast parameter learning system is operable to generate contrast significance data for a computer vision model, where the computer vision model was generated by performing a training step on a training set of medical scans. Significant contrast parameters are identified based on the contrast significance data. A re-contrasted training set is generated by performing an intensity transformation function that utilizes the significant contrast parameters on the training set of medical scans. A re-trained model is generated by performing the training step on the first re-contrasted training set. Re-contrasted image data of a new medical scan is generated by performing the intensity transformation function. Inference data is generated by performing an inference function that utilizes the first re-trained model on the re-contrasted image data. The inference data is transmitted via the transmitter to a client device for display via a display device.
US11322229B2

Disclosed is a system for documenting clinical trials, the system when operated identifies at least one publication related to a clinical trial entry to obtain documented clinical trial. The system comprises: an information repository comprising plurality of publications; a clinical trials registry database comprising a plurality of clinical trial entries; and a server arrangement. The server arrangement is configured to: obtain the plurality of publications; analyze the plurality of publications, using a filtering module, to determine a filtered set of publications; obtain the plurality of clinical trial entries; analyze a context of each of the publications in the filtered set and each of the plurality of clinical trial entries using a mapping module to identify a relationship of each of the publication with at least one of the plurality of clinical trial entries; and associate the plurality of clinical trial entries with publications related thereto to obtain documented clinical trials.
US11322228B2

A method of designing a D-polypeptide that binds with an L-target protein can include: identifying a polypeptide target having L-chirality; determining hotspot amino acids of a polypeptide ligand having L-chirality that have binding interactions with the L-target protein; determining transformations of side chains of the hotspot amino acids that retain the binding interactions with the target; generating inversed hotspot amino acids with chirality opposite to the one of the target; identifying a polypeptide having inverse chirality from the target protein, on which a combination of inversed hotspot amino-acid can be grafted without significantly changing their interactions with the target. The designed ligands can be processed and converted to D-ligands that bind with the L-target protein.
US11322227B2

Determining relative relationships of people who share a common ancestor within at least a threshold number of generations includes: receiving recombinable deoxyribonucleic acid (DNA) sequence information of a first user and recombinable DNA sequence information of a plurality of users; processing, using one or more computer processors, the recombinable DNA sequence information of the plurality of users in parallel; determining, based at least in part on a result of processing the recombinable DNA information of the plurality of users in parallel, a predicted degree of relationship between the first user and a user among the plurality of users, the predicted degree of relative relationship corresponding to a number of generations within which the first user and the second user share a common ancestor.
US11322226B2

Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample; determining a molecular-functional (MF) profile using the data; determining sets of visual characteristics for GUI elements using the data; generating a personalized GUI using the determined visual characteristics; and presenting the generated personalized GUI to a user.
US11322222B2

A memory device includes at least one first register, a memory circuit, an analyzing circuit, and a control circuit. The memory circuit includes a plurality of bit cells. The analyzing circuit is configured to perform an analyzing process on the bit cells to generate an analyzing result. If the analyzing result indicates that a first bit cell of the bit cells fails, the control circuit establishes a repair process by controlling data to be written into the at least one first register and controlling the data to be read out from the at least one first register.
US11322212B2

A semiconductor memory device according to an embodiment includes a string, a bit line, a well line, and a sequencer. The string includes first and second select transistors, and memory cell transistors using a ferroelectric material. The bit line and the well line are connected to the first and second select transistors, respectively. At a time in an erase verify operation, the sequencer is configured to apply a first voltage to the memory cell transistors, to apply a second voltage lower than the first voltage to the first select transistor, to apply a third voltage lower than the first voltage to the second select transistor, to apply a fourth voltage to the bit line, and to apply a fifth voltage higher than the fourth voltage to the well line.
US11322192B2

An example apparatus according to an aspect of the present disclosure includes an address scrambler circuit including a sub-wordline scrambler circuit configured to receive a first subset of bits of a row hammer hit address. The sub-wordline scrambler circuit is configured to perform a first set of logical operations on the first subset of bits to provide a second subset of bits, and to perform a second set of logical operations on the first subset of bits and the second subset of bits to provide a third subset of bits of an row hammer refresh address.
US11322186B2

An electronic device includes a controller and a semiconductor device. The controller outputs a clock signal, a chip selection signal, and a command/address signal and receives and outputs a first data and a second data. The semiconductor device is synchronized with the clock signal to receive or output the first data through a first memory region that is selected by the command/address signal when the chip selection signal and the command/address signal have a logic level combination to perform a first active operation. In addition, the semiconductor device is synchronized with the clock signal to receive or output the second data through the first memory region and a second memory region that are selected by the command/address signal based on the chip selection signal during a second active operation after the first active operation.
US11322180B2

A storage apparatus includes a disk-shaped recording medium having a surface, a motor configured to drive and rotate the recording medium, a head configured to read information from and write information to the recording medium, a ramp mechanism configured to move the head from a position above the surface of the recording medium to a head receded position, and a ramp retracting mechanism configured to move the ramp mechanism from a position above the surface of the recording medium to a ramp retracted position. Each of the head receded position and the ramp retracted position is outside a range of the recording medium in a plan view viewed from above the recording medium in a direction perpendicular to the surface of the recording medium.
US11322176B2

A method of manufacturing a magnetic recording medium forms an unfinished product including a magnetic recording layer and a protection layer that are successively formed on a substrate, and forms a lubricant layer on the protection layer of the unfinished product. The lubricant layer is formed by coating a first organic fluorine compound on the protection layer of the unfinished product, and supplying a gas, including a second organic fluorine compound, onto the protection layer of the unfinished product, and decomposing the second organic fluorine compound by Townsend discharge and ultraviolet ray irradiation. The protection layer includes carbon, and the first organic fluorine compound includes a functional group at a terminal thereof.
US11322172B2

Computer-generated feedback directed to whether user speech input meets subjective criteria is provided through the evaluation of multiple speaking traits. Initially, discrete instances of various multiple speaking traits are detected within the user speech input provided. Such multiple speaking traits include vocal fry, tag questions, uptalk, filler sounds and hedge words. Audio constructs indicative of individual instances of speaking traits are isolated and identified from appropriate samples. Speaking trait detectors then utilize such audio constructs to identify individual instances of speaking traits within the spoken input. The resulting quantities are scored based on reference to predetermined threshold quantities. The individual speaking trait scores are then amalgamated utilizing a weighting that is derived based on empirical relationships between those speaking traits and the criteria for which the user's speech input is being evaluated. Further adjustments thereof can be made by separately, manually weighting the previously determined quantities.
US11322171B1

A system and method for processing a plurality of channels, for example audio channels, in parallel is provided. For example, a plurality of telephony channels are processed in order to detect and respond to call progress tones. The channels may be processed according to a common transform algorithm. Advantageously, a massively parallel architecture is employed, in which operations on many channels are synchronized, to achieve a high efficiency parallel processing environment. The parallel processor may be situated on a data bus, separate from a main general-purpose processor, or integrated with the processor in a common board or integrated device. All, or a portion of a speech processing algorithm may also be performed in a massively parallel manner.
US11322169B2

A noise estimation parameter learning device is provided according to which even in a large space causing a problem of the reverberation and the time frame difference, multiple microphones disposed at distant positions cooperate with each other, and a spectral subtraction method is executed, thereby allowing the target sound to be enhanced. A noise estimation parameter learning device for learning noise estimation parameters used to estimate noise included in observed signals through a plurality of microphones, the noise estimation parameter learning device comprising: a modeling part that models a probability distribution of observed signals of the predetermined microphone, models a probability distribution of time frame differences, and models a probability distribution of transfer function gains; a likelihood function setting part that sets a likelihood function pertaining to the time frame difference, and a likelihood function pertaining to the transfer function gain, based on the modeled probability distributions; and a parameter update part that alternately and repetitively updates two variables of two likelihood functions, and outputs the time frame difference and the transfer function gain that have converged, as the noise estimation parameters.
US11322163B2

An audio packet error concealment system includes an encoding unit for encoding an audio signal consisting of a plurality of frames, and an auxiliary information encoding unit for estimating and encoding auxiliary information about a temporal change of power of the audio signal. The auxiliary information is used in packet loss concealment in decoding of the audio signal. The auxiliary information about the temporal change of power may contain a parameter that functionally approximates a plurality of powers of subframes shorter than one frame, or may contain information about a vector obtained by vector quantization of a plurality of powers of subframes shorter than one frame.
US11322161B2

Methods and systems encoding a stereo audio signal having an original left channel and an original right channel are disclosed. The method includes generating a downmix signal and a residual signal based on the stereo audio signal and determining one or more stereo parameters based on the stereo audio signal. The residual signal covers only a part of an audio frequency range of the stereo signal, and the one or more stereo parameters describing a stereo image of the stereo audio signal. The method further includes analyzing the stereo audio signal and selecting, based on the analyzing, left/right perceptual encoding or mid/side perceptual encoding in a time variant manner.
US11322159B2

A method for passive enrollment and identification of one or more speakers in an audio file includes automatically converting audio data to a format suitable for biometric processing, separating different channels present in the converted audio data separating speakers in the converted audio data, generating audio files specific to individual speakers in the converted audio data, iteratively grouping the audio files of individual speakers according to a predetermined matching criteria, creating biometric voice prints from the groups of audio files, and authenticating speakers in the biometric voice prints by comparing the biometric voice prints to entries in a biometric voice print database.
US11322148B2

A computer implemented method processes audio streams recorded during a meeting by a plurality of distributed devices. Operations include performing speech recognition on each audio stream by a corresponding speech recognition system to generate utterance-level posterior probabilities as hypotheses for each audio stream, aligning the hypotheses and formatting them as word confusion networks with associated word-level posteriors probabilities, performing speaker recognition on each audio stream by a speaker identification algorithm that generates a stream of speaker-attributed word hypotheses, formatting speaker hypotheses with associated speaker label posterior probabilities and speaker-attributed hypotheses for each audio stream as a speaker confusion network, aligning the word and speaker confusion networks from all audio streams to each other to merge the posterior probabilities and align word and speaker labels, and creating a best speaker-attributed word transcript by selecting the sequence of word and speaker labels with the highest posterior probabilities.
US11322146B1

There is provided an LED light with a replaceable module that is connected to an intelligent network. The replaceable module includes a driver element, communication element, and power storage such as a battery. The driver element has circuitry, such as printed circuit boards, which is uniform for mating with any connection component to provide electrical connection. The communication/control element includes communication with a voice orchestrated infrastructure and to Z-link capable systems, via a wireless network. The replaceable module fits inside the opening of a housing which includes a mount for electrical connection to standard electrical outlet. Zone control LED lighting is also provided which is likewise connected to the network for voice control.
US11322144B2

Disclosed are an information providing device and an information providing method, which provide information enabling a conversation with a user by executing an artificial intelligence (AI) algorithm and/or a machine learning algorithm in a 5G environment connected for Internet-of-Things. An information providing method according to one embodiment of the present disclosure includes gathering first situational information from a home monitoring device, gathering, from the first electronic device, second situational information corresponding to the first situational information, gathering, from the home monitoring device, third situational information containing a behavioral change of the user after gathering the first situational information, generating a spoken sentence to provide to the user on the basis of the first situational information to the third situational information, and converting the spoken sentence to spoken utterance information to be output to the user.
US11322136B2

A method includes performing, using at least one processor, feature extraction of input audio data to identify extracted features associated with the input audio data. The method also includes detecting, using the at least one processor, a language associated with each of multiple portions of the input audio data by processing the extracted features using a plurality of language models, where each language model is associated with a different language. In addition, the method includes directing, using the at least one processor, each portion of the input audio data to one of a plurality of automatic speech recognition (ASR) models based on the language associated with the portion of the input audio data.
US11322131B2

Embodiments generally relate to a signal processing device for on ear detection for a headset. The device comprises a first microphone input for receiving a microphone signal from a first microphone, the first microphone being configured to be positioned inside an ear of a user when the user is wearing the headset; a second microphone input for receiving a microphone signal from a second microphone, the second microphone being configured to be positioned outside the ear of the user when the user is wearing the headset; and a processor. The processor is configured to receive microphone signals from each of the first microphone input and the second microphone input; pass the microphone signals through a first filter to remove low frequency components, producing first filtered microphone signals; combine the first filtered microphone signals to determine a first on ear status metric; pass the microphone signals through a second filter to remove high frequency components, producing second filtered microphone signals; combine the second filtered microphone signals to determine a second on ear status metric; and combine the first on ear status metric with the second on ear status metric to determine the on ear status of the headset.
US11322121B2

A musical instrument to which a music stand is to be attached includes a performance operation unit that is arranged in a front portion of the musical instrument in a front-and-rear direction, and an attachment portion arranged at a position farther rearward than a rear end of the performance operation unit in the front-and-rear direction and farther forward than an intermediate position between the rear end of the performance operation unit and a rear end of the musical instrument in the front-and-rear direction, wherein the music stand is attached to the attachment portion such that a music score provision surface of the music stand is inclined by a first angle, and the first angle is in a range of 35 degrees to 55 degrees with respect to a horizontal plane.
US11322120B1

A cantilevered bridge for resonators to permit greater sound production from small sound producing instruments, including a sound producing instrument having an instrument body; a cantilevered bridge lever arm having a first surface and a second surface, with a primary resonator coupled by a biscuit bridge to the first surface of the cantilevered bridge lever arm, and a secondary resonator coupled by a connector to the second surface of the cantilevered bridge lever arm. In a second embodiment, a hinge attachment anchors the cantilevered bridge lever arm to a pivot point within the sound producing instrument.
US11322118B2

A display apparatus includes a display and a processor. The processor is configured to obtain information related to a use environment of the display apparatus, obtain a first image, identify a style among a plurality of styles which are applicable to the first image, based on the information related to the use environment, obtain a second image which is converted from the first image based on information related to the identified style, and control the display to display the second image.
US11322117B2

Systems and methods for cropping media for a particular orientation using a computing device are described. In some implementations, a method may first comprise receiving by a video preprocessor of the device, a first frame of media in a first orientation. A first region comprising a first feature within the first frame may be identified, by an image analyzer. A cropping calculator of the device may generate a score for the first region based on a characteristic of the first feature and determine that the score for the first region exceeds a threshold. An image processor of the device may then crop the first frame of the video, responsive to the determination that the score for the first region exceeds the threshold, to include the first region within a predetermined display area comprising a subset of the first frame in a second orientation.
US11322115B2

A display system, a display control method for the display system and a non-transitory computer readable recording medium storing a program executable by a computer coupled to the display device are provided. The display system includes an HMD and a smartphone. The HMD includes an image display unit that transmits outside light and displays an image, and a DP illuminance sensor that detects an illuminance of the outside light. The smartphone includes an SP display control unit that adjusts, based on first illuminance information indicating a detection result of the DP illuminance sensor, a brightness of the image displayed by the image display unit, and an SP illuminance sensor that detects the illuminance. The SP display control unit can adjust the brightness of the image, based on second illuminance information indicating a detection result of the SP illuminance sensor.
US11322111B2

The present disclosure provides a driving method of a display device and a display device. The driving method of the display device includes: inputting a gate signal with a length of a first duration to each of gate lines; and inputting a data signal to each of data lines to drive the display device for displaying. Among M data lines crossing the gate line in a direction of the gate line from a signal input terminal to an terminal away from the signal input terminal, a start time at which an mth data line input with the data signal is delayed by a second duration, relative to the start time at which a first data line closest to the signal input terminal of the gate line is input with the data signal, and the second duration is less than the first duration.
US11322108B2

A gate driver of array (GOA) circuit includes a plurality of cascaded GOA units, wherein an N-th GOA unit includes a scan control circuit, a reverse circuit, a gate signal output circuit, and a potential holding circuit. The reverse circuit is coupled to the scan control circuit. The gate signal output circuit is coupled to an Nth clock signal, the scan control circuit, and the reverse circuit. The potential holding circuit is coupled to the scan control circuit, the reverse circuit, and the gate signal output circuit.
US11322106B2

Embodiments of the present disclosure provide a method and a device for controlling a timing sequence, a drive circuit, a display panel, and an electronic apparatus. In this method, a frame scan timing sequence for a display signal may be set according to a frame rate of the display signal, wherein the frame scan timing sequence includes an active period and a blanking period. The frame scan timing sequence may be arranged to increase the active period as the frame rate of the display signal decreases.
US11322105B2

According to an embodiment of the present invention, an active matrix substrate (100) includes a display region (DR) defined by a plurality of pixel regions (P) arranged in a matrix and a peripheral region (FR) located around the display region. The active matrix substrate includes a substrate (1), a first TFT (10), and a second TFT (20). The first TFT is supported by the substrate and disposed in the peripheral region. The second TFT is supported by the substrate and disposed in the display region. The first TFT includes a crystalline silicon semiconductor layer (11), which is an active layer. The second TFT includes an oxide semiconductor layer (21), which is an active layer. The first TFT and the second TFT each have a top-gate structure.
US11322102B2

A display device and a display method which can reproduce kinematic parallax and express a high sense of realism without using image display means are provided. The display device includes an image display unit having a stripe structure having subpixels of a plurality of colors disposed so that subpixels of the same color are arranged in a first direction and enabling an observer to observe, through an aperture, an image formed by pixels, each pixel being constituted by the subpixels of a plurality of colors. The aperture has a shape in which areas of the subpixels of the plurality of colors which can be seen through the aperture are uniform, and in which a numerical aperture decreases along a second direction orthogonal to the first direction. A plurality of the apertures are provided so as not to overlap with each other.
US11322095B1

Embodiments relate to a display device including an active display area with pixels arranged in rows and columns, where a focus area of the active display area is operated in a progressive scanning manner and a non-focus area of the active display area is operated in an interlaced scanning manner. The active display area is driven by a gate driver circuit that supplies gate signals the pixels. First stages of the gate driver circuit are coupled to first rows of the pixels that are in the focus area and output first gate signals in the progressive scanning manner. Second stages of the gate driver circuit are coupled to second rows of the pixels that are in the non-focus area and output second gate signals in the interlaced scanning manner.
US11322091B2

Provided are a pixel circuit, a display panel, and a compensation method of a reference voltage of a pixel circuit, including a plurality of pixel internal driving circuits arranged in an array. The internal driving circuit of each pixel includes: a first thin film transistor (T1), a second thin film transistor (T2), a fourth thin film transistor (T4), a first capacitor (C1), an organic light emitting diode (D1), and a compensation module. By setting the compensation module, the compensation module is connected to a scan signal (EM). An end of the compensation module is connected to a first node (G), and another end of the compensation module is connected to a power supply voltage (VDD). The compensation module is configured to compensate a potential drop of the first node (G) due to coupling of the first capacitor (C1).
US11322089B2

A display is disclosed. A display according to various embodiments may comprise: a panel comprising a first pixel line comprising multiple first pixels formed in a first direction and a second pixel line comprising multiple second pixels formed in the first direction; a first wire for supplying power to the multiple first pixels included in the first pixel line; a second wire for supplying power to the multiple second pixels included in the second pixel line; and a compensation circuit electrically connected to the second wire, and compensating for an impedance corresponding to the difference in number between the multiple first pixels and the multiple second pixels. A display according to various embodiments may comprise: a panel comprising a first pixel line comprising multiple first pixels formed in a first direction and a second pixel line comprising multiple second pixels formed in the first direction; a first wire for supplying first power to the multiple first pixels included in the first pixel line; a second wire for supplying second power to the multiple second pixels included in the second pixel line; and a display driver IC configured to apply a first ELVdd and a first ELVss, which corresponds to the first ELVdd, to the first pixel line as first power and to apply a second ELVdd and a second ELVss, which corresponds to the second ELVdd, to the second pixel line as second power. Various other embodiments may also be provided.
US11322088B2

A display device includes a display region including display pixels, a control circuit, a first power line pattern, and a second power line pattern. The display region includes a first region and a second region having a lower display pixel density than the first region. The control circuit is configured to supply pixel circuits in the first region with a first power supply potential through the first power line pattern, supply pixel circuits in the second region with a second power supply potential higher than the first power supply potential through the second power line pattern, and supply light-emitting elements of the display pixels in the second region with driving current higher than driving current for the display pixels in the first region for a same grayscale level specified in image data.
US11322087B1

A pixel circuit for a display device may be operable in three phases, including an initialization phase, a combined threshold compensation and data programming phase, and an emission phase. The pixel circuit may include a drive transistor configured to control an amount of current from a first power supply to a light-emitting device during the emission phase depending upon a voltage applied to a gate of the drive transistor. The pixel circuit may also include a second transistor and a third transistor that are connected in series between the gate and a second terminal of the drive transistor and are configured to implement the three phases. The pixel circuit may also include two capacitors, with one capacitor connected between the gate of the drive transistor and a first node of the circuit, and another capacitor connected between the gate and a second node of the circuit.
US11322082B2

A pixel driving circuit includes a first switching element, a second switching element, a first compensation element, a second compensation element, a driving transistor, a capacitor, and a third switching element.
US11322063B2

A scan driving circuit and a driving method thereof, and a display device are disclosed. The scan driving circuit includes: a control circuit, a scanning circuit group and a first processing circuit group. The control circuit is configured to generate and output a keyword signal to the first processing circuit group, to control a scan order of respective scanning circuits in the scanning circuit group; the first processing circuit group is configured to generate a scan enable signal according to the keyword signal, and output the scan enable signal to a scanning circuit corresponding to the keyword signal in the scanning circuit group.
US11322056B2

The present invention relates to a luminous stick of emitting an image on the basis of the optical element, and may provide a three-dimensional image according to rotation of a light emitting body, and may perform various applications by displaying a text, an image, and a moving image. In addition, even when performing performance, since the luminous stick may be performed expressions in various by the luminous stick itself, the luminous stick may be performed the performance by a simple operation, and may be used in concert halls and theaters.
US11322055B2

A locating and identifying device for locating a vehicle includes a pole, a panel, and a coupling means. The panel is coupled to and extends from the pole proximate to a first end of the pole. The coupling means is coupled to a second end of the pole. The coupling means is configured to couple the pole to a vehicle, such as to the roof or to a roof rack, so that the pole extends upwardly from the vehicle to position the panel so that it is viewable to a user, enabling the user to locate and identify the vehicle.
US11322050B1

Systems, apparatuses, methods, and computer program products are disclosed for post-quantum cryptography (PQC). An example method includes receiving data, a set of data attributes about the data, and a risk profile data structure indicative of a vulnerability of the data in a PQC data environment. The example method further includes retrieving PQC cryptographic performance information associated with a set of PQC cryptographic techniques. The PQC cryptographic performance information may comprise a set of PQC cryptographic performance attributes for each PQC cryptographic technique in the set of PQC cryptographic techniques. The example method further includes selecting a PQC encryption algorithm for encrypting the data based on the set of data attributes, the risk profile data structure, the PQC cryptographic performance information, and a PQC optimization machine learning model. Subsequently, the example method includes encrypting the data based on the selected PQC encryption algorithm.
US11322048B2

A medical tool insertion simulation apparatus. The medical tool insertion simulation apparatus may comprise a syringe having an injection end, and an elongated member protruding from the injection end of the syringe. The elongated member may be configured to decrease a length of protrusion of the elongated member from the injection end of the syringe. The elongated member may be configured to receive at least one first sensor configured to indicate position information relating to the elongated member. At least one computer-readable storage medium encoded with executable instructions that, when executed by at least one processor, cause the at least one processor to perform a method for simulating medical tool insertion. A medical tool insertion simulation system.
US11322047B2

An original system and method for solving the card game known as Texas Hold'em Poker is disclosed. Mathematical calculations as well as game theory tactics are utilized to determine the optimal strategy for any possible situation that could potentially arise in Texas Hold'em Poker, as well as other variations of poker where the methodology also applies. One embodiment of the invention involves a fully automated electronic poker simulator that would allow the user to play a complete and genuine game of electronic poker against any number of computerized or live opponents, while simultaneously utilizing features of the poker simulator to learn how to play consistently optimal poker. Another embodiment would be to utilize the unique and specific methodology described herein to develop an artificially intelligent poker algorithm that can independently play consistently optimal poker in any possible scenario.
US11322044B2

An information processing system includes processing circuitry that is configured to receive input data from a shock sensor which outputs data based on a shock on the shock sensor, and identify a target segment of time-series data that is output from a motion sensor that senses a motion of an object. The target segment includes a pre-shock portion that occurs before the shock event and a post-shock portion that occurs after the shock event, the shock event is recognized based on the data from the shock sensor.
US11322043B2

Methods and systems for remote multiplayer gameplay are disclosed. An example method can include joining a multiplayer interactive physical game including first and second players competing in an activity; capturing a first game video of a first player in a first play of the multiplayer interactive physical game, using a first camera on a first mobile computing device in a first gaming area; determining a first object flow associated with the first player from the first game video, by performing an algorithm on one or more frames of the first game video to detect one or more key points of the first player; generating a first analytic based on the first object flow; receiving a second analytic associated with the second player in a second gaming area; and generating a feedback to the first player based on the first analytic or the second analytic.
US11322041B2

A welding helmet system is provided. The welding helmet system includes a protective shell and a welding display system. The welding display system is configured to be removably coupled to the protective shell. The welding display system is configured to receive data from a sensor, and to display a welding metric derived from the sensor via the image generation system.
US11322032B2

A method for determining a flight path for an aircraft system, for example an unmanned aircraft system (UAS) comprises analysing an intensity map relating to a three dimensional space. The intensity map comprises an array of voxels, each voxel defining a volume in the three dimensional space, and each voxel having a related traffic intensity value based on historical flight data through that voxel. The method comprises determining a probability of an encounter for a preferred flight path between a start point and an end point via one or more voxels in the three dimensional space, based on traffic intensity values of the one or more voxels along the preferred flight path. The preferred flight path is selected if the probability of encounter is less than a first threshold value.
US11322029B2

Embodiments of the present invention provide a communicable integration of a user network of devices and a vendor system. Embodiments receive, at the vendor system from the user network of devices, a request for provisioning of products by a vendor; determine a provisioning location for provisioning of the products by the vendor; continuously identify a real-time location of the user via the one or more components of the user network of devices; continuously calculate a real-time first limit based on the continuously identified current location of the user and the provisioning location; calculate a total time to provision the products comprising a sum of a product preparation time and the real-time first limit; and optimize delivery of the products based on the total time to provision and the real-time location of the user.
US11322020B2

A synchronization signaling system, comprising a set of alert devices comprising at least one of a visual or audio output for producing an alert pattern, a master clock, a timing device capable of receiving updates from the master clock, a controller operably connected with the set of alert devices to control the set of alert devices.
US11322019B2

Techniques for determining a direction of arrival of an emergency are discussed. A plurality of audio sensors of a vehicle can receive audio data associated with the vehicle. An audio sensor pair can be selected from the plurality of audio sensors to generate audio data representing sound in an environment of the vehicle. An angular spectrum associated with the audio sensor pair can be determined based on the audio data. A feature associated with the audio data can be determined based on the angular spectrum and/or the audio data itself. A direction of arrival (DoA) value associated with the sound may be determined based on the feature using a machine learned model. An emergency sound (e.g., a siren) can be detected in the audio data and a direction associated with the emergency relative to the vehicle can be determined based on the feature and the DoA value.
US11322012B2

A remote temperature monitoring system includes a first unit operatively connected to one or more temperature sensors for sensing the temperature of one or more materials or food items being cooked or heated. The first unit transmits the sensed temperature to a second unit that is located remotely from the first unit during heating. The second unit is programmable with the desired temperature and/or heating parameters of the item. By monitoring the temperature status of the item over time, the system determines when the food has reached the desired temperature or degree of cooking, and notifies the user.
US11322006B2

A smoke detector includes: a housing; a sensing chamber in the housing, wherein in the sensing chamber, a first light emitter and a first light receiver that are disposed at the periphery of the sensing chamber and facing a middle portion of the sensing chamber are included, a first baffle is included in the sensing chamber, the first baffle is disposed adjacent to the first light emitter and includes a baffle body and a branch portion, the baffle body extends from the periphery of the sensing chamber toward the middle portion, and the branch portion comprises a plurality of sub-baffles branching off the baffle body; and a circuit board electrically connected to the first light emitter and the first light receiver respectively.
US11322004B2

A system and a method for determining one or more safe evacuation paths in an event of fire. A method includes receiving measurements of parameter/s from one or more detectors. The one or more detectors detect parameter/s in an event of fire in a premises and are positioned at each of a plurality of evacuation paths inside the premises. The method further includes determining one or more safe evacuation paths from the plurality of evacuation paths inside the premises based on the measurements of the parameter/s. The method also includes displaying an indication of each of the one or more safe evacuation paths on an interface of a user device based on the determination.
US11322001B2

A method of managing a blackjack game is provided. A blackjack game bet comprising a bet against a house entity on a blackjack hand is received from a player. A pair of cards is determined for a hand for the house entity, and another pair of cards is determined for a hand for the player. The odds of the occurrence of one or more subsequent events are determined based at least in part on one or more of the pair of cards selected for the house entity's hand and one or more of the pair of cards selected for the player's hand. The odds for an additional bet are determined based at least on the determined odds for the one or more subsequent events, and the additional bet is offered to the player at the determined odds for the additional bet.
US11321999B2

Devices, systems and methods are provided to enable casino operators to provide printed tangible items for patron uses, such as lottery tickets. Such embodiments accept tangible indicators of financial consideration from patrons, such as currency or tickets associated with certain verifiable values, such as valid and winning lottery tickets and other forms of consideration which a patron can provide to a casino in exchange for one or more points.
US11321996B2

A wagering game operates according to a set of game rules including game flow rules that define a sequence of game events that are presented to a player in a course of operation of the wagering game, a math engine that governs probabilities of pseudorandom events that can occur in the course of operation of the wagering game, and a pay table that defines winning events that can occur in the course of operation of the wagering game and corresponding payouts that are made to the player upon occurrence of the wining events. The method determines a player game play preference of the player associated with playing the wagering game on the EGM, and adjusts the game flow rules in response to the determined player game play preference.
US11321993B2

Techniques are described for facilitating the awarding of prizes in chance-based contests in various ways, such as chance-based contests which are part of promotional advertising, etc. In at least some embodiments, the techniques include facilitating the awarding of prizes at the time a contestant enter or plays the contests, while awarding a selected number of prizes, which may be determined before the contest starts. In at least some embodiments, the techniques include employing an award counter to control awarding of prizes in a chance-based contest. For example, an award counter may be incremented at random or pseudo-random times. In at least some embodiments, the contest is associated with a location-based virtual group of users that has one or more associated geographical areas.
US11321988B2

A currency bill processing device for counting, denominating, discriminating, and/or sorting the currency bills and subsequently disinfecting the currency bills without any manual intervention. The currency bill processing device can process the currency bills at a speed of up to 1000 bills per minute. The currency bill processing device includes one or more elongated UV-C LED strips mounted on a rigid aluminum or copper base which can be mounted on an outer or exposed side of a support plate or reject receptacle plate or stacker guide bar plate located at the end of the currency bill conveying path. A disinfection unit of the currency bill processing device including the elongated UV-C LED strip that can activate and deactivate with turning-on and -off of the currency bill conveying mechanism respectively.
US11321987B2

A sheet handling apparatus includes a mounting unit configured to mount a storage bag, a holder configured to support a first part of the storage bag mounted to the mounting unit on the holder and hold a second part being lower than the first part of the storage bag, the holder being capable of moving along an first direction in which the sheets are sent from the opening into inside storage bag and a second direction opposite to the first direction. The holder approaches the mounting unit in the second direction opposite to the first direction in a state where the second part of the storage bag is held by the holder before the sheet is stored in the storage bag mounted to the mounting unit.
US11321979B2

A security apparatus identifies a first user associated with a first terminal apparatus within an area of a house to which entry is limited by a lock apparatus, and a second user associated with a second terminal apparatus approaching the house. The security apparatus determines a requirement for unlocking for the second user, based on a relationship of the second user with respect to the first user, and then determines whether the requirement for unlocking is satisfied. When the requirement for unlocking is satisfied, the security apparatus controls unlocking of the lock apparatus.
US11321974B2

A method for carrying out an on-board diagnostic function of a vehicle includes activating an on-board diagnostic function of the vehicle and subjecting a predefined gas pedal value of the vehicle to low-pass filtering in order to obtain a smoothed gas pedal value.
US11321973B2

A method for vehicle diagnostics includes receiving vehicle information from a vehicle computer system and identifying, at the data processing hardware, at least one vehicle module from the vehicle information. The at least one vehicle module represents a detected fault of the vehicle computer system. The method also includes executing a diagnostic program configured to display on a display screen a graphical user interface having a fault topology window associated with at least one detected fault of the at least one vehicle module. The fault topology window has a vehicle information panel and a fault topology view panel. The diagnostic program is configured to receive a detected fault selection input of the at least one detected fault of the at least one vehicle module and display a fault topology view of the at least one detected fault of the at least one vehicle module.
US11321969B2

This disclosure relates to a distributed data center that includes resources carried by a fleet of vehicles. The system includes sensors configured to generate output signals conveying information related to the vehicles. The system may detect vehicle events based on the information conveyed by the output signals. The system includes a remote computing server configured to present a user interface to a user. Through the user interface, the user may query information from one or more vehicles in the fleet. The distributed query is transmitted to individual vehicles, and results are locally processed in accordance with response constraints and subsequently transmitted back to the remote computing server for presentation to the user.
US11321967B2

The present invention discloses a method and system for obtaining and tracking motions and gestures of a body part (e.g. a hand) of a user, by using antennas worn on the body (e.g. on a wrist band). The antennas may be near-field antennas which transmit and receive short-range electromagnetic fields. The electromagnetic fields may be modified by interaction with the body part, depending on the exact position of the body part. The modified electromagnetic field may be received by the antennas. The received signal may be processed, to provide additional spatial information (e.g. beamforming). The processed signal may be interpreted by pattern recognition (e.g. neural network, database table). The pattern recognition may be trained using labeled pair data (e.g. known hand positions and corresponding processed signals).
US11321959B2

Disclosed is an electronic device. The electronic device according to an embodiment includes a display panel including a plurality of pixels, a display driver IC that is electrically connected with the display panel and that displays contents using the plurality of pixels, a support structure disposed under one surface of the display panel and having an opening part formed therein through which a partial area of the one surface is exposed, a shielding structure disposed under at least part of the partial area of the display exposed through the opening part, the shielding structure being electrically connected with a ground area provided in the electronic device so as to block noise generated from the display panel driven by the display driver IC, and an ultrasonic sensor disposed under at least part of the shielding structure. Besides, it may be permissible to prepare various other embodiments speculated through the specification.
US11321958B2

An electronic device and a fingerprint sensing control method thereof are provided. The electronic device includes a touch control circuit and a fingerprint sensing control circuit. The touch control circuit is coupled to the display panel. The touch control circuit performs touch detection on the display panel to obtain a finger press area corresponding to the finger on the display panel. The fingerprint sensing control circuit is coupled to the touch control circuit to obtain a finger press area. The fingerprint sensing control circuit is coupled to the display panel to perform a fingerprint sensing control on a display panel. The fingerprint sensing control circuit scans the finger press area on the display panel in a first direction during a first period and scans the finger press area in a second direction different from the first direction during a second period after the first period.
US11321945B2

A method, apparatus, electronic device, and a system for selecting a to-be-masked region in a video are disclosed. The method includes: obtaining a video to be detected; determining specified target sets in the video through a preset target detection algorithm, wherein each specified target set is a set of pixels of one specified target in video frames of the video; determining whether a specified target corresponding to each specified target set is a sensitive target respectively through a preset recognition algorithm; and using a specified target set as to-be-masked regions in the video when a specified target corresponding to this specified target set is determined as a sensitive target. In this method, specified targets are first determined, and then it is determined whether the specified targets are sensitive targets.
US11321943B2

In embodiments, obtaining a plurality of image sets associated with a geographical region and a time period, wherein each image set of the plurality of image sets comprises multi-spectral and time series images that depict a respective particular portion of the geographical region during the time period, and predicting one or more crop types growing in each of particular locations within the particular portion of the geographical region associated with an image set of the plurality of image sets. Determining a crop type classification for each of the particular locations based on the predicted one or more crop types for the respective particular locations, and generating a crop indicative image comprising at least one image of the multi-spectral and time series images of the image set overlaid with indications of the crop type classification determined for the respective particular locations.
US11321939B2

Mapping common features between images that commonly represent an environment using different light spectrum data is performed. A first image having first light spectrum data is accessed, and a second image having second light spectrum data is accessed. These images are fed as input to a DNN, which then identifies feature points that are common between the two images. A generated mapping lists the feature points and lists coordinates of the feature points from both of the images. Differences between the coordinates of the feature points in the two images are determined. Based on these differences, the second image is warped to cause the coordinates of the feature points in the second image to correspond to the coordinates of the feature points in the first image.
US11321938B2

Systems and methods are provided for adapting images from different cameras so that a single trained classifier or an analyzer may be used. The classifier or analyzer operates on images that include a particular color distribution or characteristic. A generative network is used to adapt images from other cameras to have a similar color distribution or characteristic for use by the classifier or analyzer. A generative adversarial process is used to train the generative network.
US11321934B1

A method for generating an electro-anatomical map to represent an underlying metric associated with heart tissue it is provided. The method comprises receiving, by a mapping system, point cloud data collected for the underlying metric at various locations within the heart; generating, by the mapping system, a surface mesh to represent the geometry of a heart, said surface mesh comprising a plurality of mesh points arranged as a series of interconnected triangles, wherein each mesh point lies on the surface of the heart, and is generated based on the point cloud data; rendering the surface mesh in a viewer application, comprising coloring the mesh points in the surface mesh based on values of the underlying metric associated with each of the mesh points and a color scale; and allowing a user to dynamically adjust the color scale based on a histogram.
US11321922B2

A virtual image display device includes a virtual image position selector, a vision measurement interface, a display information acquirer, a display image generator, and a projection processor. The virtual image position selector selects either a first virtual image position or a second virtual image position as a display position of the virtual image. The vision measurement interface measures a vision of a user based on a user's response to a vision measurement image projected as a virtual image at the display position. The display information acquirer acquires information to be shown. The display image generator generates a display image showing an image corresponding to the information acquired by the display information acquirer in a size determined by the vision acquired by the vision measurement interface. The projection processor performs a projection process of projecting the display image generated by the display image generator as a virtual image.
US11321920B2

A state information storage (121) stores an observation position, an observation direction, and a base direction in a virtual space. Upon acceptance of an instruction input given to an external controller and indicating a moving direction, an observation position updater (112) updates the observation position so that the observation position moves in the moving direction indicated by the instruction input relative to the base direction. An observation direction updater (114) updates the observation direction in accordance with a change in orientation of a display apparatus (100) as detected by a detector (113). An obtainer (115) obtains a relative position between the controller and the display apparatus (100). A base direction updater (116) updates the base direction on the basis of the observation direction and of the obtained relative position.
US11321911B2

A method for representing the surroundings of a vehicle. The method includes: detecting the surroundings of the vehicle and ascertaining obstacles in the surroundings with the aid of surroundings sensors of the vehicle; displaying a first depiction encompassing a representation of the surroundings including the obstacles and a representation of the vehicle on a display device; establishing an approach by the vehicle to an ascertained obstacle due to the fact that a predefined distance to the obstacle has been undershot; and displaying a second depiction including a detail, enlarged in comparison to the first depiction, of the representation of the surroundings including the obstacles and the representation of the vehicle on the display device, the detail representing the area of the surroundings and of the vehicle at which the approach by the vehicle to the obstacle was established.
US11321901B2

A graphics system includes an effect engine, which executes a predefined set of graphics operations having a higher computational complexity than pipeline operations. The graphics system further includes a graphics pipeline operative to perform the pipeline operations on graphical objects in a frame. The effect engine is operative to execute the predefined set of graphics operations on a subset of the graphical objects in the frame. One or more buffers are operative to receive pixels of the frame for display. The frame includes the graphical objects operated on by the graphics pipeline and the subset of the graphical objects operated on by the effect engine.
US11321898B2

To enables you to take animations in a virtual space, an animation production method for providing a virtual space in which a given object is placed, the method comprising: detecting an action of a user equipped with a head mounted display; controlling a movement of an object based on the action of the detected user; shooting the movement of the object; and storing action data relating to the movement of the shot object in a predetermined track; accepting an editing request for the predetermined track; accepting specified time range of the predetermined track for editing; and performing the editing at the specified time range.
US11321895B2

Digital character animation automated generation techniques are described that are implemented by an animation generation system via a computing device. These techniques enable the animation generation system to generate an animation of a digital character automatically and without user intervention responsive to a user input of a target action such that the digital character is capable of performing a complex set of actions in a precise and realistic manner within an environment contained within digital content, e.g., an animation as part of a digital video.
US11321894B2

Techniques for motion controls based on artificial intelligence are described. According to one aspect of the present invention, instructions are provided based on motions performed by a user in reference to motions performed by an instructor. Various parameters about the motions by the user are analyzed, derived and compared with stored parameters. An animation based on the user or an avatar representing the user is rendered per the motion parameters of the user. Various techniques or algorithms are designed to provide different perspective views of the motions by the user and the instructor and compare the motions or poses by the user and the instructor.
US11321889B1

A multi-layer light source includes an emissive layer and a textured lighting gel layer, the lighting gel layer being situated between the emissive layer and a 2D canvas or a 3D object. User inputs controlling the multi-layer light source are received, these user inputs being provided with the user interacting with the 2D canvas without switching to editing in 3D space. The multi-layer light source is configured based on the user inputs and, based on the configuration, emission of light rays from the multi-layer light source is determined. Areas of shadows cast by 3D objects are also determined. An image generation system determines, a color of a location (e.g., a pixel) on the 2D canvas or the 3D object that a light ray intersects based on the color that is in the lighting gel layer that the light ray passes through.
US11321885B1

The present disclosure describes systems, methods, and non-transitory computer readable media for generating and providing a causal-graph interface that visually depicts causal relationships among dimensions and represents uncertainty metrics for such relationships as part of a streamlined visualization of a causal graph. The disclosed systems can determine causality among dimensions of multidimensional data and determine uncertainty metrics associated with individual causal relationships. Additionally, the disclosed system can generate a visual representation of a causal graph with nodes arranged in stratified layers and can connect the layered nodes with uncertainty-aware-causal edges to represent both the causality between the dimensions and the uncertainty metrics. Further, the disclosed systems can provide interactive tools for generating and visualizing predictions or causal relationships in intuitive user interfaces, such as visualizations for dimension-specific (or dimension-value-specific) interventions and/or attribution determinations.
US11321884B1

In implementations of systems for generating candidate mirror snap points using determined axes of symmetry, a computing device implements a symmetry system to receive vector object data describing a set of points of a vector object. The symmetry system generates convex polygons that enclose the set of points and identifies a particular convex polygon that has a smallest area. A side of the particular convex polygon is determined as an axis of symmetry for the vector object. The symmetry system generates an indication for display in a user interface of a candidate snap point based on the axis of symmetry and a point of the set of points of the vector object.
US11321874B2

A mobile electronic device is provided for use with a headset. A camera outputs digital pictures of a portion of the headset. A display device displays information for viewing by a user wearing the headset. A processor retrieves calibration parameters that characterize at least a pose of the camera relative to the display device, and processes a digital picture from the camera to identify a pose of an optically identifiable feature within the digital picture. A pose of the mobile electronic device is identified relative to the holder based on the identified pose of the optically identifiable feature within the digital picture and based on at least the pose of the camera relative to the display device as characterized by the calibration parameters. The processor controls where graphical objects are rendered on the display device based on the identified pose of the mobile electronic device relative to the holder.
US11321872B2

Methods, systems, and techniques for automatic camera calibration. One or more calibration images are captured using a camera. The calibration images depict one or more bounding boxes, and each of the bounding boxes bounds a person. For each of the bounding boxes, the person is modeled using a rectangle or a parallelepiped, and a projection of the rectangle or parallelepiped is determined. A mapping that maps foot vertices of the projection to head vertices of the projection is determined, and using the foot vertices and the mapping, estimates of the head vertices and distances between the head vertices and the estimates of the head vertices are determined. The camera is calibrated by iteratively updating, using an objective function, the camera parameters so as to reduce those distances.
US11321868B1

A system for estimating a pose of one or more persons in a scene includes a camera configured to capture an image of the scene; and a data processor configured to execute computer executable instructions for: (i) receiving the image of the scene from the camera; (ii) extracting features from the image of the scene for providing inputs to a keypoint subnet and a person detection subnet; (iii) generating one or more keypoints using the keypoint subnet; (iv) generating one or more person instances using the person detection subnet; (v) assigning the one or more keypoints to the one or more person instances by learning pose structures from the image data; and (vi) determining one or more poses of the one or more persons in the scene using the assignment of the one or more keypoints to the one or more person instances.
US11321867B2

A method includes acquiring information on an in-image coordinate point of a region of interest contained in each of a plurality of images respectively photographed by a plurality of image modules; specifying, with reference to information on a position where at least one of the plurality of image modules is installed and information on an in-image coordinate point of a target region of interest contained in an image photographed by the at least one image module, a candidate figure containing a position where the target region of interest is located in a reference space; and specifying the position where the target region of interest is located in the reference space, with reference to a positional relationship between a first candidate figure of the target region of interest corresponding to a first image module and a second candidate figure of the target region of interest corresponding to a second image module.
US11321866B2

A method of controlling audio collection for an image capturing device can include receiving image data from an image capturing device; recognizing one or more objects from the image data; determining a first object having a possibility of generating audio among the one or more objects; and collecting audio from the first object by moving a microphone beamforming direction of the image capturing device to be directed toward the first object in response to a determination that the first object is an object having a possibility of generating audio.
US11321857B2

The present disclosure generally relates to displaying and editing image with depth information. Image data associated with an image includes depth information associated with a subject. In response to a request to display the image, a first modified image is displayed. Displaying the first modified image includes displaying, based on the depth information, a first level of simulated lighting on a first portion of the subject and a second level of simulated lighting on a second portion of the subject. After displaying the first modified image, a second modified image is displayed. Displaying the second modified image includes displaying, based on the depth information, a third level of simulated lighting on the first portion of the subject and a fourth level of simulated lighting on the second portion of the subject.
US11321847B2

In some embodiments, an image manipulation application receives an incomplete image that includes a hole area lacking image content. The image manipulation application applies a contour detection operation to the incomplete image to detect an incomplete contour of a foreground object in the incomplete image. The hole area prevents the contour detection operation from detecting a completed contour of the foreground object. The image manipulation application further applies a contour completion model to the incomplete contour and the incomplete image to generate the completed contour for the foreground object. Based on the completed contour and the incomplete image, the image manipulation application generates image content for the hole area to generate a completed image.
US11321836B2

An image-processing device including: a determination unit that determines a captured image on the basis of a ratio of cells and a distribution of the cells in the captured image acquired by imaging a sample including cells; and an area setting unit that sets an area used for analyzing the cells of the sample on the basis of a result of the determination acquired by the determination unit.
US11321833B2

A method for segmenting metal objects in projection images acquired using different projection geometries is provided. Each projection image shows a region of interest. A three-dimensional x-ray image is reconstructed from the projection images in the region of interest. A trained artificial intelligence segmentation algorithm is used to calculate first binary metal masks for each projection image. A three-dimensional intermediate data set of a reconstruction region that is larger than the region of interest is reconstructed by determining, for each voxel of the intermediate data set, as a metal value, a number of first binary metal masks showing metal in a pixel associated with a ray crossing the voxel. A three-dimensional binary metal mask is determined. Second binary metal masks are determined for each projection image by forward projecting the three-dimensional binary metal mask using the respective projection geometries.
US11321827B2

The present disclosure pertains to autonomous control of an imaging system. In some embodiments, training information including at least a plurality of images and action information are received. The plurality of images and action information are provided to a prediction model to train the prediction model. Further, an image capturing device is controlled to capture an image of a portion of a living organism, the image is processed, via the prediction model, to determine an action to be taken with respect to the image, and the determined action is taken with respect to the image.
US11321826B2

A method and system for predicting liver injury in vivo due to hepatocyte damage by a test compound are provided. The method includes acquiring images of fluorescently stained cells obtained from a cell culture in which the cells have been treated with a dose-range of at least the test compound and its vehicle. The cells may be hepatic cells including primary or immortalized hepatocytes, hepatoma cells or induced pluripotent stem cell-derived hepatocyte-like cells. The acquired images are segmented. The method further includes extracting and analyzing one or more phenotypic features from the segmented images, wherein the one or more phenotypic features are selected from the group of intensity, textural, morphological, or ratiometric features consisting of (a) features of DNA, (b) features of RELA (NF-KB p65), and (c) features of actin filaments at different subcellular regions and d) features of cellular organelles and their substructures in the segmented images. Finally, the method includes normalizing results from the treated samples to vehicle controls and predicting the probability of liver injury by the test compound based on test compound-induced normalized changes of the extracted and selected phenotypic features using machine learning methods.
US11321822B2

A method, computer system, and a computer program product for analyzing visual defects is provided. The present invention may include generating a template image. The present invention may include capturing a test image. The present invention may include performing an image registration between the template image and the test image. The present invention may include generating a registered test image. The present invention may include performing an image difference analysis between the registered test image and the template image. The present invention may include generating a differential image. The present invention may include synthesizing the registered, differential image, and template image. The present invention may include generating a synthetic image. The present invention may include inputting the synthetic image into a multi-scale detection network. The present invention may include generating a defect map.
US11321818B2

A method of detecting and quantifying blur in a digital image, making use of a computer and comprising: a step a) of obtaining a digital image comprising pixels; a step b) of obtaining a brightness parameter for each pixel, said step b) comprising a convolution operation with an edge detection matrix; a step c) of calculating a score S1 comprising the maximum, calculated over all the pixels, of the brightness parameter obtained in step b) and a second score S2 comprising a logistic function, and a step d) of evaluating the digital image, said digital image being considered to be blurry if the score S1 obtained in step c) is strictly less than a first predetermined threshold S10, the score S1 providing a first quantity of blur present in the digital image.
US11321817B2

The present disclosure provides computing device implemented methods, computing device readable media, and systems for motion compensation in a three dimensional scan. Motion compensation can include receiving three-dimensional (3D) scans of a dentition, estimating a motion trajectory from one scan to another, and calculating a corrected scan by compensating for the motion trajectory. Estimating the motion trajectory can include one or more of: registering a scan to another scan and determining whether an amount of movement between the scans is within a registration threshold; determining an optical flow based on local motion between consecutive two-dimensional (2D) images taken during the scan, estimating and improving a motion trajectory of a point in the scan using the optical flow; and estimating an amount of motion of a 3D scanner during the scan as a rigid body transformation based on input from a position tracking device.
US11321812B2

Disclosed are a display method, a display device, a virtual reality display device, a virtual reality device, and a storage medium. The display method includes: segmenting one frame of image into at least one image region; determining grayscale information of the image region; determining a resolution compression ratio of the image region according to the grayscale information of the image region, wherein a grayscale level of the image region is negatively correlated with the resolution compression ratio; and displaying an image in the image region according to the resolution compression ratio of each image region.
US11321808B2

Processing of commands at a graphics processor are controlled by receiving input data and generating a command for processing at the graphics processor from the input data, wherein the command will cause the graphics processor to write out at least one buffer of data to an external memory, and submitting the command to a queue for later processing at the graphics processor. Subsequent to submitting the command, but before the write to external memory has been completed, further input data is received and it is determined that the buffer of data does not need to be written to external memory. The graphics processor is then signalled to prevent at least a portion of the write to external memory from being performed for the command.
US11321807B1

A system for processing a plurality of graphical programs on a centralized computer system whereby the images produced by the programs are compressed and transmitted to a plurality of remote processing devices where they are decompressed. Compression assistance data (CAD) is produced by intercepting instructions outputted by the programs and the CAD is then used in the compression step.
US11321806B2

A system and a method are disclosed that reduce primitive overdraw in a GPU. An occlusion index (OI) for a first tile of a batch of graphical data. In one embodiment, the first tile is bypassed from an early coverage discard (ECD) first-in, first-out (FIFO) if the OI for the first tile is less than a first threshold, otherwise the first tile is entered into the ECD FIFO. The first tile is also bypassed from the ECD FIFO if the OI for the first tile is greater than a second threshold that is greater than the first threshold. In another embodiment, a queue length is logically changed for the first tile in the ECD FIFO if the OI for the first tile is greater than the first threshold and less than or equal to a third threshold that is greater than the first threshold and less than the second threshold.
US11321800B2

A method for graphics processing. The method including rendering graphics for an application using a plurality of graphics processing units (GPUs). The method including dividing responsibility for the rendering geometry of the graphics between the plurality of GPUs based on a plurality of screen regions, each GPU having a corresponding division of the responsibility which is known to the plurality of GPUs. The method including generating information regarding a piece of geometry with respect to a first screen region for which a first GPU has a first division of responsibility, while rendering the piece of geometry at a second GPU for an image. The method including rendering the piece of geometry at the first GPU using the information.
US11321797B2

A user can wear a device which emits a visual and/or audible output. The output changes over time. A system is capable of predicting the output. Thus, the system can analyze a video and determine, based on observed output of the device, whether the video has been modified. The output can be particularly difficult for humans to modify, detect, understand, or recreate, further impeding attempts to disguise edits to the video.
US11321760B2

A product sales system utilizing the product purchase history, product of interest, and customer review of an acquaintance, the product sales system includes: a former purchaser terminal configured to receive a customer review for a purchased product from a former purchaser and to register the customer review with a product sales server; a prospective purchaser terminal configured to connect with the product sales server, to select a product to be purchased, to receive an acquaintance customer review from the product sales server, and to display the acquaintance customer review; and the product sales server configured to register and store the customer review, to determine information about an acquaintance of the prospective purchaser who desires to purchase the selected product to be purchased, to extract an acquaintance customer review and to transmit the acquaintance customer review to the prospective purchaser terminal.
US11321758B1

Aspects include synchronizing online and retail shopping experiences for limited stock products. A non-limiting example computer-implemented method includes receiving, by an item tracking system, a request for a status of an item in a retail store, the request received from a user device of an in-person shopper located in the retail store, the status indicating whether the item is currently available for purchase by the in-person shopper. It is determined, by the item tracking system, the status of the item, the determining is based at least in part on whether an action was taken by an online shopper with respect to the item via a user device of the online shopper. The user device of the online shopper is located outside of the retail store. The item tracker system transmits the status of the item to the user device of the in-person shopper for output to the in-person shopper.
US11321756B1

In some cases, a handheld device that includes a microphone and a scanner may be used for voice-assisted scanning. For example, a user may provide a voice input via the microphone and may activate the scanner to scan an item identifier (e.g., a barcode). The handheld device may communicate voice data and item identifier information to a remote system for voice-assisted scanning. The remote system may perform automatic speech recognition (ASR) operations on the voice data and may perform item identification operations based on the scanned identifier. Natural language understanding (NLU) processing may be improved by combining ASR information with item information obtained based on the scanned identifier. An action may be executed based on the likely user intent.
US11321748B2

Implementations of the present disclosure provide techniques to optimize dynamic third party review generation for transmitting redirection request links. In one implementation, a system is provide that comprises a memory to store profile data for one or more merchants; and a processing device, operatively coupled to the memory, to receive an indication to generate an online review for a client device associated with a location of a merchant. Responsive to receiving the indication, one or more weighted event factors associated with the merchant are determined. One or more distribution parameters specified by a merchant system are selected based on the weighted event factors for the merchant. An online third party review site is identified based on the distribution parameters. Thereupon, the online third party site is caused to transmit a reviewing object to the client device for posting the online review of the location of the merchant.
US11321738B2

An information processing apparatus is provided with a controller including at least one processor. The controller is configured to execute obtaining a consent to advertisement viewing from a user using a transportation system, presenting an advertisement within a period of time during which the user is using the transportation system, and providing a monetary merit to the user.
US11321737B2

Techniques for prefetching operation cost based digital content and digital content with emphasis that overcome the challenges of conventional systems are described. In one example, a computing device may receive digital content representations of digital content from a service provider system, which are displayed on a user interface of the computing device. Thereafter, the computing device may also receive digital content as prefetches having a changed display characteristic as emphasizing a portion of the digital content based on a model trained using machine learning. Alternatively, the computing device may receive digital content as a prefetch based on a model trained using machine learning in which the model addresses a likelihood of conversion of a good or service and an operation cost of providing the digital content. Upon receiving a user input selecting one of the digital content representations, digital content is rendered in the user interface of the computing device.
US11321733B2

Disclosed herein are system, method, and computer program product embodiments for analyzing second party advertising data. An embodiment operates by determining a set of dimensions that a source uses to aggregate data for an advertising campaign. The embodiment creates a subunit advertising campaign based at least in part on the advertising campaign, the determined set of dimensions, and a dimension of interest. The embodiment receives measurement data associated with an execution of the subunit advertising campaign. The embodiment then analyzes the measurement data.
US11321728B2

Provided is computer-implemented process, the process including: accessing an offers engine user profile associated with a user and an offers engine, the offers engine user profile comprising a plurality of attributes associated with customization of an offers interface, the offers interface configured to provide a plurality of merchant offers; receiving over a network from a first user device and a first session of the offers interface a modification to an attribute of the plurality of attributes of the offers-engine user profile; storing the modified attribute in the offers-engine user profile; receiving over a network a request to access the offers interface in a second session from a second user device; modifying, with a processor, the offers interface based on the modified attribute to produce a customized offers interface; and transmitting over a network the customized offers interface to the second user device for use in the second session.
US11321723B2

Provided herein are systems, methods and computer readable media for receiving consumer search data, aggregating by consumer and location, and utilizing the aggregated consumer search data in demand forecasting and relevance determination. An example method may include receiving consumer search data, the consumer search data indicative of search performed by a consumer, the consumer search data comprising one or more search terms and at least one of a consumer location or consumer identification information, storing the consumer search data for a predetermined time interval, and providing at least one of consumer aggregated search data to a relevance module for determining which of a plurality of promotions to present to a consumer at a second time or providing location aggregated search data to a demand forecasting module for utilization in forecasting promotion demand in a particular location.
US11321722B2

Systems, methods, and other embodiments associated with incrementally swapping items in an assortment are described. In one embodiment, a computing system includes demand logic configured to read data from an electronic data structure that defines an assortment. The assortment defines a subset of items from a product category. The demand logic is configured to generate forecasted changes to an associated metric value by generating demand transference values for (i) individually removing each item presently in the assortment and (ii) individually adding each item of a set of available items of the product category. The computing system includes assortment logic configured to transform the electronic data structure that defines the assortment according to the forecasted changes by incrementally swapping items in the assortment for new items in the available set of items until the forecasted changes between items in the assortment and new items in the set of available items satisfy a predefined condition.
US11321721B2

A computer based system for remapping prime class seat bookings is disclosed. The system remaps prime class bookings a floor class, or if the floor class is closed, into a higher, displacement class. Via remapping, airline systems, such as inventory management systems, revenue management systems, and the like, may better account for the true value of prime class bookings.
US11321719B2

A contactless card reader comprises a contactless card reader front-end coupled to a processor. A communications module is coupled to the processor and a set of sensors is coupled to the processor. The set of sensors determines parameters related to the location, orientation and motion of the card reader. The processor receives the parameters from the set of sensors and utilizes the parameters and scenario configuration data to evaluate a rule. The result of the evaluation of the rule results in a limitation on the operation of the card reader. The communications module is configured to intermittently receive the scenario configuration data from external sources.
US11321715B2

A system and method for minimal contact in-person business transactions using a banking card and mobile device, using a banking card, mobile device, card reader and associated display, cashier display at a point-of-sale (“POS”) system, internet-connected server, and financial institution, which minimizes customer physical contact with payment personnel or physical systems by offloading the final stages of sale confirmation and customer choices onto a customer's mobile device.
US11321714B2

A system, method, and computer program product for dynamic application selection for payment transactions determines identification data of an issuer institution associated with a portable financial device based at least partially on transaction data associated with at least one transaction at a merchant with the portable financial device. At least one electronic service application of a plurality of electronic service applications is determined based at least partially on the identification data of the issuer institution. Electronic service application data associated with the at least one electronic service application and stored in association with the issuer institution is accessed at a merchant system of the merchant. The at least one transaction is modified based at least partially on the electronic service application data associated with the at least one electronic service application. An authorization response message is received after communicating an authorization request message associated with the at least one modified transaction.
US11321709B1

A system and method to conduct secure electronic financial transactions are provided. The method includes receiving a request, from a user, to perform a transaction with a merchant; generating a virtual check comprising a checking account number, a bank routing number, and a date; displaying the virtual check on at least one of a display of an electronic device of a user or the merchant; receiving input from the user corresponding to at least one of a plurality of check fields; automatically generating meta data, in real-time, on the virtual check, wherein the meta data comprises a location of check creation and a time of check creation; embedding, in the image of the virtual check, at least part of the meta data; populating the virtual check based on the received input; and depositing the virtual check; wherein generating a virtual check comprising scanning a front side of a physical check of a user, detecting a typical check template for a type of check based on proportions, generating a backside of the virtual check; and combining the image of the front side of the physical check with the image of the backside of the virtual check.
US11321701B2

A portable communication device is provided, which includes a housing including a rear cover; a battery disposed in the housing; NFC circuitry; wireless charging circuitry; MST circuitry; an FPCB including a plurality of layers substantially parallel to each other, at least a portion of the FPCB being disposed between the battery and the rear cover; an NFC coil electrically connected with the NFC circuitry, the NFC coil including a first portion and a second portion formed at different layers of the FPCB; a wireless charging coil electrically connected with the wireless charging circuitry, the wireless charging coil including a third portion and a fourth portion formed at different layers of the FPCB; and an MST coil electrically connected with the MST circuitry, the MST coil including a fifth portion and a sixth portion at different layers of the FPCB.
US11321684B2

There are provided systems and methods for measuring tap pressure on mobile devices to automate actions. A computing device, such as a mobile smart phone, may include a touch screen interface that may accept touch inputs. A touch input may include a presence and location of the touch input on the touch screen interface. Additionally, the computing device may detect a pressure or force applied to the touch screen interface with the touch input. The computing device may include a payment application, where the touch input may be received during use of the payment application. The pressure of the touch input may further define the input for the payment application. For example, a touch input with a first pressure may cause a first process to be initiated, while a second pressure may cause a second process to be initiated.
US11321679B1

An image of a check that is in the field of view of a camera is monitored prior to the image of the check being captured. The camera is associated with a mobile device. When the image of the check in the field of view passes monitoring criteria, an image may be taken by the camera and provided from the mobile device to a financial institution. The image capture may be performed automatically as soon as the image of the check is determined to pass the monitoring criteria. The check may be deposited in a user's bank account based on the image. Any technique for sending the image to the financial institution may be used. Feedback may be provided to the user of the camera regarding the image of the check in the field of view.
US11321673B2

An electronic device, method, and non-transitory computer readable medium are provided for automatically creating an ad-hoc calendar event. The electronic device includes a memory and a processor coupled to the memory. The processor receives data including user information, venue information, and location information from a plurality of data sources; determines an interest above a predetermined threshold based on the received data; creates an event based on the determined interest and received data; and provides a recommendation of the created event to another electronic device.
US11321672B2

Scheduling events with multiple invitees includes: identifying a plurality of invitees for an event in a calendar system having at least one processor; searching an availability associated with each of the invitees to determine a number of periods of availability in the calendar system, at least some of the invitees being available during each period of availability; creating a separate instance of the event in the calendar system for each identified period of availability; and for each invitee available during at least one of the periods of availability, assigning the invitee to one said instance of the event for which that invitee is available with the calendar system.
US11321666B1

A social networking system determines the meaning of an anchor term used in a communication received from a communicating user. Candidate nodes are identified in the dictionary based on the anchor term, where each candidate node represents a possible meaning of the anchor term. The context of the anchor term is determined, and a score is determined for each candidate node based on the determined context. A candidate node is selected that most likely represents the meaning of the anchor term based on the determined candidate node scores. The context of the anchor term may be a social context derived from users connected to the communicating user that use the anchor term in communications. A communicating user may be prompted to identify the meaning of the anchor term explicitly based on the use of the term in communications from other users connected to the communicating user.
US11321664B2

The invention relates to the field of logistics, and discloses a logistics apparatus and a method for identifying empty/full state of the logistics apparatus, which efficiently and accurately realizes automatic recognition of empty and full state. The invention includes: a base and side plates at four sides; a foldable mechanism being provided between the base and each side plate so that the side plates can be folded toward the base; and a short-range wireless transmitter module and a short-range wireless receiver module being respectively disposed on the base and at least one side plate; the short-range wireless transmitter module is configured to transmit a wireless signal indicating the identification of the logistics apparatus; and an arbiter, configured to determine whether the short-range wireless receiver module can currently receive the identifier transmitted by the short-range wireless transmitting module, and if yes, outputting an electrical signal indicating an empty state, otherwise, outputting an electrical signal indicating a full state.
US11321663B2

The invention relates to an apparatus (200) comprising an elongate main body (202) made of a plastic material for attaching to a shelf device (70) of a goods rack (236) and comprising at least one signaling apparatus (204), which is attached to the main body (202) and which is provided for signaling a hand motion toward the shelf device (70) and/or for signaling a hand motion away from the shelf device (70).
US11321658B2

Method of identifying a product which comprises cellulose, wherein in the method a data set is determined which is indicative for multiple constituents of the product or a preform of the product, and the data set which is correlated with the product or the preform is stored in a database.
US11321652B1

The subject disclosure relates to systems, methods, and devices corresponding to smart label devices. Furthermore, disclosed are smart label systems that include individualized medicine modules communicatively coupled with smart label devices. Furthermore, a method is disclosed that comprises receiving, by the smart label control system, detection data from the smart label device, wherein the detection data represents a geo-locational boundary signal. The method further comprises disabling, by the smart label control system, a rendering of content on a display of the smart label device.
US11321651B2

Disclosed are methods and systems for intelligent distribution of products. In one aspect, a system comprises a memory storing instructions and at least one processor configured to execute the instructions. The processor performs operations include receiving forecasting data comprising an expected demand of a stock keeping unit and determining a target inventory of the SKU to satisfy the expected demand. The operations further include determining a regional target inventory of the SKU of a region comprising a plurality of fulfillment centers. The operations further comprise receiving historical data comprising the inbound and outbound shipment history of a fulfillment center in the plurality of fulfillment centers and generating a profile for the fulfillment center. The operations further comprise assigning a portion of the regional target inventory to the fulfillment center and transmitting instructions to a device to stock a number of SKUs in the fulfillment center based on the portion.
US11321648B1

A system and method for transportation infrastructure restoration, assuming limited budget constraints and considering unmet demand in the system for maximizing transportation system resilience is provided.
US11321647B2

Systems and methods of the present disclosure facilitate scheduling and managing a project. In some embodiments, the system includes a quoting module, a product data module, and a project planning module executing on at least one processor of a server. The product data module may be configured to store at least one product. The product stored in the project module may have a product class indicating that the product is a labor product, parts product, or agreements product. The system may be configured to copy products from the product data module to the quoting module. The system may be configured to also copy products from the product data module to the project planning module, and generate tasks for the project planning module based on the products.
US11321643B1

A collaboration system for sharing digital content among multiple conferees during a conference session, each conferee using a personal computing device including a device display screen and a device processor, includes a wireless receiver, at least a first large common display screen providing a common emissive surface, and at least a first system processor linked to the receiver and the at least a first common display screen. The device and system processors are programmed to cooperate to provide a user interface via each device display screen, each interface including at least a first sharing field and a file queue. The processors also are programmed to visually distinguish, on each user interface, each file added to the session by one conferee from other files added by other conferees. Additionally, the processors are configured to replicate content presented in the at least a first sharing field on the large common emissive surface.
US11321642B1

A rideshare service platform is configured with a decentralized computing network system in a peer-to-peer connection. The decentralized computing network system locates driver users available for a rideshare service in response to a rider user request. Driver users set their own rates and offer individualized rideshare features through a user interface that is configured for the driver to input user defined features including rates, distances, and other miscellaneous features that may be wanted by a rider. Some embodiments are configured to generate multiple driver pre-set profiles for a driver user that the driver can select for example, at different times of rideshare demand.
US11321622B2

A terminal device for generating user behavior data, a method for generating user behavior data, and a recording medium are provided. The disclosed terminal device may include a memory unit storing instructions readable by a computer; and a processor unit implemented to execute the instructions, where the processor unit may compute a probability distribution model for achieving the intentions of a user by using raw data related to time-dependent actions of the user and may generate user behavior data by using the probability distribution model, with the user behavior data comprising time series data in which multiple actions composing the intentions of the user are aligned in order.
US11321621B2

An automatic system and method for the performance of scientific inferencing including the determination of a null hypothesis significance testing on an interactive computer system, the method including the steps of: (a) providing for the input of an input description of a proposed hypothesis test, the input description including a number of relevant input parameters; (b) utilising the computational system for processing the input description into a null hypothesis significance test; (c) executing the null hypothesis significance test on the computational system; and (d) visually displaying the results of the execution.
US11321620B2

The present subject matter describes a method to detect anomaly in an environment based on AI techniques. The method comprises receiving one or more data representations of one or more objects present in an environment. A first-type of information is captured from a first-area within the one or more data representations. A second-type of information from a second-area different than the first area in the data representations is also captured. A third information is generated from the first information, said third information corresponding to predicted information for the second area using one or more artificial-intelligence models for evaluating the second information. The third information is compared with the second information to determine abnormality with respect to state or operation of one or more objects within the environment.
US11321619B2

Systems, computer-implemented methods, and computer program products to facilitate state dependent calibration of qubit measurements are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a state prediction component that predicts a readout state of one or more qubits of a quantum circuit. The computer executable components can further comprise a calibration component that calibrates a qubit readout signal based on the readout state to generate a state dependent qubit readout signal to read the one or more qubits.
US11321616B2

A method for generating an operational rule associated with a building management system includes identifying, with a processing device, a first pattern associated with a series of operational observations corresponding to a property of the building management system, correlating a first contextual attribute with the first pattern, and deriving the operational rule at least in part based on the first pattern and the first contextual attribute.
US11321614B2

Embodiments relate to configuring artificial-intelligence (AI) decision nodes throughout a communication decision tree. The decision nodes can support successive iteration of AI models to dynamically define iteration data that corresponds to a trajectory through the tree.
US11321611B2

Authenticity of Artificial Intelligence (AI) results may be verified by creating, for an AI system, from a plurality of original inputs to form a plurality of original inference results, a plurality of original signatures of representative elements of an internal state of the AI system constructed from each individual original inference result of the plurality of original inference results. During deployment of the AI system, a matching of a plurality of deployment time inference results with a plurality of deployment time signatures, to the plurality of original signatures and the plurality of original inference results, may be verified.
US11321609B2

Apparatuses and methods of manufacturing same, systems, and methods for performing network parameter quantization in deep neural networks are described. In one aspect, diagonals of a second-order partial derivative matrix (a Hessian matrix) of a loss function of network parameters of a neural network are determined and then used to weight (Hessian-weighting) the network parameters as part of quantizing the network parameters. In another aspect, the neural network is trained using first and second moment estimates of gradients of the network parameters and then the second moment estimates are used to weight the network parameters as part of quantizing the network parameters. In yet another aspect, network parameter quantization is performed by using an entropy-constrained scalar quantization (ECSQ) iterative algorithm. In yet another aspect, network parameter quantization is performed by quantizing the network parameters of all layers of a deep neural network together at once.
US11321601B2

A transaction card may comprise a first card component having an electrically conductive surface configured to receive an electrically applied coating. An electrically applied coating may be formed on the electrically conductive surface. The transaction card may be manufactured by forming a first card component having an electrically conductive surface configured to receive an electrically applied coating. The method may also include applying an electrically applied coating to the electrically conductive surface.
US11321597B2

Systems and methods for using facial patterns for information access via optical barcodes are provided. In example embodiments, a computer accesses an image. The computer determines, using facial recognition, that the accessed image includes a face. The computer determines, using the face, an orientation of the image. The computer decodes, based on the determined orientation of the image, data encoded within the geometric shape. The computer may then access a resource based on the decoded data. In some aspects, a graphical output may be presented on a display device indicating the accessed resource.
US11321595B2

A media processing apparatus includes a medium drive, a label printer, and a medium-processing-apparatus control section. When the medium-processing-apparatus control section receives a first photographic data file, the medium-processing-apparatus control section causes the medium drive to write the first photographic data file to a medium. After the medium-processing-apparatus control section has received the first photographic data file, the medium-processing-apparatus control section receives a second photographic data file and causes the medium drive to write the second photographic data file to the medium. When the medium-processing-apparatus control section receives a medium close command from a control apparatus, the medium-processing-apparatus control section terminates write processing by the medium drive in response to the received medium close command, and causes the label printer to perform printing.
US11321588B2

The present invention relates to a pest identification and information monitoring system through image analysis and a monitoring method using the same, and more particularly, to a pest identification and information monitoring system through image analysis, which obtains pest images by photographing pests using image input means, compares the learning model built for each pest with the pest image to calculate the degree of similarity, and specifies the pest of the acquired image based on the calculated degree of similarity, and recommends information or control methods related to the pest, and a monitoring method using the same.
US11321580B1

Systems and methods are provided for learning item types of items listed in an electronic repository, and for training a machine learning model to predict the item type of a given input item. For example, a machine learning model may be obtained or accessed that has been previously trained to classify an input item to a browse node. Vector representations of individual items assigned to different browse nodes may be obtained from an intermediate layer of the previously trained machine learning model, and a vector representation of individual browse nodes may then be generated based on the vector representations of individual items assigned to that browse node. A clustering algorithm may be applied to the browse node vector representations in order to identify clusters of similar browse nodes, where individual clusters may represent different unique item types.
US11321575B2

A method for liveness detection includes: acquiring a first depth map captured by a depth sensor and a first target image captured by an image sensor; performing quality detection on the first depth map to obtain a quality detection result of the first depth map; and determining a liveness detection result of a target object in the first target image based on the quality detection result of the first depth map. The present disclosure can improve the accuracy of liveness detection.
US11321566B2

An embodiment of the present invention is directed to a system and method for self-learning a floorplan layout. An embodiment of the present invention is directed to implementing a camera system in a location to learn, create and maintain changes to a current floor plan. The camera system may include multiple cameras positioned at strategic locations throughout a defined area. An embodiment of the present invention may determine direction and velocity of an individual's path of travel. Over a period of time, an embodiment of the present invention may systematically create, maintain and update the floor plan. The location may include various areas, including branch locations, banks, merchants, restaurants, office space, entrance way (e.g., lobby), common areas, defined area within a public space or an outdoor space, etc.
US11321551B2

The present disclosure is directed towards systems and method for determining whether a scannable code displayed on a client device has been scanned. In particular, the systems and methods described herein involve activating one or more on-board sensors of the client device to capture output signals. Based on the output signals, the systems and methods include identifying discrete signals that indicate whether the scannable code has been scanned by a scanning device. Further, based on an analysis of the identified discrete signals, the systems and methods include determining whether the scannable code has been scanned by the scanning device.
US11321543B2

A logarithmic amplifier includes a logarithmic current preamplifier circuit and logarithmic amplifier circuit. The logarithmic current preamplifier circuit includes an inverting input terminal, an output terminal, and a first diode. The first diode is coupled between the inverting input terminal of the logarithmic current preamplifier circuit and the output terminal of the logarithmic current preamplifier circuit. The logarithmic amplifier circuit includes an inverting input terminal, an output terminal, and a second diode. The inverting input terminal of the logarithmic amplifier circuit is coupled to the output terminal of the logarithmic current preamplifier circuit. The second diode is coupled between the inverting input terminal of the logarithmic amplifier circuit and the output terminal of the logarithmic amplifier circuit.
US11321540B2

Fragment recall and adaptive automated translation are disclosed herein. An example method includes determining that an exact or fuzzy match for a portion of a source input cannot be found in a translation memory, performing fragment recall by matching subsegments in the portion against one or more whole translation units stored in the translation memory, and matching subsegments in the portion against corresponding one or more subsegments inside the one or more matching whole translation units, and returning any of the one or more matching whole translation units and the one or more matching subsegments as a fuzzy match, as well as the translations of those subsegments.
US11321533B2

A system, method and computer program product for cognitive copy and paste. The method includes: receiving, at a hardware processor of a computer system, an input representing a selection of a content captured from a source application program, and receiving an input representing an identified target application program that will receive the selected content to be copied and rendered in the target application program. The selected content is analyzed to determine a context for the selected content; and a rendering of the selected content at a location within the destination application based on the determined context, the rendering achieving a best representation of the selected content on the destination application. The analyzing includes invoking a natural language processor to determine an intent, meaning, or an intended use of the selected content based on the determined context, and employs a support vector machine for determining a best format change when rendering.
Patent Agency Ranking