US11522187B2
The invention provides a positive electrode active material for a lithium ion battery, comprising a lithium transition metal-based oxide powder, the powder comprising single crystal monolithic particles comprising Ni and Co and having a general formula Li1+a ((Niz (Ni1/2 Mn1/2)y Cox)1−kAk)1-a 02, wherein A is a dopant, −0.02
US11522172B2
A negative electrode for a lithium metal battery, a manufacturing method thereof, and a lithium battery including the same. An adhesive layer including a binder and a conductive material between the negative current collector and the negative active material improves conductivity while also improving adherence between a negative current collector and a negative active material of the lithium battery.
US11522170B2
Provided is an aqueous battery configured to use hydroxide ions (OH−) as carrier ions. The aqueous battery is an aqueous battery comprising a cathode layer, an anode layer and an aqueous liquid electrolyte, wherein the cathode layer contains, as a cathode active material, a graphite having a rhombohedral crystal structure; wherein the anode layer contains, as an anode active material, at least one selected from the group consisting of an elemental Zn, an elemental Cd, an elemental Fe, a Zn alloy, a Cd alloy, an Fe alloy, ZnO, Cd(OH)2, Fe(OH)2 and a hydrogen storage alloy; and wherein, as an electrolyte, at least one selected from the group consisting of KOH and NaOH is dissolved in the aqueous liquid electrolyte.
US11522169B2
Disclosed herein are a method of manufacturing a sulfide-based all-solid-state battery, and a sulfide-based all-solid-state battery manufactured thereby, wherein the battery includes a surface heat-treated positive electrode active material, which is simply performed by heating a positive electrode active material at 400° C. to 600° C. in an inert gas state, as a low-cost method of uniformly treating the surface of a positive electrode active material such that the positive electrode active material does not react with a sulfide-based solid electrolyte.
US11522161B2
The present disclosure protects a flexible substrate and prevents the generation of a crack and the development of a crack inside a display device. A display device includes a display area and a frame region which is a non-display area provided outside the display area, and in the frame region, at least a flexible substrate and a moisture-proof layer are disposed in this order, and a metal oxide film is further provided between the flexible substrate and the moisture-proof layer.
US11522160B2
A display device includes: a display area; a display element which emits light and includes a pixel electrode, an opposite electrode, and a light emission layer between the pixel electrode and the opposite electrode; an encapsulation layer covering the display element; sensing electrodes disposed on the encapsulation layer; and a light-shielding layer disposed on each of the sensing electrodes to correspond to each of the sensing electrodes. The encapsulation layer includes: a first organic layer having a refractive index, a first opening defined in the first organic layer and corresponding to the light emission layer of the display element, and a first refractive layer covering the first organic layer.
US11522159B2
A protection film for a window of a display device is capable of preventing or substantially preventing damage to a securing unit of the window. A protection film for a window of a display device includes: a protection layer; and a barrier wall on the protection layer, the protection layer having a groove at an edge of the protection layer.
US11522155B2
A method for manufacturing a display device including a display panel having a folding area to be folded along a virtual folding axis and first and second non-folding areas adjacent to both sides of the folding area, and a window disposed on the display panel, the method including preparing a mother substrate having an effective area and a non-effective area divided by a cutting line, performing a first laser process along a first cutting line disposed in the first non-folding area, performing a second laser process along a second cutting line disposed in the second non-folding area, and performing a third laser process along a third cutting line disposed in the folding area, in which one end of the third cutting line overlaps a first end of the first cutting line, and the other end of the third cutting line overlaps a first end of the second cutting line.
US11522154B2
A flexible display apparatus includes a first functional layer, a second functional layer above the first functional layer, a third functional layer above the second functional layer, a first adhesive layer between the first functional layer and the second functional layer, and having a first recovery rate, and a second adhesive layer between the second functional layer and the third functional layer, and having a second recovery rate that is lower than the first recovery rate.
US11522152B2
A display panel, a method for fabricating a display panel and a display apparatus are provided. The display panel includes a substrate; a plurality of discrete first electrodes, a pixel define layer, a metal connection layer disposed on a side of the pixel define layer facing away from the substrate, wherein an orthographic projection of the metal connection layer on the substrate at least surrounds half of each opening of the plurality of openings; an organic light-emitting layer, and at least one second electrode, disposed on a side of the organic light-emitting layer and the pixel define layer facing away from the substrate. An orthographic projection of the at least one second electrode on the substrate covers an orthographic projection of the pixel define layer and the plurality of first electrodes on the substrate and the at least one second electrode is electrically connected to the metal connection layer.
US11522151B2
An organic light-emitting device includes a first electrode layer, an emission layer, an electron transporting layer, an electron injection layer, and a second electrode layer sequentially formed from bottom to top. The emission layer includes a guest light-emitting material, a first phenyl phosphine oxide derivative and a hole transporting material. The electron transporting layer includes a second phenyl phosphine oxide derivative and a third phenyl phosphine oxide derivative different from the second phenyl phosphine oxide derivative. One of the second phenyl phosphine oxide derivative and the third phenyl phosphine oxide derivative is identical to the first phenyl phosphine oxide derivative. The electron injection layer includes an alkaline metal compound.
US11522139B2
Disclosed herein are an organic light emitting diode including: at least two light emitting stacks interposed between an anode and a cathode and including at least one light emitting material layer; and a charge generation layer interposed between the light emitting stacks. The charge generation layer includes an N-type charge generation layer and a P-type charge generation layer, wherein the N-type charge generation layer and the P-type charge generation layer are stacked in such direction for the N-type charge generation layer to face the anode and for the P-type charge generation layer to face the cathode. The N-type charge generation layer includes a compound represented by Formula 1. The P-type charge generation layer includes any one selected from the group consisting of a compound represented by Formula 2, a compound represented by Formula 3, and a combination thereof. The material for N-type charge generation layers and the material for P-type charge generation layers of the disclosure can secure low driving voltage and long lifespan of an organic light emitting diode when used in the organic light emitting diode. Compounds of Formulae 1, 2, and 3 are as defined herein.
US11522137B2
The present disclosure provides an organic light emitting element which has a pair of electrodes and an organic compound layer disposed therebetween and in which the organic compound layer contains an organic compound represented by the following general formula [1], wherein in the formula [1], Ar1 and Ar2 each independently represent an aromatic hydrocarbon group or a heteroaromatic ring group, R1 to R4 are each independently selected from a hydrogen atom or a substituent, R1 and R2 and R3 and R4 each may form a benzene ring, wherein the benzene ring may have at least one substituent.
US11522134B2
Disclosed is a method of fabricating a resistive switching memory. A method of fabricating a resistive switching memory according to an embodiment of the present invention includes a step of forming a lower electrode on a substrate; a step of forming a resistive switching layer on the lower electrode using sputtering; and a step of forming an upper electrode on the resistive switching layer, wherein, in the step of forming a resistive switching layer on the lower electrode using sputtering, the substrate is disposed in a region, which is not reached by plasma generated by the first and second targets, between the first target and the second target disposed above the substrate to deposit the resistive switching layer.
US11522132B2
A storage device includes a first electrode, a second electrode, and a storage layer. The second electrode is disposed to oppose the first electrode. The storage layer is provided between the first electrode and the second electrode, and includes one or more chalcogen elements selected from tellurium (Te), selenium (Se), and sulfur (S), transition metal, and oxygen. The storage layer has a non-linear resistance characteristic, and the storage layer is caused to be in a low-resistance state by setting an application voltage to be equal to or higher than a predetermined threshold voltage and is caused to be in a high-resistance state by setting the application voltage to be lower than the predetermined threshold voltage to thereby have a rectification characteristic.
US11522127B2
A manufacturing method of a semiconductor device includes the following steps. A first inter-metal dielectric (IMD) layer is formed on a substrate. A cap layer is formed on the first IMD layer. A connection structure is formed on the substrate and penetrates the cap layer and the first IMD layer. A magnetic tunnel junction (MTJ) stack is formed on the connection structure and the cap layer. A patterning process is performed to the MTJ stack for forming a MTJ structure on the connection structure and removing the cap layer. A spacer is formed on a sidewall of the MTJ structure and a sidewall of the connection structure. A second IMD layer is formed on the first IMD layer and surrounds the MTJ structure. The dielectric constant of the first IMD layer is lower than the dielectric constant of the second IMD layer.
US11522123B2
A magnetic memory device includes a magnetic body having magnetic anisotropy and an insulator including a ferromagnetic element. The magnetic body is structurally connected to both ends of the ferromagnetic insulator, and the magnetic body and the ferromagnetic insulator form a ring shape. An easy axis of the magnetic body is directed in a direction parallel to an opening surface of the ring shape in a whole of the magnetic body.
US11522119B2
A piezoelectric actuator includes a first electrode, a first piezoelectric body disposed at one side of the first electrode in a thickness direction of the first electrode, an individual electrode disposed at one side of the first piezoelectric body in the thickness direction, a second piezoelectric body disposed at one side of the individual electrode in the thickness direction, a second electrode disposed at one side of the second piezoelectric body in the thickness direction, a wiring that electrically connects to the individual electrode, a first contact, and a second contact. At the first and the second contacts, the first electrode and the second electrode electrically connect to each other. The first contact is disposed at one side of the individual electrode in a perpendicular direction perpendicular to the thickness direction. The second contact is disposed at the other side of the individual electrode in the perpendicular direction.
US11522116B2
A vertical Josephson junction device includes a substrate, and an epitaxial stack formed on the substrate. The vertical Josephson junction device includes a first superconducting electrode embedded in the epitaxial stack, and a second superconducting electrode embedded in the epitaxial stack, the second superconducting electrode being separated from the first superconducting electrode by a dielectric layer. In operation, the first superconducting electrode, the dielectric layer, and the second superconducting electrode form a vertical Josephson junction.
US11522114B2
The present invention provides: a thermoelectric conversion material capable of being produced in a simplified manner and at a lower cost and excellent in thermoelectric performance and flexibility, and a method for producing the material. The thermoelectric conversion material has, on a support, a thin film of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an inorganic ionic compound. The method for producing a thermoelectric conversion material having, on a support, a thin film of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an inorganic ionic compound includes a step of applying a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an inorganic ionic compound onto a support and drying it to form a thin film thereon, and a step of annealing the thin film.
US11522112B2
A light emitting diode includes an active layer, a first type semiconductor layer, a second type semiconductor layer, a coupling layer, and a sacrificial thin film. The first type semiconductor layer and the second type semiconductor layer are disposed at opposite sides of the active layer. The coupling layer is disposed on the second type semiconductor layer. The sacrificial thin film is disposed on the coupling layer, in which the coupling layer is disposed between the sacrificial thin film and the second type semiconductor layer, and the sacrificial thin film has a thickness less than a total thickness of the first type semiconductor layer, the active layer, the second type semiconductor layer and the coupling layer.
US11522105B2
An object of the present disclosure is to provide a technique capable of attaining an AlN template which has less strain and is suitable for producing the ultraviolet LED. Provided is a nitride semiconductor laminate structure, including at least a sapphire substrate, a first AlN layer formed on a principal surface of the sapphire substrate, and a second AlN layer formed on the first AlN layer, wherein an absolute value of a strain amount ε2 of the second AlN layer in the a-axis direction is smaller than an absolute value of a strain amount ε1 of the first AlN layer in the a-axis direction.
US11522104B2
A method for manufacturing a light emitting device comprising an optical member provided on a light extracting surface side of a semiconductor light emitting element via a first light transmissive layer, the method comprising the steps of: (i) roughening said extracting surface of said semiconductor light emitting element, (ii) forming said first light transmissive layer on an entirety of said roughened light extracting surface, (iii) flattening an upper surface of said first light transmissive layer, and (iv) directly bonding said flattened upper surface of said first light transmissive layer and a surface of said optical member by performing surface-activated bonding, atomic diffusion bonding, or hydroxyl bonding.
US11522099B2
Disclosed herein is a method for making a radiation detector. The method comprises forming a recess into a substrate and forming a semiconductor single crystal in the recess. The semiconductor single crystal may be a cadmium zinc telluride (CdZnTe) single crystal or a cadmium telluride (CdTe) single crystal. The method further comprises forming electrical contacts on the semi conductor single crystal and bonding the substrate to another substrate comprising an electronic system therein or thereon. The electronic system is connected to the electrical contact of the semiconductor single crystal and configured to process an electrical signal generated by the semiconductor single crystal upon absorption of radiation particles.
US11522095B2
A 12th solar cell and a 13th solar cell are provided to overlap in part as viewed from a side of a light receiving surface 22. A portion of a light receiving surface of the 12th solar cell and a portion of a back surface of the 13th solar cell face each other in an overlapping portion across a wire. The overlapping portion includes a part where a resin is located both between the light receiving surface of the 12th solar cell and the wire and between the back surface of the 13th cell and the wiring member.
US11522093B2
The present invention relates to an optoelectronic device comprising a substrate having a first and a second substantially planar face, a series of grooves in the first substantially planar face, and a first and a second electrical conductor on the second substantially planar face; wherein a first face of the first electrical conductor and a first face of the second electrical conductor are reflective.
US11522080B2
III-Nitride heterostructures with low p-type sheet resistance and III-Nitride heterostructure devices with gate recess and devices including the III-Nitride heterostructures are disclosed.
US11522078B2
A High Electron Mobility Transistor (HEMT) having a reduced surface field (RESURF) junction is provided. The HEMT includes a source electrode at a first end and a drain electrode at a second end. A gate electrode is provided between the source electrode and the drain electrode. A reduced surface field (RESURF) junction extends from the first end to the second end. The gate electrode is provided above the RESURF junction. A buried channel layer is formed in the RESURF junction on application of a positive voltage at the gate electrode. The RESURF junction includes an n-type Gallium nitride (GaN) layer and a p-type GaN layer. The n-type GaN layer is provided between the p-type GaN layer and the gate electrode.
US11522077B2
Various embodiments of the present disclosure are directed towards an integrated chip a first undoped layer overlies a substrate. A first barrier layer overlies the first undoped layer and has a first thickness. A first doped layer overlies the first barrier layer and is disposed laterally within an n-channel device region of the substrate. A second barrier layer overlies the first barrier layer and is disposed within a p-channel device region that is laterally adjacent to the n-channel device region. The second barrier layer has a second thickness that is greater than the first thickness. A second undoped layer overlies the second barrier layer. A second doped layer overlies the second undoped layer. The second undoped layer and the second doped layer are disposed within the p-channel device region.
US11522075B2
A semiconductor device according to one or more embodiments may include a first semiconductor region of a first conductivity type, a second semiconductor region of the first conductivity type with a higher impurity concentration than an impurity concentration of the first semiconductor region, the second semiconductor region being provided on a first principal surface of the first semiconductor region, a third semiconductor region of a second conductivity type provided on an upper surface of the second semiconductor region, the third semiconductor region being doped with an impurity in accordance with an impurity concentration profile including peaks along a film thickness direction, a fourth semiconductor region of the first conductivity type provided on an upper surface of the third semiconductor region.
US11522070B2
A manufacturing method of a low temperature poly-silicon (LTPS) array substrate is described. The LTPS array substrate includes a metal light-shielding layer, a buffer layer, a polycrystalline silicon layer, a gate insulating and interlayer insulating layer, a gate line layer, and a source and drain electrode layer. The method adopts a one-time chemical vapor deposition process to form a gate insulator and interlayer insulating layer. A gate line trench is formed in the gate insulating layer and the interlayer insulating layer, thereby reducing the thickness of the LTPS array substrate film layer and the process steps.
US11522063B2
A shield gate trench power device, wherein a shield dielectric layer is formed by stacking a thermal oxide layer and a CVD dielectric layer on the inner side surface of a gate trench; a gap region formed by means of filling with the shield dielectric layer is filled with source polysilicon; a top trench is formed on two sides of the source polysilicon by etching a portion of the shield dielectric layer close to the side surface of the gate trench, and the entire top trench is located in the thermal oxide layer; the top trench is filled with a polysilicon gate. A method for manufacturing a shield gate trench power device. The uniformity of the thickness of the shield dielectric layer on the sidewall and bottom of the gate trench can be improved.
US11522045B2
A method of forming a semiconductor structure includes forming a first middle-of-line (MOL) oxide layer and a second MOL oxide layer in the semiconductor structure. The first MOL oxide layer including multiple gate stacks formed on a substrate, and each gate stack of the gate stacks including a source/drain junction. A first nitride layer is formed over a silicide in the first MOL oxide layer. A second nitride layer is formed. Trenches are formed through the second nitride layer down to the source/drain junctions. A nitride cap of the plurality of gate stacks is selectively recessed. At least one self-aligned contact area (CA) element is formed within the first nitride layer. The first MOL oxide layer is selectively recessed. An air-gap oxide layer is deposited. The air gap oxide layer is reduced to the at least one self-aligned CA element and the first nitride layer.
US11522035B2
A display panel includes a base layer, a circuit layer, a light emitting element, a pixel defining film, an encapsulation layer, and a first dam. The base layer may include a display area and a non-display area adjacent to the display area. The encapsulation layer may include a first inorganic film, an organic film, and a second inorganic film. The first dam may be disposed between the first inorganic film and the second inorganic film, and outside the organic film. The first dam may overlap the non-display area and the pixel defining film on a plane. Therefore, in the display panel of an embodiment, the non-display area may be reduced.
US11522033B2
Disclosed are a display module and a display apparatus. The display module includes a first display region and a second display region bordering the first display region. The first display region includes first pixel circuit regions arranged in an array and multiple photosensitive regions. The second display region includes second pixel circuit regions arranged in an array. The number of first pixel circuit regions per unit area is equal to and the number of second pixel circuit regions per unit area. The display module further includes an image acquisition module, which includes a micro-lens module. The micro-lens module includes multiple micro-lenses in one-to-one correspondence with the multiple photosensitive regions, and each micro-lens is disposed in a corresponding photosensitive region.
US11522014B2
Subject matter disclosed herein relates to an integrated circuit device having a socket interconnect region for connecting a plurality of conductive lines at a first vertical level to interconnect structures formed at a second vertical level different from the first vertical level. The conductive lines include a plurality of contacted lines that are vertically connected to the interconnect structures at the socket interconnect region, a plurality of terminating lines terminating at the socket interconnect region, and a plurality of pass-through lines that pass through the socket interconnect region without being vertically connected and without being terminated at the socket interconnect region.
US11522013B2
A hybrid random access memory for a system-on-chip (SOC), including a semiconductor substrate with a MRAM region and a ReRAM region, a first dielectric layer on the semiconductor substrate, multiple ReRAM cells in the first dielectric layer on the ReRAM region, a second dielectric layer above the first dielectric layer, and multiple MRAM cells in the second dielectric layer on the MRAM region.
US11522010B2
A method of integrating a phase change switch (PCS) into a Bipolar (Bi)/Complementary Metal Oxide Semiconductor (CMOS) (BiCMOS) process, comprises providing a base structure including BiCMOS circuitry on a semiconductor substrate, and forming on the base structure a dielectric contact window layer having metal through-plugs that contact the BiCMOS circuitry. The method includes constructing the PCS on the contact window layer. The PCS includes: a phase change region, between ohmic contacts on the phase change region, to operate as a switch controlled by heat. The method further includes forming, on the contact window layer and the PCS, a stack of alternating patterned metal layers and dielectric layers that interconnect the patterned metal layers, such that the stack connects a first of the ohmic contacts to the BiCMOS circuitry and provides connections to a second of the ohmic contacts and to the resistive heater.
US11522007B2
The present disclosure provides a display panel and a display device. The display panel includes: a base substrate; a plurality of micro-LED groups located on the base substrate, wherein each of the plurality of micro-LED groups includes at least three micro-LEDs, and at least two micro-LEDs of each said micro-LED group have their longer sides arranged in different directions; and a shielding layer comprising a plurality of apertures located in shielding portions, wherein the shielding portions are located between adjacent micro-LEDs, and wherein the plurality of apertures each correlates one of the micro-LEDs.
US11522006B2
A light emitting stacked structure including a plurality of epitaxial sub-units disposed one over another, each of the epitaxial sub-units configured to emit different colored light, in which each epitaxial sub-unit has a light emitting area that overlaps one another, and at least one epitaxial sub-unit has an area different from the area of another epitaxial sub-unit.
US11522003B2
A matrix-array detector and to a method for implementing the detector are provided. The detector includes an array of pixels that are sensitive to a physical effect and arranged in a matrix along rows and down columns, each pixel generating a signal according to the physical effect; row conductors, each allowing the pixels of one row to be driven; a first group of driver modules each delivering selection signals to one row conductor of a first group of row conductors; a second group of driver modules each delivering selection signals to one row conductor of a first group of row conductors; the first and second groups of row conductors being interlaced.
US11521999B2
An image sensing device includes a photoelectric conversion element, a floating diffusion (FD) region, and a transfer gate. The photoelectric conversion element is disposed in a substrate, and generates photocharges in response to incident light. The floating diffusion (FD) region is disposed over the photoelectric conversion element, and stores the photocharges generated by the photoelectric conversion element. The transfer gate transfer the photocharges generated by the photoelectric conversion element to the floating diffusion (FD) region in response to a transmission signal. The transfer gate includes a horizontal gate disposed over the photoelectric conversion element, and a vertical gate coupled to the horizontal gate. The vertical gate is positioned at a side of the photoelectric conversion element, and surrounds the photoelectric conversion element.
US11521997B2
An IC structure includes a substrate region having a first doping type and including an upper surface, first and second regions within the substrate region, each of the first and second regions having a second doping type opposite the first doping type, and a gate conductor including a plurality of conductive protrusions extending into the substrate region in a direction perpendicular to a plane of the upper surface. The conductive protrusions are electrically connected to each other, and at least a portion of each conductive protrusion is positioned between the first and second regions.
US11521996B2
An imaging panel is provided. The imaging panel includes a photoelectric conversion element, a pixel, a first conductive film, a second conductive film, a third conductive film, a fourth conductive film, and a fifth conductive film. The pixel includes a pixel circuit and supplies an image signal. The first conductive film is supplied with the image signal and the photoelectric conversion element includes a first terminal connected to the second conductive film and a second terminal connected to the pixel circuit. The pixel circuit includes a first switch, a second switch, a third switch, a transistor, and a capacitor. The first switch includes a terminal connected to the second terminal of the photoelectric conversion element and a terminal connected to a node. The transistor includes a gate electrode connected to the node and a first electrode connected to the third conductive film. The second switch includes a terminal connected to a second electrode of the transistor and a terminal connected to the first conductive film. The third switch includes a terminal connected to the fourth conductive film and a terminal connected to the node. The capacitor includes a first electrode connected to the node and a second electrode connected to the fifth conductive film.
US11521986B2
Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A dielectric stack including interleaved sacrificial layers and dielectric layers is formed above a substrate. A channel structure extending vertically through the dielectric stack is formed. A local dielectric layer is formed on the dielectric stack. A channel local contact opening through the local dielectric layer to expose an upper end of the channel structure, and a slit opening extending vertically through the local dielectric layer and the dielectric stack are simultaneously formed. A memory stack including interleaved conductive layers and the dielectric layers is formed by replacing, through the slit opening, the sacrificial layers with the conductive layers. A channel local contact in the channel local contact opening, and a slit structure in the slit opening are simultaneously formed.
US11521980B2
A read-only memory cell array includes a first storage state memory cell and a second storage state memory cell. The first storage state memory cell includes a first transistor and a second transistor. The first transistor is connected to a source line and a word line. The second transistor is connected to the first transistor and a first bit line. The second storage state memory cell includes a third transistor and a fourth transistor. The third transistor is connected to the source line and the word line. The fourth transistor is connected to the third transistor and a second bit line. A gate terminal of the fourth transistor is connected to a gate terminal of the third transistor.
US11521978B2
The present application discloses a semiconductor device with a programmable unit and a method for fabricating the semiconductor device. The semiconductor device includes a substrate comprising a first region and a second region; a first semiconductor element positioned in the first region of the substrate; a second semiconductor element positioned in the first region of the substrate and electrically coupled to the first semiconductor element; and a programmable unit positioned in the second region and electrically connected to the first semiconductor element.
US11521970B2
In a method of manufacturing a semiconductor device, first and second gate structures are formed. The first (second) gate structure includes a first (second) gate electrode layer and first (second) sidewall spacers disposed on both side faces of the first (second) gate electrode layer. The first and second gate electrode layers are recessed and the first and second sidewall spacers are recessed, thereby forming a first space and a second space over the recessed first and second gate electrode layers and first and second sidewall spacers, respectively. First and second protective layers are formed in the first and second spaces, respectively. First and second etch-stop layers are formed on the first and second protective layers, respectively. A first depth of the first space above the first sidewall spacers is different from a second depth of the first space above the first gate electrode layer.
US11521968B2
Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having channel structures with sub-fin dopant diffusion blocking layers are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. The lower fin portion includes a dopant diffusion blocking layer on a first semiconductor layer doped to a first conductivity type. The upper fin portion includes a portion of a second semiconductor layer, the second semiconductor layer on the dopant diffusion blocking layer. An isolation structure is along sidewalls of the lower fin portion. A gate stack is over a top of and along sidewalls of the upper fin portion, the gate stack having a first side opposite a second side. A first source or drain structure at the first side of the gate stack.
US11521965B2
Junction field effect transistors (JFETs) and related manufacturing methods are disclosed herein. A disclosed four terminal JFET includes an integrated high voltage capacitor (HVC). The JFET includes a first terminal coupled to a drain region, a second terminal coupled to the source region, a third terminal coupled to the base region, and an integrated HVC terminal coupled to an integrated HVC electrode which forms an HVC with the drain region. The JFET also includes a channel formed by a channel region. A bias on the base region fully depletes the channel of majority carriers. The channel has an unbiased concentration of majority carriers. The integrated HVC electrode is positioned relative to the channel region such that applying the bias to the integrated HVC terminal depletes the channel by at most ten percent of the unbiased concentration of majority carriers.
US11521954B2
Disclosed is a light emitting diode (LED) assembly having vertical type micro LEDs which are vertically aligned and is capable of significantly improving light efficiency, a light quantity, and an integration degree through optimized alignment of the vertical type micro LEDs each having a nano size or micro size. The LED assembly includes a substrate provided with a plurality of through holes formed in a thickness direction, micro LEDs each formed in a vertical type in which a vertical width is greater than a lateral width, and aligned in an upright state by being at least partially inserted into the through holes, and a first electrode deposited on a lower surface of the substrate to be connected to a first conductive layer and a second electrode deposited on an upper surface of the substrate to be connected to a second conductive layer.
US11521953B1
Described is a packaging technology to improve performance of an AI processing system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die includes memory and the second die includes computational logic. The first die comprises a ferroelectric RAM (FeRAM) having bit-cells. Each bit-cell comprises an access transistor and a capacitor including ferroelectric material. The access transistor is coupled to the ferroelectric material. The FeRAM can be FeDRAM or FeSRAM. The memory of the first die may store input data and weight factors. The computational logic of the second die is coupled to the memory of the first die. The second die is an inference die that applies fixed weights for a trained model to an input data to generate an output. In one example, the second die is a training die that enables learning of the weights.
US11521951B2
An electronic device includes a plurality of light emitting units mounted on a substrate, and an opening that is provided so as to correspond to each of the light emitting units and guides light emitted from the light emitting units to an outside.
US11521946B2
In an embodiment a method for producing a semiconductor component comprising at least one semiconductor chip mounted on a surface, wherein the semiconductor chip is fixed on the surface by applying a solder compound to an assembling surface of the semiconductor chip, applying a metallic adhesive layer to a side of the solder compound facing away from the assembling surface, preheating the surface to a first temperature T1, bringing the metallic adhesive layer into mechanical contact in a solid state with the preheated surface, the metallic adhesive layer at least partially melting while it is brought into mechanical contact with the preheated surface, and subsequently cooling the surface to room temperature, the semiconductor chip being at least partially metallurgically bonded to the surface, and wherein the semiconductor chip is subsequently soldered to the surface to form a resulting solder connection.
US11521942B2
A display device is provided. The display device includes a panel. The panel includes a display region and a non-display region and has a normal direction in which the non-display region is adjacent to the display region. The non-display region includes a first conductive line and a second conductive line. A common voltage is applied to the first conductive line. The second conductive line is at least partially overlapped with the first conductive line. There is a distance between the first conductive line and the second conductive line in the normal direction. The distance is greater than or equal to 3500 Å, and less than or equal to 4500 Å.
US11521940B2
The present disclosure relates to a semiconductor package that may include a substrate, at least one die coupled to the substrate, and a stiffener coupled to the substrate, wherein the stiffener may include a stiffener frame, wherein the stiffener frame at least partially surrounds the at least one die. The stiffener may include at least one resilient member extending from the stiffener frame towards the at least one die, and the at least one resilient member may include a distal end that extends at a height above the substrate.
US11521939B2
Semiconductor device structures and methods for manufacturing the same are provided. The semiconductor device structure includes a substrate, a die and a stiffener. The substrate has an upper surface. The die is disposed on the upper surface of the substrate. The stiffener is disposed on the upper surface of the substrate and surrounds the die. The stiffener has a first upper surface adjacent to the die, a second upper surface far from the die and a lateral surface extending from the first upper surface to the second upper surface. A first distance between the first upper surface of the stiffener and the upper surface of the substrate is less than a second distance between the second upper surface of the stiffener and the upper surface of the substrate.
US11521933B2
A semiconductor device is provided, which includes a semiconductor chip; a first current input/output portion that is electrically connected to the semiconductor chip; a second current input/output portion that is electrically connected to the semiconductor chip; three or more conducting portions provided with the semiconductor chip, between the first current input/output portion and the second current input/output portion; and a current path portion having a path through which current is conducted to each of the three or more conducting portions, wherein the current path portion includes a plurality of slits.
US11521930B2
An electronic package is provided, in which a circuit board and a circuit block are embedded in an encapsulating layer at a distance to each other, and circuit structures are formed on the two opposite surfaces of the encapsulating layer with electronic components arranged on one of the circuit structures. The circuit block and the circuit board embedded in the encapsulating layer are spaced apart from each other to allow to separate current conduction paths. As such, the circuit board will not overheat, and issues associated with warpage of the circuit board can be eliminated. Moreover, by embedding the circuit block and the circuit board in the encapsulating layer at a distance to each other, the structural strength of the encapsulating layer can be improved.
US11521927B2
A semiconductor structure may include a buried power rail under a bottom source drain of a vertical transistor and a dielectric bi-layer under the bottom source drain. The dielectric bi-layer may be between the buried power rail and the bottom source drain. The semiconductor structure may include a silicon germanium bi-layer under the bottom source drain, the silicon germanium bi-layer may be adjacent to the buried power rail. The semiconductor structure may include a buried power rail contact. The buried power rail contact may connect the bottom source drain to the buried power rail. The dielectric bi-layer may include a first dielectric layer and a dielectric liner. The first dielectric layer may be in direct contact with the bottom source drain. The dielectric liner may surround the buried power rail. The silicon germanium bi-layer may include a first semiconductor layer and a second semiconductor layer below the first semiconductor layer.
US11521915B2
Various embodiments of the present application are directed towards an integrated circuit (IC) chip comprising a front-end-of-line (FEOL) through semiconductor-on-substrate via (TSV), as well as a method for forming the IC chip. In some embodiments, a semiconductor layer overlies a substrate. The semiconductor layer may, for example, be or comprise a group III-V semiconductor and/or some other suitable semiconductor(s). A semiconductor device is on the semiconductor layer, and a FEOL layer overlies the semiconductor device. The FEOL TSV extends through the FEOL layer and the semiconductor layer to the substrate at a periphery of the IC chip. An intermetal dielectric (IMD) layer overlies the FEOL TSV and the FEOL layer, and an alternating stack of wires and vias is in the IMD layer.
US11521914B2
Microelectronic assemblies that include a cooling channel, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a surface, a die having a surface, and a fluidic channel between the surface of the die and the surface of the package substrate, wherein a top surface of the fluidic channel is defined by the surface of the die and a bottom surface of the fluidic channel is defined by the surface of the package substrate. In some embodiments, a microelectronic assembly may include a package substrate having a surface; a die having a surface; and an interposer having a fluidic channel between the surface of the die and the surface of the package substrate.
US11521904B2
An integrated circuit (IC) includes semiconductor substrate with a metal stack including a lower, upper and a top metal layer that includes bond pads and a detection bond pad (DBP). A wirebond damage detector (WDD) includes the DBP over a first and second connected structure. The first and second connected structures both include spaced apart top segments of the upper metal layer coupled to spaced apart bottom segments of the lower metal layer. The DBP is coupled to one end of the first connected structure, and ≥1 metal trace is coupled to another end extending beyond the DBP to a first test pad. The second connected structure includes metal traces coupled to respective ends each extending beyond the DBP to a second test pad and to a third test pad.
US11521903B1
The present disclosure provides a method of measuring a plurality of voids in an underfill material of an underfill package. The method includes operations of obtaining a welding angle profile of the underfill package; obtaining a simulated void profile of the underfill package according to the welding angle profile; determining a plurality of high-risk void regions according to the simulated void profile; simulating, according to a selected pressure and a selected temperature of the underfill material, a first high-risk void region of the plurality of high-risk void regions to generate an updated void profile; and determining whether the updated void profile meets a void requirement of the underfill package.
US11521902B2
Vertical field-effect transistor (VFET) devices and methods of forming the devices are provided. The methods may include forming a channel region including a first channel region and a second channel region, forming a first cavity in the substrate, forming a first bottom source/drain in the first cavity, forming a second cavity in the substrate, and forming a second bottom source/drain in the second cavity. The first cavity may expose a lower surface of the first channel region, and the second cavity may expose a lower surface of the second channel region. The method may also include after forming the first bottom source/drain and the second bottom source/drain, removing a portion of the channel region between the first channel region and the second channel region to separate the first channel region from the second channel region.
US11521901B2
The present disclosure provides a method for preparing a semiconductor device. The semiconductor device includes a substrate, a first region, a second region, a third region, a fourth region, a fifth region and a sixth region. The first type region is disposed on the substrate and has a ring structure. The second type region is disposed on the substrate and disposed in the center of the first type region. A plurality of second well regions are formed in the first region, the second region, the fourth region, the fifth region and the sixth region. A plurality of second well regions in the first region, the second region, the fourth region, the fifth region and the sixth region. The first well region, the second well region, the first type region and the second type region are formed by ion implantation.
US11521900B2
A method of manufacturing a semiconductor device includes forming a first fin-type pattern and a second fin-type pattern which are separated by a first trench between facing ends thereof, forming a first insulating layer filling the first trench, removing a portion of the first insulating layer to form a second trench on the first insulating layer, and forming a third trench by enlarging a width of the second trench.
US11521896B2
In some embodiments, the present disclosure relates to an integrated chip that includes a lower conductive structure arranged over a substrate. An etch stop layer is arranged over the lower conductive structure, and a first interconnect dielectric layer is arranged over the etch stop layer. The integrated chip further includes an interconnect via that extends through the first interconnect dielectric layer and the etch stop layer to directly contact the lower conductive structure. A protective layer surrounds outermost sidewalls of the interconnect via.
US11521891B2
A semiconductor device includes: a metal-oxide semiconductor (MOS) transistor on a substrate; a deep trench isolation structure in the substrate and around the MOS transistor; and a trap rich isolation structure in the substrate and surrounding the deep trench isolation structure. Preferably, the deep trench isolation structure includes a liner in the substrate and an insulating layer on the liner, in which the top surfaces of the liner and the insulating layer are coplanar. The trap rich isolation structure is made of undoped polysilicon and the trap rich isolation structure includes a ring surrounding the deep trench isolation structure according to a top view.
US11521886B2
An electrostatic chucking method uses a substrate processing apparatus including an electrostatic chuck, a focus ring, a supply unit configured to supply a heat transfer medium to a space formed between the focus ring and the electrostatic chuck, and a plurality of electrodes provided at a region in the electrostatic chuck which corresponds to the focus ring. The electrostatic chucking method includes supplying by the supply unit the heat transfer medium to the space for a plasma processing period for which a plasma for processing the substrate is generated, and applying different voltages to the plurality of electrodes to attract and hold the focus ring on the electrostatic chuck for a period other than the plasma processing period.
US11521871B2
The present disclosure relates to a rapid thermal processing apparatus for rapid heat treatment of a substrate, and particularly, to increasing the accuracy in measuring the temperature of a substrate to be thermally processed by configuring a thermocouple for measuring the temperature of the substrate under the same conditions as the substrate to be thermally processed so as to be attached to and detached from the chamber, and the present disclosure provides a rapid thermal processing apparatus having a thermocouple installed to measure a temperature of a substrate to be thermally processed located inside a chamber, and the rapid thermal processing apparatus includes a mounting hole formed in the chamber, and a thermocouple kit inserted into and mounted to the mounting hole so that a bonding portion of a thermocouple wire is located at a thermocouple substrate extending into the chamber.
US11521868B2
Support plates for localized heating in thermal processing systems to uniformly heat workpieces are provided. In one example implementation, localized heating is achieved by modifying a heat transmittance of a support plate such that one or more portions of the support plate proximate the areas that cause cold spots transmit more heat than the rest of the support plate. For example, the one or more portions (e.g., areas proximate to one or more support pins) of the support plate have a higher heat transmittance (e.g., a higher optical transmission) than the rest of the support plate. In another example implementation, localized heating is achieved by heating a workpiece via a coherent light source through a transmissive support structure (e.g., one or more support pins, or a ring support) in addition to heating the workpiece globally by light from heat sources.
US11521867B2
A cutting apparatus includes a cassette table on which a first cassette in which a frame unit, ring-shaped frame and wafer are housed, and a second cassette in which a simple wafer is housed. A first conveying unit having a first frame holding part holds the ring-shaped frame of the frame unit withdrawn from the first cassette and conveys the frame unit to a chuck table. A first wafer holding part holds the simple wafer withdrawn from the second cassette and conveys the simple wafer to the chuck table. A cutting unit cuts the wafer, and a second conveying unit conveys the frame unit from the chuck table to a cleaning unit. A second wafer holding part holds the cut simple wafer and conveys it from the chuck table to the cleaning unit.
US11521864B2
A system and method of using electrochemical additive manufacturing to add interconnection features, such as wafer bumps or pillars, or similar structures like heatsinks, to a plate such as a silicon wafer. The plate may be coupled to a cathode, and material for the features may be deposited onto the plate by transmitting current from an anode array through an electrolyte to the cathode. Position actuators and sensors may control the position and orientation of the plate and the anode array to place features in precise positions. Use of electrochemical additive manufacturing may enable construction of features that cannot be created using current photoresist-based methods. For example, pillars may be taller and more closely spaced, with heights of 200 μm or more, diameters of 10 μm or below, and inter-pillar spacing below 20 μm. Features may also extend horizontally instead of only vertically, enabling routing of interconnections to desired locations.
US11521860B2
A method for selectively etching layers of a first material with respect to layers of a second material in a stack is provided. The layers of the first material are partially etched with respect to the layers of the second material. A deposition layer is selectively deposited on the stack, wherein portions of the deposition layer covering the layers of the second material are thicker than portions covering the layers of the first material, the selective depositing comprising providing a first reactant, purging some of the first reactant, wherein some undeposited first reactant is not purged, and providing a second reactant, wherein the undeposited first reactant combines with the second reactant and selectively deposits on the layers of the second material with respect to the layers of the first material. The layers of the first material are selectively etched with respect to the layers of the second material.
US11521858B2
A semiconductor device includes a first transistor and a second transistor. The first transistor includes: a first source and a first drain separated by a first distance, a first semiconductor structure disposed between the first source and first drain, a first gate electrode disposed over the first semiconductor structure, and a first dielectric structure disposed over the first gate electrode. The first dielectric structure has a lower portion and an upper portion disposed over the lower portion and wider than the lower portion. The second transistor includes: a second source and a second drain separated by a second distance greater than the first distance, a second semiconductor structure disposed between the second source and second drain, a second gate electrode disposed over the second semiconductor structure, and a second dielectric structure disposed over the second gate electrode. The second dielectric structure and the first dielectric structure have different material compositions.
US11521857B2
The present disclosure, in some embodiments, relates to a method of performing an etch process. The method is performed by forming a first plurality of openings defined by first sidewalls of a mask disposed over a substrate. A cut layer is between two of the first plurality of openings. A spacer is formed onto the first sidewalls of the mask and a second plurality of openings are formed. The second plurality of openings are defined by second sidewalls of the mask and are separated by the spacer. The substrate is etched according to the mask and the spacer.
US11521851B2
Methods and systems for depositing vanadium and/or indium layers onto a surface of a substrate and structures and devices formed using the methods are disclosed. An exemplary method includes using a cyclical deposition process, depositing a vanadium and/or indium layer onto the surface of the substrate. The cyclical deposition process can include providing a vanadium and/or indium precursor to the reaction chamber and separately providing a reactant to the reaction chamber. The cyclical deposition process may desirably be a thermal cyclical deposition process. Exemplary structures can include field effect transistor structures, such as gate all around structures. The vanadium and/or indium layers can be used, for example, as barrier layers or liners, as work function layers, as dipole shifter layers, or the like.
US11521850B2
A method for manufacturing a semiconductor device according to an, exemplary embodiment of the present disclosure includes: forming a semiconductor layer on a substrate in a chamber; and forming a semiconductor layer on a substrate in a chamber. Forming the insulation layer includes: (a) injecting precursors that include a metal into a surface of the semiconductor layer; (b) removing precursors that are not adsorbed; (c) injecting reactants onto the surface of the semiconductor layer; and (d) removing residual reactants. The semiconductor layer includes a semiconductor material that has a layered structure.
US11521829B2
An inductively-coupled plasma (ICP) generation system may include a dielectric tube, a first inductive coil structure to enclose the dielectric tube, an RF power supply, a first main capacitor between a positive output terminal of the RF power supply and one end of the first inductive coil structure, and a second main capacitor between a negative output terminal of the RF power supply and an opposite end of the first inductive coil structure. The first inductive coil structure may include inductive coils connected in series to each other and placed at different layers, the inductive coils having at least one turn at each layer, and auxiliary capacitors, which are respectively provided between adjacent ones of the inductive coils to distribute a voltage applied to the inductive coils.
US11521828B2
Disclosed herein is an apparatus for processing a substrate using an inductively coupled plasma source. An inductively coupled plasma source utilizes a power source, a shield member, and a coil coupled to the power source. In certain embodiments, the coils are arranged with a horizontal spiral grouping and a vertical extending helical grouping. The shield member, according to certain embodiments, utilizes a grounding member to function as a Faraday shield. The embodiments herein reduce parasitic losses and instabilities in the plasma created by the inductively coupled plasma in the substrate processing system.
US11521827B2
A fast method of imaging a 2D sample with a multi-beam particle microscope includes the following steps: providing a layer of the 2D sample; determining a feature size of features included in the layer; determining a pixel size based on the determined feature size in the layer; determining a beam pitch size between individual beams in the layer based on the determined pixel size; and imaging the layer of the 2D sample with a setting of the multi-beam particle microscope based on the determined pixel size and based on the determined beam pitch size.
US11521810B2
What is presented is a key module with a cover element and a tappet having a cam nose, wherein the tappet is supported to be movable along a movement axis by the cover element, wherein the tappet has a cylindrical keycap supporting portion in a passage area in which it projects through the cover element and has at least one rib on a guiding portion adjacent to the an keycap supporting portion on an outside. Furthermore, the key module includes a contactor unit formed and arranged to be taken along by the cam nose, and a contact piece formed and arranged for establishing electric contact with the contact nose. Moreover, the key module has a housing element for accommodating the contact piece, the contactor unit and the tappet, wherein the housing element has, for accommodating the guiding portion of the tappet, at least one accommodating bowl with at least one recess for accommodating the at least one rib of the tappet.
US11521787B2
Disclosed herein is a coil component that includes: a first magnetic core extending in the first direction and around which the wires are wound; a second magnetic core covering the first magnetic core from one side in a third direction; first and second terminal electrodes connected respectively to one ends of the first and second wires; and third and fourth terminal electrodes connected respectively to other ends of the first and second wires. The first and second electrodes are arranged in the first direction along the first surface of the first magnetic core, and the third and fourth terminal electrodes are arranged in the first direction along the second surface of the first magnetic core.
US11521785B2
Devices including a substrate and a plurality of coil portions disposed on the substrate. The plurality of coil portions electrically coupled to form a coil structure.
US11521783B2
Provided is a reactor having a core main body that includes an outer peripheral iron core, at least three iron cores, and coils. Between the iron cores adjacent to each other, a gap being magnetically coupled is formed. The reactor includes a fixture that fixes both end portions of the at least three iron cores together by passing through an interior of the outer peripheral iron core in a region between the outer peripheral iron core and the gap. The fixture includes plate-like members disposed on both end faces of the core main body and includes rod-like members that connect the plate-like members to each other by passing through the interior of the outer peripheral iron core. The plate-like members each include a protrusion extending axially inward of the core main body.
US11521776B2
A spin-orbit-torque magnetization rotational element includes: a spin-orbit torque wiring layer which extends in an X direction; and a first ferromagnetic layer which is laminated on the spin-orbit torque wiring layer, wherein the first ferromagnetic layer has shape anisotropy and has a major axis in a Y direction orthogonal to the X direction on a plane in which the spin-orbit torque wiring layer extends, and wherein the easy axis of magnetization of the first ferromagnetic layer is inclined with respect to the X direction and the Y direction orthogonal to the X direction on a plane in which the spin-orbit torque wiring layer extends.
US11521771B2
A quench protection system for a superconducting machine, such as a superconducting generator having a plurality of series-arranged superconducting coils, includes at least one switch heater electrically coupled to each of the superconducting coils. A quench protection switch is provided in series with the coils, wherein each switch heater is in thermal contact with the quench protection switch. A heater network is configured in parallel with the quench protection switch and is in thermal contact with each of the coils. A quench of any one of the coils triggers a quench of the quench protection switch, wherein the heater network then triggers a quench of all of the remaining coils.
US11521768B2
The ferrite powder of the present invention is a ferrite powder containing a plurality of ferrite particles, wherein the ferrite particles each are a single crystal body having an average particle diameter of 1-2,000 nm, and have a polyhedron shape, and wherein the ferrite particles each contain 2.0-10.0 mass % of Sr, and 55.0-70.0 mass % of Fe.
US11521766B2
A wire harness electric wire length correcting device, which corrects a design value of an electric wire length of an electric wire included in a wire harness, includes an electric wire identifying means including an identification mark, which is attached to an end portion of the electric wire, and which is to be cut off from the electric wire when the wire harness is installed on an installation target object, so as to use the identification mark to identify which electric wire an end cut off from the electric wire has been cut off from, a measuring means for measuring a length of the cut off end, and a correcting means for, for the electric wire identified by the electric wire identifying means, correcting the design value of the electric wire length of that electric wire, based on the length of the cut off end measured by the measuring means.
US11521765B2
A tube equipped electric wire, which is configured to be used in a catheter equipped with a catheter tube and be installed within the catheter tube, is composed of a tube including an outer surface, and one or more electric wires helically wound around the outer surface of the tube.
US11521756B2
The fuel cartridge may include a plurality of fuel channels, a first header disposed on a first side of a fuel matrix, a second header disposed on a second side of the fuel matrix opposite to the first side, and a plurality of cooling tubes through which a working fluid flows. Each of the plurality of cooling tubes may pass through each corresponding cooling channel of the plurality of cooling channels, where each of the plurality of cooling tubes has a first end connected to the first header and a second end connected to the second header. The fuel cartridge may include an interior space for sealingly containing the fuel matrix may include a pressure boundary independent from an interior of the plurality of cooling tubes, such that the interior space is not in fluid communication with the plurality of cooling tubes.
US11521750B1
A computerized method includes determining a clinical opportunity to improve care for a user according to automated triggering of a gap identification rule, generating a persona of the user based on one or more personalization scores that are specific to the user, and generating a care plan for reducing the gap in care based on the persona. The care plan includes a plurality of methods of increasing compliance of the user with the care plan, selected based on the one or more personalization scores, and include different modes of communicating with the user either directly or through at least one of a physician and a pharmacist depending on the one or more personalization scores. The method includes deploying the care plan to provide automated selection of one or more of the different modes of communicating with the user to increase compliance of the user with the care plan.
US11521737B2
A pet health management device includes an RW controller as an acquisition unit and a screen distribution controller as a distribution controller. The RW controller reads pet information from a storage device to acquire a scheduled hospital visit date to an animal hospital of a pet. The screen distribution controller distributes a pet health management screen with a message prompting a hospital visit of the pet and including assumed symptom information indicating a symptom assumed in a case where there is no hospital visit of the pet on the scheduled hospital visit date, to an owner terminal according to the scheduled hospital visit date.
US11521732B2
In various implementations, computer-implemented method, such as one executed on a computer system or on instructions stored on computer-readable media may include: receiving from a user device associated with a user, a request to access one or more treatment plans for patient; identifying a treatment template for user, the treatment template representing treatment preferences of the user, the treatment template being expressed according to treatment domain-specific protocols; processing the treatment template with the treatment domain-specific protocols to convert one or more parts of the treatment template into one or more runtime elements that interactively display customized user interface elements related to the treatment plan, the customized user interface elements configured to provide one or more customized user interactions with the treatment plan in accordance with the treatment preferences of the user; and providing instructions to display the one or more runtime elements on the user device.
US11521723B2
A method for automatically classifying clinical descriptions of patients by a computer processor using natural language processing is provided. The clinical descriptions relate to the use of a ventricular assist device to treat the patient. The method comprises receiving at least one clinical description comprising text. The method also then comprises determining the position of a target word within the text. Further the method comprises determining the existence of at least one negation word within an active region, the active region comprising a predetermined number of words within the text occurring immediately before and immediately after the target word, including the target word. The method then comprises determining the existence of at least one body-part word within the active region. Lastly, the method comprises determining that the clinical description is to be disregarded if the active region contains either a negation word or a body-part word.
US11521718B2
Methods, systems, and computer-readable media are provided for computer based healthcare information to automatically provide reminders to a patient to take prescription medications at the appropriate times on the patient's mobile device. The patient enters a medical record number (MRN) into the mobile device and this information is communicated to the patient's electronic medical record. The user device receives the prescription information for the MRN from the patient's electronic medical record. Utilizing the prescription information on the user's device, the user can view and set reminders to take the medication directly from the patient's mobile device.
US11521717B2
A method for generating a user interface for analyzing a patient-specific electronic medical or health record that includes a problem list includes the steps of grouping related potential problems into problem list categories, grouping a subset of the problems into clusters within the categories, mapping, using a computer, entries in the problem list with a respective description in an interface terminology, associating one or more of other medical data, e.g., medication, lab results, procedures, imaging results, past medical history or surgeries, notes, vital signs, or allergy data in the record withdf at least one problem, receiving a request corresponding to a problem or problem list category or to other medical data, identifying non-problem data in the record grouped in a cluster with the requested data, and modifying a user interface to display the identified data separate from other similar medical data included in the electronic medical or health record.
US11521711B2
A system for generating first data including content data includes an interface for outputting the content data, a conversion unit to convert an intensity change indicative of a detected chemical substance contained in data from a sensor into the content data. The sensor includes a mass spectrometric type sensor capable of controlling sensitivity, resolution or selectivity, and a hardware unit that is configured to carry out an analysis of the data with initial setting conditions designed for scanning in a first range using a test sample prepared in advance, change the setting conditions for the sensor for use with the conversion unit, based on the analysis carried out automatically and periodically, the setting conditions including at least one of a voltage for ionizing and a voltage for scanning a spectrum region for detecting a chemical substance requested by an application.
US11521693B2
A sample and hold circuit configured to sample a current includes an input node to receive the current, a capacitor coupled with a sampling node and a reference voltage node, switch between the input node and the sampling node, a controlled current source coupled to the input node, a current mirror circuit having connections each providing a mirrored current, wherein at least one of said connections provides an output node, and a transistor arrangement. The transistor arrangement includes a control MOSFET in series with a series connected chain of cascaded cells. The control MOSFET and each of said cascaded cells are coupled to the current mirror circuit and each of the cascaded cells includes a pair of MOSFETs arranged to provide a voltage difference including a difference between a gate-source voltage of a first of the pair and a gate-source voltage of a second of the pair.
US11521686B2
A memory apparatus and method of operation is provided. The apparatus includes memory cells connected to word lines and bit lines and configured to retain a threshold voltage corresponding to one of a plurality of data states following a program operation. A control circuit is coupled to the word lines and the bit lines. The control circuit is configured to count a bit-scan quantity of the memory cells during a bit-scan of the program operation. The control circuit determines whether the bit-scan quantity of the plurality of memory cells is greater than at least one predetermined bit-scan threshold. In response to the bit-scan quantity of the memory cells being greater than the at least one predetermined bit-scan threshold, the control circuit is configured to adjust a word line ramp rate of a word line voltage applied to the word lines during the program operation.
US11521676B2
A semiconductor structure includes a substrate having a frontside and a backside; a static random-access memory (SRAM) circuit having SRAM bit cells formed on the frontside of the substrate, wherein each of the SRAM bit cells including two inverters cross-coupled together, and a first and second pass gates coupled to the two inverters; a first bit-line disposed on the frontside of the substrate and connected to the first pass gate; and a second bit-line disposed on the backside of the substrate and connected to the second pass gate.
US11521675B1
A data storage system includes a storage medium coupled to a storage controller via an electrical interface connected to a plurality of input/output (IO) pads of the storage medium. The storage medium receives a read or write instruction from the storage controller via the IO pads, associates the read or write instruction with memory cells of a first block of a first plane of a plurality of planes of the storage medium, and adjusts a word line voltage level or a source line voltage level for the first block of the first plane based on (i) a position of the first plane with respect to the IO pads of the storage medium and (ii) a position of the first block within the first plane.
US11521673B2
A memory device includes an array of memory cells, a bit line connected to the memory cells, and a power supply voltage input terminal configured to receive a power supply voltage at a first voltage level to operate the memory cells at the first voltage level. A bit line precharge circuit has an input terminal configured to receive the power supply voltage at the first voltage level, and the bit line precharge circuit is configured to precharge the bit lines to a second voltage level lower than the first voltage level.
US11521667B1
A high-density low voltage ferroelectric (or paraelectric) memory bit-cell that includes a planar ferroelectric or paraelectric capacitor. The memory bit-cell comprises 1T1C configuration, where a plate-line is parallel to a word-line, or the plate-line is parallel to a bit-line. The memory bit-cell can be 1TnC, where ‘n’ is a number. In a 1TnC bit-cell, the capacitors are vertically stacked allowing for multiple values to be stored in a single bit-cell. The memory bit-cell can be multi-element FE gain bit-cell. In a multi-element FE gain bit-cell, data sensing is done with signal amplified by a gain transistor in the bit-cell. As such, higher storage density is realized using multi-element FE gain bit-cells. In some examples, the 1T1C, 1TnC, and multi-element FE gain bit-cells are multi-level bit-cells. To realize multi-level bit-cells, the capacitor is placed in a partially switched polarization state by applying different voltage levels or different time pulse widths at the same voltage level.
US11521664B2
Some embodiments relate to a probabilistic random number generator. The probabilistic random number generator includes a memory cell comprising a magnetic tunnel junction (MTJ), and an access transistor coupled to the MTJ of the memory cell. A variable current source is coupled to the access transistor and is configured to provide a plurality of predetermined current pulse shapes, respectively, to the MTJ to generate a bit stream that includes a plurality of probabilistic random bits, respectively, from the MTJ. The predetermined current pulse shapes have different current amplitudes and/or pulse widths corresponding to different switching probabilities for the MTJ.
US11521661B2
A semiconductor device is provided, which includes a memory chip and a temperature detection module. The temperature detection module is configured to detect a temperature of the memory chip. The temperature detection module includes a temperature detection unit. The temperature detection unit includes a temperature sensitive unit and an adjustable resistor unit. An electrical conductivity of the temperature sensitive unit changes with the change of temperature, and the adjustable resistor unit being connected in parallel with the temperature sensitive unit. The temperature detection unit is configured to be calibrated by adjusting a resistance value of the adjustable resistor unit.
US11521658B2
An illustrative embodiment disclosed herein is an apparatus including a non-volatile memory cell and multi-bit input circuitry that simultaneously receives a plurality of bits, receives a supply voltage, converts the plurality of bits and the supply voltage into a multiply voltage, and applies the multiply voltage to the non-volatile memory cell. The non-volatile memory cell may pass a memory cell current in response to the multiply voltage. A magnitude of the multiply voltage may represent a multiplier. The memory cell current may represent a product of the multiplier and a multiplicand stored in the non-volatile memory cell.
US11521650B2
A magnetic recording medium includes a layer structure including a magnetic layer, a base layer, and a back layer in this order, in which an average thickness tT is tT≤5.5 μm, a dimensional variation Δw in a width direction to tension change in a longitudinal direction is 660 ppm/N≤Δw, and a surface roughness Rabe of the base layer on a side of the back layer is 4.2 nm≤Rabe≤8.5 nm.
US11521639B1
The present disclosure describes a system, method, and computer program for predicting sentiment labels for audio speech utterances using an audio speech sentiment classifier pretrained with pseudo sentiment labels. A speech sentiment classifier for audio speech (“a speech sentiment classifier”) is pretrained in an unsupervised manner by leveraging a pseudo labeler previously trained to predict sentiments for text. Specifically, a text-trained pseudo labeler is used to autogenerate pseudo sentiment labels for the audio speech utterances using transcriptions of the utterances, and the speech sentiment classifier is trained to predict the pseudo sentiment labels given corresponding embeddings of the audio speech utterances. The speech sentiment classifier is then subsequently fine tuned using a sentiment-annotated dataset of audio speech utterances, which may be significantly smaller than the unannotated dataset used in the unsupervised pretraining phase.
US11521636B1
A test audio pattern is sent to the speaker of the participant computer for outputting by the speaker. A computer receives a microphone input signal from the participant computer that includes the test audio pattern outputted by the speaker of the participant computer, and any ambient noise picked up by the speaker of the participant computer. Ambient noise suppression is performed to cancel out any ambient noise in the microphone input signal picked up by the speaker of the participant computer. The test audio pattern sent to the speaker of the participant computer is compared with the noise-suppressed microphone input signal which includes the test audio pattern outputted by the speaker of the participant computer. An audio signal transform is generated from the comparison. The generated audio signal transform is subsequently used for performing acoustic echo cancellation of streaming audio received from the microphone input signal when the participant computer receives streaming audio and the participants engage in remote audio communications with each other.
US11521625B2
An audio signal coding apparatus includes a time-frequency transformer that outputs sub-band spectra from an input signal; a sub-band energy quantizer; a tonality calculator that analyzes tonality of the sub-band spectra; a bit allocator that selects a second sub-band on which quantization is performed by a second quantizer on the basis of the analysis result of the tonality and quantized sub-band energy, and determines a first number of bits to be allocated to a first sub-band on which quantization is performed by a first quantizer; the first quantizer that performs first coding using the first number of bits; the second quantizer that performs coding using a second coding method; and a multiplexer.
US11521621B2
Disclosed is gathering a user's speech samples. According to an embodiment of the disclosure, a method of gathering learning samples may gather a speaker's speech data obtained while talking on a mobile terminal and text data generated from the speech data and gather training data for generating a speech synthesis model. According to the disclosure, the method of gathering learning samples may be related to artificial intelligence (AI) modules, unmanned aerial vehicles (UAVs), robots, augmented reality (AR) devices, virtual reality (VR) devices, and 5G service-related devices.
US11521611B2
A computer-implemented method for determining an answer to a question in a multi-party conversation includes receiving a multi-party conversation having multiple nodes of unstructured natural language. Each node is parsed into a plurality of elements. Each element of the plurality of elements that comprises a question is identified. A conversation node list is constructed that identifies relationships between the nodes. At least one answer to the question is produced based on the conversation node list.
US11521606B2
A refrigerator comprises a storage compartment configured to store food, a temperature detector configured to detect an internal temperature of the storage compartment, a cooler configured to supply cool air to the storage compartment, a microphone configured to receive a speech, a display configured to display information, at least one processor configured to be electrically connected to the temperature detector, the microphone, and the display; and a memory configured to be electrically connected to the at least one processor. The memory stores at least one instructions configured to, when a first speech including a food name is recognized via the microphone, allow the processor to display a food list, which comprises food information corresponding to the food name and an identification mark identifying the food information, on the display, and configured to, when a second speech referring to the identification mark is recognized via the microphone, allow the processor to display food purchase information corresponding to the identification mark, on the display.
US11521601B2
Systems and methods for improving machine learning systems used to model topics on a plurality of calls are described herein. In an embodiment, a server computer receives plurality of digitally stored call transcripts that have been prepared from digitally recorded voice calls. The server computer uses a topic model of an artificial intelligence machine learning system, the topic model modeling words of a call as a function of one or more word distributions for each topic of a plurality of topics, to generate an output of the topic model which identifies the plurality of topics represented in the plurality of call transcripts. The server computer computes, for a particular topic of the plurality of topics a first value representing a vocabulary of the particular topic and a second value representing a consistency of the particular topic in two more call transcripts of the plurality of call transcripts which include the particular topic. Based, at least in part, on one or more of the first value or the second value, the server computer determines that the particular topic meets a particular criterion and, in response, updates the output of the topic model to remove the particular topic or distinguish the particular topic from other topics of the plurality of topics which do not meet the particular criterion.
US11521600B2
Techniques are described herein for enabling an automated assistant to adjust its behavior depending on a detected vocabulary level or other vocal characteristics of an input utterance provided to an automated assistant. The estimated vocabulary level or other vocal characteristics may be used to influence various aspects of a data processing pipeline employed by the automated assistant. In some implementations, one or more tolerance thresholds associated with, for example, grammatical tolerances or vocabulary tolerances, may be adjusted based on the estimated vocabulary level or vocal characteristics of the input utterance.
US11521599B1
A system and method performs wakeword detection using a feedforward neural network model. A first output of the model indicates when the wakeword appears on a right side of a first window of input audio data. A second output of the model indicates when the wakeword appears in the center of a second window of input audio data. A third output of the model indicates when the wakeword appears on a left side of a third window of input audio data. Using these outputs, the system and method determine a beginpoint and endpoint of the wakeword.
US11521588B2
A sound attenuator has an inner pipe (12) with expansion sections (121) of enlarged diameter corresponding to the constriction sections (141) of an outer pipe (14). The expansion sections (121) in pairs axially delimit an intermediate inner pipe section (122) containing a wall opening (18) and having a reduced diameter relative to the expansion sections (121). The inner surface of the outer pipe (14) in each of its constriction sections (141) is connected to the outer surface of the inner pipe (12) in its respective corresponding expansion section (121). A method of manufacturing such a sound attenuator (10) also is provided and uses internal high-pressure forming.
US11521584B2
A drum pedal is characterized by including: a base part; a pair of support parts provided at the front side of the base part; a cam part that is axially coupled to the pair of support parts via a main shaft; a hitting part that is axially coupled to the pair of support parts via the main shaft and disposed to be adjacent to the cam part; a pedal part of which one end is coupled to the rear side of the base part and which is formed to extend in the direction of the front side of the base part; and a power transmission part that connects the cam part and the pedal part and rotates the main shaft and the cam part according to a load applied to the pedal part, wherein at least two different power transmission parts can be selectively coupled to the cam part.
US11521581B2
In accordance with some embodiments, an exemplary process for dynamically controlling the size of a display based on a moving of a visual object meeting a criterion in a computer-generated reality (CGR) environment is described.
US11521576B2
The present disclosure provides a display device that includes a preprocessor, a controller, and a display panel. The preprocessor includes an area determiner outputting area data, a modulator outputting modulated data, and a synthesizer converting first image data and outputting second image data including the area data and the modulated data.
US11521572B2
Techniques for holographic display by modulating optical images in amplitude and phase via a layer of liquid crystals are described. According to one aspect of the techniques, a voltage being applied or coupled across the layer of liquid crystals is controlled by gradually increasing the voltage from a low level to a high level to perform the AM in a first range and the PM in second range, where the characteristics of the liquid crystals is significant, for example, by increasing the thickness or optical birefringence of the layer of liquid crystals.
US11521560B2
Disclosed is an electronic device including a display panel displaying an image, a source driver supplying a source voltage to the display panel, and a display driver integrated circuit (DDI) including a timing controller controlling the source driver. The timing controller may be configured to identify information associated with a luminance of the image and to set a source bias current for controlling a slew rate of the source voltage based on the luminance of the image. Besides, various embodiments as understood from the specification are also possible.
US11521548B2
Embodiments of the present disclosure relate to a display device and a driving method of the display device. More particularly, a subpixel includes a first control transistor for controlling a connection between a body of a driving transistor and a first node of the driving transistor, and a second control transistor for controlling a connection between the body of the driving transistor and a second node of the driving transistor, so that it is possible to improve mobility and on-current performance while increasing a S-factor of the driving transistor.
US11521546B2
A display device comprises pixels, an emission control driver, a scan driver, and a timing controller for selecting whether the display device is to operate in a first display mode in which the display device is driven at a first frequency or a second display mode in which the display device is driven at a second frequency lower than the first frequency based on input image data. The first display mode comprises first frame periods, and the second display mode comprises second frame periods having at least two sub-frames having a period equal to the first frame period. A total time required to supply the scan signals to the scan lines in one first frame period of the first frame periods and a total time required to supply the scan signals to the scan lines in one second frame period of the second frame periods are substantially same.
US11521539B2
A scanning drive circuit, a driving method, a display panel, and a display apparatus are provided. The scanning drive circuit includes 1st to nth shift registers cascaded sequentially. Each shift register includes a pull-down unit, a pull-up unit, and first and second output units. The first output unit is electrically connected to a second supply voltage terminal and a first clock signal output terminal, and configured to output a level to a first output terminal based on levels of a second node and a third node. The second output unit is electrically connected to a third supply voltage terminal and a second clock signal output terminal, and configured to output a level to a second output terminal based on the levels of the second node and a fourth node. The first and the second output terminals of each shift register output effective levels sequentially.
US11521537B2
To enable better color and in particular color saturation control for HDR image handling systems which need to do luminance dynamic range conversion, e.g. from a SDR image to an image optimized for rendering on a display of higher display peak brightness and dynamic range, the inventors invented an apparatus (400) for processing a color saturation (C′bL, C′rL) of an input color (Y′L, C′bL, C′rL) of an input image (Im_RLDR) to yield an output color (Y′M, Cb′M, Cr′M) of an output image (Im3000nit) corresponding to the input image, which output image is a re-grading of the input image characterized by the fact that its pixel colors have a different normalized luminance position (Y2) compared to the normalized luminance positions of the input colors (Y1), the normalized luminances being defined as the luminance of a pixel divided by the respective maximal codeable luminance of the image's luminance representation, whereby the ratio of the maximum codeable luminance of the input image and the maximum codeable luminance of the output image is at least 4 or larger, or ¼th or smaller, the apparatus comprising: a receiver (206) arranged to receive a luminance mapping function (F_L_s2h) defining a mapping between the luminance of the input color (Y′L) and a reference luminance (L′_HDR), and an initial saturation processing function (F_sat) defining saturation boost values (b) for different values of the luminance of the input color (Y′L); a display tuning unit (1009) arranged to calculate a display tuned luminance mapping function (F_L_da) based on the luminance mapping function (F_L_s2h) and at least one of a display peak brightness (PB_D) and a minimum discernable black (MB_D); a luminance processor (401) arranged to apply the display tuned luminance mapping function (F_L_da) to determine an output luminance (Y′M) from the input luminance (Y′L) of the input color; and a saturation processing unit (410, 411), arranged to map the input color saturation (C′bL, C′rL) to the color saturation (Cb′M, Cr′M) of the output color on the basis of a saturation processing strategy which specifies saturation multipliers for the normalized luminance values (Y_norm); characterized in that the apparatus further comprises a saturation factor determination unit (402) arranged to calculate a final saturation processing strategy (b; Bcorr) based on the initial saturation processing strategy (F_sat) and based on a secondary luminance value (Y′_H) which is derivable from the output luminance (Y′M) by applying a luminance mapping function (F_M2H) based on the luminance mapping function (F_L_s2h), and wherein the saturation processing unit is arranged to calculate the color saturation (Cb′M, Cr′M) of the output color by applying the final saturation processing strategy (b; Bcorr).
US11521531B2
A display device includes a display panel including a plurality of pixels, and a panel driver including N registers, where N is an integer greater than 1. The panel driver is configured to divide the display panel into N first detection regions, to perform a first still image detection operation on each of the N first detection regions by using the N registers, to divide the display panel into N second detection regions different from the N first detection regions by using a result of the first still image detection operation, and to perform a second still image detection operation on each of the N second detection regions by using the N registers.
US11521530B2
A display panel including a gate driver on array (GOA) circuit region is provided. The GOA circuit region includes cascaded n-staged GOA circuit units and N high-frequency clock signal lines; each of the staged GOA circuit units is electrically connected to one of the N high-frequency clock signal lines through a signal connection line; the display panel further includes at least two compensation unit groups, which are positioned in a region where the N high frequency clock signal lines are positioned. By setting a compensation unit in the region where the high-frequency clock signal lines are positioned, a problem of a wider GOA region is solved.
US11521528B2
A gate driver on array (GOA) circuit and a display panel including the same are provided. The GOA circuit includes: a GOA drive signal line including a voltage common (VCOM) signal line, a start vertical (STV) signal line, a reference voltage (VSS) signal line, and a low-frequency clock (LC) signal line; and a GOA protection circuit, wherein an end of the GOA protection circuit is connected to the VCOM signal line, and another end thereof is electrically connected to the STV signal line, the VSS signal line, and the LC signal line.
US11521516B2
In certain embodiments, nuance-based augmentation of gesture may be facilitated. In some embodiments, a video stream depicting sign language gestures of an individual may be obtained via a wearable device associated with a user. A textual translation of the sign language gestures in the video stream may be determined. Emphasis information related to the sign language gestures may be identified based on an intensity of the sign language gestures. One or more display characteristics may be determined based on the emphasis information. The textual translation may be caused to be displayed to the user via the wearable device according to the one or more display characteristics. In some embodiments, a unique voice profile for the individual may be determined. A spoken translation of the sign language gestures may be generated according to the textual translation, the unique voice profile, and the emphasis information.
US11521515B2
A method and a wearable system which includes distance sensors, cameras and headsets, which all gather data about a blind or visually impaired person's surroundings and are all connected to a portable personal communication device, the device being configured to use scenario-based algorithms and an A.I to process the data and transmit sound instructions to the blind or visually impaired person to enable him/her to independently navigate and deal with his/her environment by provision of identification of objects and reading of local texts.
US11521513B2
A real-time virtual reality welding system including a programmable processor-based subsystem, a spatial tracker operatively connected to the programmable processor-based subsystem, at least one mock welding tool capable of being spatially tracked by the spatial tracker, and at least one display device operatively connected to the programmable processor-based subsystem. The system is capable of simulating, in virtual reality space, a weld puddle having real-time molten metal fluidity and heat dissipation characteristics. The system is further capable of importing data into the virtual reality welding system and analyzing the data to characterize a student welder's progress and to provide training.
US11521512B2
Systems are disclosed relating to a mobile device mounted to a welding helmet such that a wearer of the welding helmet can see a display of the mobile device when wearing the welding helmet. In some examples, the mobile device is mounted such that a camera of the mobile device is unobscured and positioned at approximately eye level, facing the same way the wearer's eyes are facing. In some examples, the simulated training environment may be presented to the user via the display screen of the mobile device, using images captured by the camera of the mobile device, when the mobile device is so mounted to the welding helmet.
US11521508B2
A pegboard of the present disclosure includes: a main device including multiple unit modules; a board plate including multiple receiving portions; and multiple pegs to be inserted into the multiple receiving portions, and the multiple unit modules include multiple sensor modules configured to sense whether the multiple pegs are inserted into the multiple receiving portions and multiple light source modules configured to output light to the multiple receiving portions.
US11521505B2
Disclosed are mortise and tenon joint structures for Chinese characters formed by building members having the same or different configurations, and a method for inputting Chinese characters by using the building members. The Chinese characters are de-structured such that each Chinese character consists one or more radicals which are formed by the mortise and tenon joint structures or variants thereof. The variants of the mortise and tenon joint structures are formed by shift, rotation or combination of shift and rotation of the building members of the mortise and tenon joint structures. This establishes an inputting method between the Latin letters and Chinese characters.
US11521501B2
The present disclosure provides a method, an apparatus and a system for operating waypoint, a ground station and a computer readable storage medium. The method includes: displaying an icon of a flight manner related to the waypoint; determining, based on a first touch operation of a user on the icon of the flight manner, the flight manner related to the waypoint; and sending the flight manner to an aircraft, so that the aircraft flies based on the flight manner at the waypoint. In this way, the user can select the flight manner on the waypoint of the aircraft by himself in a touch operation manner, to facilitate control of the flight of the aircraft by the user, so as to facilitate flight control of the aircraft, thereby improving the experience of human-computer interaction.
US11521500B1
Techniques for range finding for an unmanned aerial system are described. As one example, an unmanned aerial system includes at least one motor to provide propulsion, a piezoelectric acoustic actuator having a resonant frequency, a piezoelectric acoustic sensor having the resonant frequency, and a controller to modulate a fixed amplitude and fixed frequency, at the resonant frequency, carrier wave according to a pseudo-random sequence of bits to produce a modulated wave sequence having a respective section of the carrier wave for each bit of the bits of the pseudo-random sequence having a first value, and a respective section of the carrier wave for each bit of the bits of the pseudo-random sequence having a second value, transmit the modulated wave sequence from the piezoelectric acoustic actuator, receive a reflected wave sequence including a reflection of the modulated wave sequence with the piezoelectric acoustic sensor, determine a delay time between the transmit and the receive of the modulated wave sequence based on the reflected wave sequence received by the piezoelectric acoustic sensor and the modulated wave sequence transmitted by the piezoelectric acoustic actuator, and modify power provided to the at least one motor based on the delay time.
US11521498B2
Systems and methods for automated unmanned aerial vehicle recognition. A multiplicity of receivers captures RF data and transmits the RF data to at least one node device. The at least one node device comprises a signal processing engine, a detection engine, a classification engine, and a direction finding engine. The at least one node device is configured with an artificial intelligence algorithm. The detection engine and classification engine are trained to detect and classify signals from unmanned vehicles and their controllers based on processed data from the signal processing engine. The direction finding engine is operable to provide lines of bearing for detected unmanned vehicles.
US11521497B2
The present invention relates to a method and a system for recognition of objects near a ship by using a deep neural network to prevent a collision with the object by recognizing a neighboring object that may be risky to the ship sailing in a restricted condition such as a foggy environment. All object movements within a predetermined radius are detected and recognized so that collision accidents with objects on the sea in an environment such as fog caused by bad weather at sea can be prevented, and a risk alarm is notified to a captain when the object is detected so that collision accidents can be remarkably reduced. In addition, peripheral environments are detected by only installing a CCTV camera so that expenses can be reduced, human negligence can be prevented, and the system can be easily constructed to prevent collisions.
US11521480B1
An intrusion detection apparatus and method thereof are provided. The intrusion detection apparatus includes a status detection device, a front-end signal processor, a delay device, and a signal sampler. The status detection device is configured to generate an indicating signal according to an opened status of the case. The front-end signal processor receives the indicating signal and performs a noise filtering function on the indicating signal so as to generate a processed indicating signal. The delay device delays the processed indicating signal to generate a delayed indicating signal. The signal sampler samples the processed indicating signal to generate a detection result according to the delayed indicating signal.
US11521479B2
Various embodiments include a fire detection system (FDS) device and methods for operating an FDS device to detect a potential fire and communicate information regarding fire detection events to a central fire detection system via a wireless communication network. Various embodiments include receiving information from one or more sensors configured to detect an indication of a possible fire, determining whether information received from the one or more sensors satisfy one or more threshold criteria indicative of a fire event, generating a fire warning message comprising a fire alarm object in response to determining that the information received from the one or more sensors satisfy one or more threshold criteria indicative of a fire event, and sending the generated fire warning message to a remote server via a communication network.
US11521474B2
Methods, systems and devices are provided for motion-activated display of messages on an activity monitoring device. In one embodiment, method for presenting a message on an activity monitoring device is provided, including the following method operations: downloading a plurality of messages to the device; detecting a stationary state of the device; detecting a movement of the device from the stationary state; in response to detecting the movement from the stationary state, selecting one of a plurality of messages, and displaying the selected message on the device.
US11521473B2
This disclosure describes, in part, an audio/video (A/V) device that includes a first camera for generating first image data and one or more second cameras for both motion detection and generating second image data. For instance, the A/V device may generate and then store the second image data in one or more buffers. The A/V device may then detect an event, such as possible motion of an object. Based on detecting the event, A/V device may cause the one or more second cameras to cease generating the second image data and cause the first camera to begin generating the first image data. The A/V device may then process the second image data and send the processed second image data to a computing system. Next, the A/V device may process the first image data and send the processed first image data to the computing system.
US11521471B2
Provided is an information processing apparatus, an information processing method, and a program that can present more realistic feeling of real existence of an object to be perceived in another space using sound and vibration as main information channels. An information processing apparatus including a control unit that exercises control for acquiring vibration information and sound information sensed in another space, and outputting, from a perceptual presentation area in a space different from the another space, the vibration information and the sound information for causing presence of an object to be perceived in the another space to be perceived by a tactile sense and an auditory sense.
US11521470B2
A haptic-communication system includes a fabric, a frame that supports the fabric, and a haptic element that is integral with a textile that forms the fabric. A transition of the haptic element between first and second states thereof provides communication with a person in contact with the haptic element.
US11521462B2
A loyalty program management system associated with an enterprise location is provided. The loyalty program management system is programmed to: a) receive a plurality of input data associated with a plurality of patrons, wherein the plurality of input data represents actions of the plurality of patrons; b) determine a current location of a patron of the plurality of patrons, wherein the current location of the patron is not at the enterprise location; and c) transmit a message to a computer device associated with the patron including a prize to be awarded if the patron visits the enterprise location.
US11521452B2
A money handling machine includes: a housing; a drawer that is drawable from the housing; a locking mechanism configured to lock the drawer in the housing; an identification information acquisition unit configured to acquire identification information of an operator; and a controller configured to control the locking mechanism such that, when an error occurs in a handling unit, the drawer can be drawn from the housing subject to the identification information of the operator having been acquired by the identification information acquisition unit.
US11521451B2
A method is provided for detecting a security thread in a value document, in which magnetic data are employed for sites on the value document. The magnetic data represents a magnetic property of the value document at the site, check sites on the value document are determined employing the sites, and from the check sites, a straight line is specified, along or on which at least some of the check sites lie and which represents a location of the security thread.
US11521439B2
Management of data and software for autonomous vehicles. In an embodiment, sensor data is received. The sensor data is collected by one or more sensor systems of one or more vehicles, and submitted by a first user via at least one network. The sensor data is automatically analyzed to detect any problems with the sensor data and to enhance the sensor data, prior to publishing a description of the sensor data in an online marketplace. A graphical user interface is generated that comprises one or more screens of the online marketplace, via which a second user may view the description of the sensor data and purchase the sensor data for download via the at least one network.
US11521438B2
Systems and methods cause a component of a vehicle to activate. The systems and methods receive audio data generated by a microphone of the vehicle, where the audio data represents sound of the component. Based on the audio data, a condition of the vehicle or the component may be determined, and based on the condition, the vehicle may be commissioned for use or decommissioned.
US11521432B2
A system and method for adaptive diagnostics and data collection in a connected robot-cloud environment allows for the management and use of date from a robot or fleet of robots to ensure the efficient utilization thereof. The data is collected from the robots via a software agent and is transmitted to an interface that allows action from an end-user.
US11521429B2
A server device includes an identification information obtaining unit, a position information specifying unit, a storage unit, a percentage calculating unit, and a fare calculating unit. The identification information obtaining unit obtains operation identification information for identifying an operation of a vehicle and user identification information for identifying users who utilize the operation. The position information specifying unit specifies riding position information and drop off position information on the individual users. The storage unit stores the operation identification information, the user identification information, the riding position information, and the drop off position information in association with one another. The percentage calculating unit calculates percentages of an operation fare for the operation to be paid by the individual users. The fare calculating unit calculates amounts to be paid by the individual users.
US11521427B1
An ear detection method with deep learning pairwise model based on contextual information belongs to the field of biometric recognition technologies, and addresses a problem that an ear location cannot be found in a large scene, especially in a background image containing a whole body. The method includes: performing preprocessing and object labeling on images; modifying an Oquab network to be a local model for four classes through transfer learning and training the local model; training two pairwise models of head and ear as well as body and head based on the local model; and performing joint detection for an ear through the local model, the two pairwise models and body features. The method uses a hierarchical relationship from large to small to establish contextual information, which can reduce the interference of other features and detect the location of the ear more accurately.
US11521426B2
Cognitive enablement can include detecting sensor-generated signals received from one or more network-configured sensors, the sensor-generated signals corresponding to physical movement of an audience member during a presentation by a presenter. The sensor-generated signals can be converted to vectorized data structures for inputting to a classification model generated with machine learning. The physical movement can be classified as a prelude to a likely audience interaction, the classifying performed by the classification model based on the vectorized data structures. In response to the classifying, an audience member attribute associated with the audience member can be determined. An audience interaction can be predicted based on the audience member attribute using a prediction model generated with machine learning. A predictive alert corresponding to the predicted audience interaction can be generated. During the presentation, a user interface for displaying the predictive alert to the presenter can be generated using an electronic device.
US11521424B2
An electronic device and a control method therefor are disclosed. A control method for an electronic device according to the present disclosure comprises the steps of: when a preset event is detected, acquiring a user image by photographing a user; acquiring a facial image including the user's face from the photographed user image and storing the facial image; and when a user input for identification of the facial image is received, providing the stored facial on the basis of at least one of a time and a place.
US11521420B2
Systems and methods are described for a display device in which the recognition failure of a fingerprint recognition sensor disposed in a display area without being exposed to the outside is reduced. The display device comprises a display panel; a cover window disposed above the display panel; an optical sensor, wherein at least a part of the optical sensor is disposed under the display panel; and an infrared blocking member disposed between the optical sensor and the cover window and at least a part of which overlaps the optical sensor from above the optical sensor.
US11521419B2
A display device and a fingerprint recognition method are provided. The fingerprint recognition device includes at least two photosensitive regions receiving different colors of light, and the color of the light received by one photosensitive region corresponds to the emitted color of the light emitting sub-pixel in one color.
US11521415B2
A display device includes: a display panel including a pixel array layer on one surface of a first substrate for displaying an image; a sound generator for transmitting an ultrasound; and an ultrasonic sensor for receiving an ultrasound reflected by an object on the display panel. The sound generator and the ultrasonic sensor are on the other surface of the first substrate opposite to the one surface of the first substrate. The ultrasonic sensor includes a plurality of ultrasonic sensor units arranged in a matrix form, and the ultrasonic sensor senses the object using the reflected ultrasound received by the plurality of ultrasonic sensor units.
US11521414B2
A method for preparing a polymer composite material is provided. The method includes steps of mixing and heat-treating a first polymer, a second polymer, and a third polymer to obtain a first mixture, adding a light-transmitting material to the first mixture to obtain a second mixture, adding a nano material to the second mixture to obtain a third mixture, performing subsequent processing on the uniformly mixed third mixture to obtain the polymer composite material. The polymer composite material is configured to replace conventional protective glass in ultrasonic fingerprint recognition technology, and to improve accuracy of fingerprint recognition.
US11521411B2
A system and method for providing multi-camera 3D body part labeling and performance metrics includes receiving 2D image data and 3D depth data from a plurality image capture units (ICUs) each indicative of a scene viewed by the ICUs, the scene having at least one person, each ICU viewing the person from a different viewing position, determining 3D location data and visibility confidence level for the body parts from each ICU, using the 2D image data and the 3D depth data from each ICU, transforming the 3D location data for the body parts from each ICU to a common reference frame for body parts having at least a predetermined visibility confidence level, averaging the transformed, visible 3D body part locations from each ICU, and determining a performance metric of at least one of the body parts using the averaged 3D body part locations. The person may be a player in a sports scene.
US11521410B2
An electronic device having a biometric sensor is provided. The electronic device includes a first region including a plurality of first pixels arranged in a first manner and a second region including a plurality of second pixels arranged in a second manner, a biometric sensor disposed in at least a part of the first region, and a processor electrically coupled with the display and the biometric sensor, and configured to receive a user input through the first region, and control the biometric sensor to detect biometric information corresponding to the user input.
US11521407B2
Systems for item validation and image evaluation are provided. In some examples, a system may receive an instrument and associated data. The instrument may be received and at least one of a bill pay profile and a user profile may be retrieved. The bill pay profile and user profile may each include a plurality of previously processed instruments that have been determined to be valid and/or authentic. The instrument may be compared to the plurality of previously processed instruments to determine whether one or more elements of the instrument being evaluated match one or more corresponding elements of the plurality of previously processed instruments. Matching or non-matching elements may be identified. In some examples, one or more user interfaces may be generated displaying the instruments and including any highlighting or enhancements identifying matching or non-matching elements.
US11521394B2
Embodiments are disclosed for ground plane estimation (GPE) using a LiDAR semantic network. In an embodiment, a method comprises: obtaining a point cloud from a depth sensor of a vehicle operating in an environment; encoding the point cloud; estimating, using a deep learning network with the encoded point cloud as input, a ground plane in the environment; planning a path through the environment based on a drivable area of the estimated ground plane; and operating the vehicle, the vehicle along the path. The deep learning network includes a two-dimensional (2D) convolutional backbone, a detection head for detecting objects and a GPE head for estimating the ground plane. In an embodiment, point pillars are used to encode the point cloud.
US11521379B1
A method for flood disaster monitoring and disaster analysis based on vision transformer is provided. It includes: step (1), constructing a bi-temporal image change detection model based on vision transformer; step (2), selecting bi-temporal remote sensing images to make flood disaster labels; and step (3), performing flood monitoring and disaster analysis according to the bi-temporal image change detection model constructed in the step (1). In combination with the bi-temporal image change detection model based on an advanced vision transformer in deep learning and radar data which is not affected by time and weather and has strong penetration ability, data when floods occur can be obtained and recognition accuracy is improved.
US11521377B1
A landslide recognition method based on Laplacian pyramid remote sensing image fusion includes: performing original remote sensing image reconstruction based on extracted local features and global features of remote sensing images through a Laplacian pyramid fusion module to generate a fused image, constructing a deep learning semantic segmentation model through a semantic segmentation network, labeling the fused image to obtain a dataset of landslide disaster label map, and training the deep learning semantic segmentation model by the dataset, and then storing when a loss curve is fitted and a landslide recognition accuracy of remote sensing image of the deep learning semantics segmentation model meets a requirement by modifying a structure of the semantic segmentation network and adjusting parameters of the deep learning semantics segmentation model. Combined with the image fusion model based on Laplacian pyramid, the method can provide effective decision-making basis for prevention and mitigation of landslide disasters.
US11521371B2
In one embodiment, a method includes receiving sensor data of an environment of the vehicle generated by one or more sensors of the vehicle, the sensors comprising a camera, identifying, based on the sensor data, one or more objects in a field of view of the camera and one or more object types that correspond to the one or more objects, determining one or more target histograms that correspond to the object types, generating a processed image based on an image captured by the camera, wherein the processed image has a histogram based on the target histograms, and using the processed image to determine state information associated with the objects. The processed image may be generated by processing the image captured by the camera using a histogram matching algorithm to generate the histogram of the processed image based on the target histograms.
US11521369B1
In some implementations, a service qualification system may receive, from a user device, a set of images that depict a window. The service qualification system may perform an image-based analysis of the set of images to determine a reflectivity score associated with the window. The reflectivity score may be indicative of a quality associated with a signal of the service being received through the window. The service qualification system may determine, based on the reflectivity score, a service qualification metric that is indicative of a capability of receiving the service within the unit. The service qualification system may perform an action associated with the service qualification metric.
US11521368B2
Disclosed are a method and apparatus for presenting material, and a storage medium. The method includes acquiring at least two key points from a position of a presentation part of an object in an image; determining a preselected target point based on positions of the at least two key points; determining a target point of the image based on the preselected target point and target points of N continuous frames before the image, and presenting the material based on the target point.
US11521366B2
A data processing device comprises an analyser to analyse successive images captured by a camera and to detect an optically detectable marker in the captured images, a first location detector to detect a location of the optically detectable marker with respect to a location of the camera according to a first detection mode and to generate a first detection result, a second location detector to detect the location of the optically detectable marker with respect to the location of the camera according to a second detection mode different to the first detection mode and to generate a second detection result, and a processor to select at least one of the first detection result and the second detection result and to generate data indicative of the location of the optically detectable marker with respect to the location of the camera based on the selection.
US11521356B2
Systems and methods for maintaining a shared interactive environment include receiving, by a server, requests to register a first input device of a first user and a second input device of a second user with a shared interactive environment. The first input device may be for a first modality involving user input for an augmented reality (AR) environment, and the second input device may be for a second modality involving user input for a personal computer (PC) based virtual environment or a virtual reality (VR) environment. The server may register the first and second input device with the shared interactive environment. The server may receive inputs from a first adapter for the first modality and from a second adapter for the second modality. The inputs may be for the first and second user to use the shared interactive environment.
US11521354B2
An information processing apparatus includes a processor configured to: display, in a virtual space recognized by a user, a first object at a position corresponding to a first coordinate system that is independent of the user's head movement; display, in the virtual space, a second object at a position corresponding to a second coordinate system that is dependent on the user's head movement; and change the first object to the second object in response to an operation performed by the user on the first object.
US11521353B2
The present disclosure introduces automated and repeatable processing for determining and managing volumes of objects within a digital environment. In one non-limiting example, processing of the present disclosure automatically generates volumes of static objects from associated meshes within a gaming environment. However, the present disclosure is applicable to determine a volume of any type of object within any type of digital content. From an original mesh of an object, a low-frequency volumetric mesh (reduced mesh) is automatically generated. A volume of an object may be automatically determined from analysis of the reduced mesh. Volumetric data is then be integrated within digital content for a variety of applicable use cases. For example, a reduced data set is created to approximate light sources relative to the interior of a static object (e.g., building) within a digital environment, enabling developers to create more realistic representations of lighting within that static object (e.g., building).
US11521351B2
In an example, a method includes acquiring, at a processor, a data model of an object to be generated in additive manufacturing, the data model comprising object model data representing a slice of the object model as a plurality of polygons and object property data comprising property data associated with the plurality of polygons. The slice may be inspected from a predetermined perspective at a plurality of discrete locations. It may be determined if each location is within a face of a polygon, and if so, the object property data associated with that polygon may be identified and associated with that location. The slice may further be inspected at a plurality of discrete locations along an edge of a polygon, the object property data associated with each location may be identified and associated with that location.
US11521350B2
Disclosed are a method and apparatus for processing an image, an electronic device and a storage medium. A specific implementation comprises: acquiring a matching association relationship of a feature point in each to-be-modeled image frame in a to-be-modeled image frame set, a plurality of to-be-modeled image frames in the to-be-modeled image frame set belonging to at least two different to-be-modeled image sequences; determining a first feature point set of the each to-be-modeled image frame based on the matching association relationship, the first feature point set including a first feature point, and the first feature point matching a corresponding feature point in a to-be-modeled image frame in a different to-be-modeled image sequence; and selecting, based on a number of the first feature point in the first feature point set in the each to-be-modeled image frame, a to-be-modeled image frame from the to-be-modeled image frame set for a three-dimensional reconstruction.
US11521347B2
Methods, apparatuses, mediums, and devices for generating multi-angle free-respective image data are provided. The method for generating multi-angle free-perspective image data includes: acquiring multiple synchronized images, where the multiple images have different shooting angles; determining the depth data of each image based on the multiple images; and for each of the images, storing pixel data of the image in a first field and storing depth data in a second field associated with the first field. Technical solutions in the example embodiments of the present invention may improve the user experience.
US11521346B2
An image processing apparatus obtains virtual viewpoint information indicating at least a position of a virtual viewpoint and a view direction from the virtual viewpoint and generates a virtual viewpoint image based on the virtual viewpoint information and a plurality of images captured from a plurality of viewpoints by hiding processing a specific region of the virtual viewpoint image, the specific region being determined based on that the obtained virtual viewpoint information satisfies a condition.
US11521341B1
Systems and methods for rendering a video effect to a display are described. More specifically, video data and audio data are obtained. The video data is analyzed to determine one or more attachment points of a target object that appears in the video data. The audio data is analyzed to determine audio characteristics. A video effect associated with an animation to be added to the one or more attachment points is determined based on the audio characteristics. A rendered video is generated by applying the video effect to the video data.
US11521333B2
In a camera calibration apparatus (10), an acquisition unit (11) acquires a first normal vector in an image plane and a second normal vector in the image plane respectively corresponding to a first normal vector in a world coordinate space and a second normal vector in the world coordinate space which are normal vectors with respect to a reference plane in the world coordinate space and have the same length. A projective depth calculation unit (12) calculates a projective depth vector having, as vector elements, four projective depths respectively corresponding to a start point and an end point of the first normal vector in the image plane and a start point and a end point of the second normal vector in the image plane.
US11521332B1
The method and device disclosed herein presents a method that includes capturing, by an optical sensor disposed on a device moving in an environment, a plurality of optical data at respective locations within a portion of the environment; capturing, by a wheel encoder disposed on the device, a set of encoder data corresponding to the plurality of optical data at the respective locations; determining a first relative motion based on the plurality of optical data; determining a corresponding second relative motion based on the set of encoder data. In accordance with determining that a difference between the first relative motion and the corresponding second relative motion is larger than a first threshold: increasing a counter indicating a slip event of the wheel encoder. The slip event corresponds to a wheel of the device advancing and the corresponding second relative motion being below a second threshold.
US11521331B2
Embodiments of the present disclosure disclose a method and apparatus for generating position information, a device and a medium. A specific embodiment of the method includes: acquiring an image and vehicle position information, wherein the image includes a target element; inputting the image into a pre-established depth map generation model to obtain a first depth map, wherein the focal length of sample images of sample data used during the training of the model is a sample focal length; generating a second depth map based on the sample focal length, the first depth map, and an estimated focal length of the image; determining depth information of the target element according to element position information of the target element in the image and the second depth map; and generating position information of the target element based on the vehicle position information and the depth information of the target element.
US11521324B2
Aspects of the invention include includes detecting, using a first machine learning model, a first well pad at a first location based at least in part on a first set of data comprising spectral data describing a gas emission from the first location. Detecting an environmental event within a threshold distance of the well pad. Determining a probability of damage to the first well pad from the environmental event.
US11521323B2
A bullseyes plot may be generated based on cardiac magnetic resonance imaging (CMRI) to facilitate the diagnosis and treatment of heart diseases. Described herein are systems, methods, and instrumentalities associated with bullseyes plot generation. A plurality of myocardial segments may be obtained for constructing the bullseye plot based on landmark points detected in short-axis and long-axis magnetic resonance (MR) slices of the heart and by arranging the short-axis MR slices sequentially in accordance with the order in which the slices are generated during the CMRI. The sequential order of the short-axis MR slices may be determined utilizing projected locations of the short-axis MR slices on a long-axis MR slice and respective distances of the projected locations to a landmark point of the long-axis MR slice. The myocardium and/or landmark points may be identified in the short-axis and/or long-axis MR slices using artificial neural networks.
US11521321B1
Disclosed is a system and a method for monitoring a CT scan image. A CT scan image may be resampled into a plurality of slices using a bilinear interpolation. A region of interest may be identified on each slice using an image processing technique. The region of interest may be masked on each slice using deep learning. Subsequently, a nodule may be detected as the region of interest using the deep learning. Further, a plurality of characteristics associated with the nodule may be identified. Furthermore, an emphysema may be detected in the region of interest on each slice. A malignancy risk score for the patient may be computed. A progress of the nodule may be monitored across subsequent CT scan images. Finally, a report of the patient may be generated.
US11521309B2
The presently-disclosed technology enables real-time inspection of a multitude of subcomponents of a component in parallel. For example, the component may be a semiconductor package, and the subcomponents may include through-silicon vias. One embodiment relates to a method for inspecting multiple subcomponents of a component for defects, the method comprising, for each subcomponent undergoing defect detection: extracting a subcomponent image from image data of the component; computing a transformed feature vector from the subcomponent image; computing pairwise distances from the transformed feature vector to each transformed feature vector in a training set; determining a proximity metric using said pairwise distances; and comparing the proximity metric against a proximity threshold to detect a defect in the subcomponent. Another embodiment relates to a product manufactured using a disclosed method of inspecting multiple subcomponents of a component for defects. Other embodiments, aspects and features are also disclosed.
US11521306B2
An image processing apparatus comprises a changing unit configured to change a display area of an image from a first display area to a second display area including at least a portion of the first display area, an acquiring unit configured to acquire a first value indicating luminance, in which brightness contrast is considered, in an image displayed in the first display area and a second value indicating luminance, in which brightness contrast is considered, in an image displayed in the second display area, and a correcting unit configured to correct luminance of the image displayed in the second display area based on the first value and the second value that are acquired by the acquiring unit.
US11521297B2
The present invention relates to a method for presenting object information based on augmented reality (AR) glasses, including: acquiring an object image from another device through a communication connection, the object image including an object and a background; and performing zooming operation on the object image such that a size value of the object is capable of matching a current environment, where a color which the background has makes a display system of the AR glasses not display the background. Through one or more embodiments of the present invention, the presentation of AR object information may be realized without requiring other AR software on an AR glasses side, and without relying on the capability of computing and 3D rendering parts of the AR glasses device itself.
US11521293B2
Methods are provided for creating objects in a way that permits an API client to explicitly participate in memory management for an object created using the API. Methods for managing data object memory include requesting memory requirements for an object using an API and expressly allocating a memory location for the object based on the memory requirements. Methods are also provided for cloning objects such that a state of the object remains unchanged from the original object to the cloned object or can be explicitly specified.
US11521290B2
A system and method for resolving contract disputes utilitizes one or more computing devices to receive a dispute resolution request, invite other parties to submit a response to the dispute resolution request, and submit the dispute to a plurality of delegates based on the type of dispute and the qualifications of the delegates. The delegates provide dispute resolution decisions, and a consensus algorithm is applied to the decisions to arrive at a consensus contract outcome. A record of the consensus contract outcome, including the disputed contract and the nature of the dispute are recorded on a permissioned blockchain and also optionally recorded on an external blockchain distributed ledger.
US11521289B2
A method includes receiving, by a processing device, one or more transportation parameters for a user type. The method further includes receiving, by the processing device from a client computing device associated with a user associated with the user type, a transportation request for a transportation vehicle and comparing, by the processing device, the transportation request to the one or more transportation parameters. The method further includes prohibiting, by the processing device, communication of the transportation request to one or more vehicle computing devices responsive to the transportation request not satisfying the one or more transportation parameters.
US11521287B2
A system comprising; analyzing a building model, wherein a set of wall panels are isolated from other assemblies; processing a first set of data associated with the coordinates of the wall panels; processing a second set of data associated with the assembly of the wall panels; creating a set of data associated with the assembly of the wall panel and the coordinates of a set of wall panel members; formulating an assembly of the wall panel, wherein the assembly is a predetermined organization of the wall panels based on the first set of data and the second set of data; calculating the assembly based on a set of limitations, wherein the limitations are based on the shipping vessel; manipulating the assembly, wherein the manipulated assembly is within the limitations of the shipping vessel; and generating a graphical representation of the manipulated assembly.
US11521272B2
Disclosed herein is a customized recommendation system for home assessment, in which the system comprises at least one or more databases, a computing device, and a device comprising hardware, including a processor and memory. The server device may receive a request for information on a home of a user from the computing device. The server device may identify publicly available information for the home and customer information comprising information about one or more features of the home and materials used in the home by parsing the one or more databases. By further analyzing the customer information and the publicly available information, the server device may determine one or more tips for the home and generate a customized recommendation including the one or more tips for the home. The server device may transmit the customized recommendation to the computing device associated with the user.
US11521269B2
The disclosed embodiments relate to ensuring that a selected value, selected, for example, via interaction with a graphic user interface, of a dynamically changing parameter, such as a price, is used when generating an electronic data transaction request message in a data transaction processing system, such as an electronic trading system. The data transaction processing system being a system in which data items, such as financial contracts, e.g., futures contracts, are transacted or otherwise traded by a hardware matching processor that attempts to match electronic data transaction request messages with electronic data transaction request messages counter thereto for the same one of the data items based on multiple transaction parameters. A selected value is temporarily buffered allowing the represented value to update wherein a subsequently generated transaction may be based on the buffered value rather than an updated value.
US11521268B1
Methods, computer-readable media, systems and apparatuses for determining and implementing dynamic usage-based insurance policies are presented. A cost per day and a cost per mile associated with the dynamic usage-based insurance policy may be determined. The cost per mile may be computed independently for each of a plurality of road segments comprising a trip based on a time of day that the vehicle traveled each road segment, a road type associated with each road segment. The cost per mile of each road segment of the driving trip may further include whether or not hard braking or hard cornering events were encountered during a specified cumulative driving distance that may include, at least a portion, of a plurality of driving trips. The cost per mile for each of the plurality of driving trips may be adjusted once a threshold distance has been traveled by the vehicle based on the number of hard braking events and hard cornering events occurred during that distance.
US11521264B2
Systems as described herein may visualization interest charges based on payment options. Transaction information associated with a plurality of recurring payment accounts may be received. A calendar view displaying an aggregated daily balance and an aggregated interest charge may be generated. Upon receiving a transaction request with a transaction amount, a projected aggregated daily interest charge may be generated in real-time. After detecting that the projected aggregated daily interest charge exceeds a threshold amount, an alert associated with the calendar view may be generated to recommend an alternative payment method to a user device.
US11521263B2
A computer that simulates a real-world showroom experience for a wholesale buyer is described. During operation, the computer may receive information corresponding to first user-interface activity associated with an electronic device, where the user-interface activity indicates selections of the wholesale buyer of fashion items in a first user interface. Then, the computer may generate instructions for a second user interface based at least in part on the first user-interface activity, where the second user interface corresponds to a virtual showroom of the wholesale buyer, the second user interface includes the selected fashion items and a clothes rack with available hangers, and wherein the second user interface allows the wholesale buyer to dynamically assemble one or more groups of the selected fashion items on one or more of the available hangers. Next, the computer may provide the instructions for the second user interface addressed to the electronic device.
US11521251B1
A computer-implemented method and system for streamlining interactions between a customer and a customer service representative of a company. An interaction is commenced between the customer and the customer service representative during which historical data is accessed related to the customer stored in a company controlled computer system responsive to the interaction. The historical data preferably relates to at least one product or service provided by the company to the customer. At least a part of the historical information is displayed to the customer service representative. On the display, a first tab is generated related to the historical data as is a second tab relating to a quote for a new product or service for offering to the customer. The customer service representative is thereafter enabled to switch between displaying the historical data and the quote by selecting the first or second tab, respectively, without having to save the quote.
US11521248B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for tracking objects in a store. One of the methods includes receiving, by one or more first computing devices, data captured by one or more sensors in the store; identifying, by the one or more first computing devices, a plurality of objects based on the received data, wherein the identified objects comprise one or more persons and one or more product items; extracting, by the one or more first computing devices, a plurality of features associated with each of the identified objects; generating, by the one or more first computing devices, a digest comprising information of the extracted features associated with the identified objects; and sending, by the one or more first computing devices, the digest to one or more second computing devices for processing.
US11521245B1
A pervasive user experience capable of integrating robo-advising with human advising is discussed. Conversations and other inputs may be actively captured to identify issues with which the system may be able to assist. Inputs from multiple conversations separated in time may be correlated to identify relevant needs and goals. Recommendations and strategies may be developed and presented to the customer. When it is determined that human advising is appropriate for one or more issues, the customer may be connected to an advisor for assistance with particular issues. Transitions may be facilitated to allow customers to more efficiently return to robo-advising until human advising is again deemed appropriate.
US11521242B2
An online system uses a task async engine to coordinate task execution, such as for phased content creation, where the system enables content providers to efficiently create and publish sponsored content in multiple phases. Each phase of the content creation is represented by a draft of the content. Multiple drafts of the content are stored in a repository of the online system for optimizing content delivery and publication, such as quick identification of conflicts in a draft based on analysis of draft fragments of the draft. Objects associated with the sponsored content are stored in an object model. The connections amongst the various draft segments of a draft are stored in a hierarchy structure. Each user associated with a draft has a role, where all of the roles can contribute to the draft. The online system efficiently publishes the drafts and presents the sponsored content to its target users.
US11521219B2
Data integration and distribution systems. A system includes a graphical user interface (GUI). Weather and market data are collected. A weather symbology including symbol elements linked to segments of the collected weather data and rules for generating weather symbology instructions are stored. The GUI is generated for display on a user device. A weather symbology instruction is determined based on at least one requested symbol element indicated in a weather data request and the rules. A weather forecast dataset is created from among the collected weather data based on the weather symbology instruction. A presentation package comprising the weather forecast dataset and the collected market data is generated such that the weather forecast dataset is integrated with the collected market data. The presentation package is presented on the GUI and updated concurrent with changes at least one of the weather data, the market data and user input.
US11521218B2
The present disclosure is directed to methods and systems for determining competitive market values for an ad impression on an advertiser exchange. An engine executing on a device may receive a candidate set of inputs associated with ad impressions. The engine may determine competitive market values for an ad impression on an advertiser exchange. The engine may determine candidate clearing prices based on the candidate set of inputs and history of clearing prices on the advertiser exchange. The engine may generate, based on the candidate clearing prices, a competitive market value prediction for the ad impression on the advertiser exchange. The competitive market value prediction may comprise a distribution function of predicted clearing prices on the advertiser exchange. The engine may generate, based on the competitive market value prediction, a fair market value bid for the ad impression in the context of a specific ad campaign.
US11521215B1
A computer method and system for disseminating computerized content via an scratchpad application in which data is received at a computing device, preferably via user input. The data is displayed on the computing device, via the scratchpad application, and a subset of the data is identified which is to be copied and disseminated. A second application is identified that will receive the data subset such that at least a portion of the data will be imported to the second application.
US11521203B2
A base key that is stored at a mobile device may be received. A first dynamic key that is based on the base key may be generated. First transaction data corresponding to a first transaction associated with the mobile device may be received. Furthermore, the first dynamic key may be updated to generate a second dynamic key based on a combination of the first dynamic key and the first transaction data corresponding to the first transaction. Authentication of a second transaction associated with the mobile device may be requested based on the second dynamic key.
US11521201B2
A mobile device is provided. The mobile device includes a display unit, a sensor configured to sense user's touch done on a surface of the display unit in a disabled state of the display unit, a storage unit configured to store preset gesture information, a controller configured to enable the display unit when a user's touch operation matched with the gesture information is sensed, execute a wallet application, and display an execution screen, and a communication unit configured to transmit information for a selected payment option to an external apparatus when the payment option is selected on the execution screen and perform a payment. The payment is simply done.
US11521192B2
A settlement system with higher security which replaces a settlement system using credit cards is provided. The settlement system has a user terminal, a settlement device, and a settlement terminal. First, a user ID, a password, and upper limit amount information identifying an amount are inputted in a user terminal 100 (S912), and sent to the settlement device (S913). The settlement device performs credit determination (S922), generates temporary permission information if credit is possible (S923), and sends the temporary permission information to the user terminal (S924). The user terminal generates a one-time password (S915). The one-time password is inputted to the settlement terminal (S931). If the one-time password sent from the settlement terminal to the settlement device is identical to the one-time password created in the settlement device, the settlement device allows a user's payment (S928).
US11521191B2
A use management system comprises a moving body on which a user rides; a storage medium and an information processing apparatus, wherein the medium stores identification, a predetermined route and movement information, and the moving body includes a first reader/writer for acquiring information from the storage medium and records information onto the storage medium, starts recording the movement information regarding the moving body when the use of the moving body is started, records the movement information when the moving body deviates from the route, and writes the recorded movement information onto the storage medium when the use of the moving body is ended, and the information processing apparatus includes a second reader/writer for acquiring information from the storage medium and charges an additional fee to a user based on the movement information.
US11521176B2
Embodiments of the present disclosure relate to a service flow system and a service data processing method and apparatus. The system can include a management server, a distributed storage cluster and a block chain alliance network connected by a network, the block chain alliance network including a consensus node and at least one participant node. Through unified management of a management server, off-chain data is stored in a distributed storage cluster, then participants of each phase are defined for different projects, and the participants of the same phase of the same project share the same on-chain and off-chain data. Therefore, credible access of the participants to block chain data is solved, dynamic customizable phase management of the projects in a service flow is supported, the on-chain data and participants of each phase are strictly divided and managed, and associated management of on-chain and off-chain service flow data is also supported.
US11521175B2
A system for patient data exchange is provided and includes a plurality of sensors monitoring a patient according to a default sensor configuration, and a patient data exchange engine that receives a request comprising one or more parameters, identifies at least one applicable sensor from the plurality of sensors based on the one or more parameters, and reconfigures the at least one applicable sensor from the default sensor configuration to a different sensor configuration in accordance with the one or more parameters to generate applicable sensor data responsive to the request. In specific embodiments, the patient data exchange engine further computes a monetary value for the generated sensor data based at least on an attribute of the patient and an attribute of the sensor data.
US11521169B2
An order production method and device are provided. The method may include: dividing an order into a first sub-order and a second sub-order (201); determining a target site for delivery of the product combination (202); determining a first required time length for transporting a main product from a first warehouse to the target site and a second required time length for transporting promotional product of each second sub-order from a corresponding second warehouse to the target site (203); and determining, on the basis of the first required time length and the second required time length, a delivery time for delivering the main product from the first warehouse and a delivery time for delivering the promotional products from the second warehouse, to ensure that the time when the main product arrives at the target site is not later than the time that the promotional products arrive at the target site (204).
US11521167B2
A method is provided for monitoring a supply of a cleaning agent. The method includes performing a check of whether the supply of the cleaning agent is likely to be used up. The check is based, at least in part, on quantity information which is representative of an amount of the cleaning agent in a user's supply and on consumption information which is indicative of the user's expected consumption behavior with respect to the cleaning agent. Further, a device is provided for performing the method for monitoring the supply of the cleaning agent.
US11521151B2
The overall quality of a workforce is analyzed, scored and presented using an analysis engine that performs a multi-domain analysis on enterprise data. The analysis engine presents key information about the performance of a workforce across a range of hardware devices so as to inform different users in their unique contexts and roles within a business organization as to workforce performance. The analysis engine associates a customizable performance profile with each workforce member. Each performance profile is comprised of a plurality of performance measures. Each performance measure in turn, represents a performance metric that measures some aspect of the job duties performed by the associated workforce member, e.g., an industrial vehicle operator. The scores are aggregated into an overall performance profile score. To compute the scores, data is considered across multiple domains, e.g., by collecting and analyzing data from industrial vehicle data systems, warehouse management systems, labor management systems, etc.
US11521138B1
The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
US11521131B2
A machine learning model can be trained using a first set of degraded images for each of a plurality of combinations and corresponding reference images, where a number of degraded images in the first set corresponding to a particular combination of the plurality of combinations is selected in accordance with a probability value associated with the particular combination. A validation process can be used to determine a loss value for each of the plurality of combinations of degradations. Updates to the probability values associated with the plurality of combinations can be calculated based on the loss values. The machine learning model can be updated using a second set of degraded images for each of the plurality of combinations, and the corresponding reference images, where a number of degraded images in the second set corresponding to the particular combination is selected based on the updated probability value.
US11521128B2
A method includes obtaining multiple data items from multiple heterogeneous data sources, where the multiple data items relate to an unmanned aerial system (UAS) flying in an area. The method also includes processing the multiple data items using a machine learning algorithm to determine a threat level of the UAS to one or more targets in the area. The method further includes outputting the threat level of the UAS for review by a user.
US11521125B2
An autoregressor that compresses input data for a specific purpose. Input data is compressed using a compression/decompression framework and by accounting for a purpose of a prediction model. The compression aspect of the framework is distributed and the decompression aspect of the framework may be centralized. The compression/decompression framework and a machine learning prediction model can be centrally trained. The compressor is distributed to nodes such that the input data can be compressed and transmitted to a central node. The model and the compression/decompression framework are continually trained on new data. This allows for lossy compression and higher compression rates while maintaining low prediction error rates.
US11521115B2
A method and system for detecting imbalanced distribution of data that may signal bias in a dataset associated with training a machine-learning (ML) model includes receiving a request to perform data imbalance detection on the dataset associated with training the machine-learning (ML) model, identifying a feature of the dataset for which data imbalance detection is to be performed and examining the dataset to determine a distribution of the feature across the dataset. The result of the determination may then be presented in a user interface element to help identify data imbalance in the dataset.
US11521113B2
In one embodiment, example systems and methods related to a manner of unifying heterogeneous datasets are provided. Multiple heterogeneous datasets containing traffic or driving data are collected. The records of the datasets are combined, and the records in the combined dataset are ordered into a plurality of time series based on timestamps associated with each record. A Bayesian learning method, such as hidden Markov models, is used to identify traffic primitives in the datasets. Each traffic primitive may include several consecutive records in the combined dataset and may correspond to particular driving actions such as turning left or right, stopping, accelerating, etc. The traffic primitives are used to create a traffic primitive index that can be queried by users or researchers for specific records. These records can be used to train or test one or more learning-based algorithms. In addition, the combined dataset can be further divided into tables corresponding to particular sensors, allowing the users or researchers to query for specific traffic primitive and sensor combinations.
US11521111B2
A device is provided. The device includes a processor and a memory configured to store instructions executable by the processor. The processor is configured to execute the instructions to extract context information from displayed data based on an application which is being executed by the device, identify an identifier from the context information, search for at least one recommended contact related to the identifier based on the identifier and a relation graph obtained by inputting information regarding a communication between a plurality of users into a first training model for determining an association between the plurality of users, identify a priority of the at least one recommended contact, and control to display the at least one recommended contact according to the priority.
US11521105B2
A machine learning device which learns fault prediction of one of a main shaft of a machine tool and a motor driving the main shaft, including a state observation unit observing a state variable including at least one of data output from a motor controller controlling the motor, data output from a detector detecting a state of the motor, and data output from a measuring device measuring a state of the one of the main shaft and the motor; a determination data obtaining unit obtaining determination data upon determining one of whether a fault has occurred in the one of the main shaft and the motor and a degree of fault; and a learning unit learning the fault prediction of the one of the main shaft and the motor in accordance with a data set generated based on a combination of the state variable and the determination data.
US11521087B2
Embodiments of the present disclosure relate to a method, an electronic device, and a computer program product for processing information. According to an example embodiment, the method includes: acquiring a service request record set, each service request record in the service request record set relating to a problem encountered by a user when the user is provided with a service and a solution to the problem; constructing a language model based on a first subset in the service request record set and an initial model, the initial model being trained using a predetermined corpus and configured to determine vector representations of words and sentences in the corpus; and constructing a classification model based on a second subset in the service request record set and the language model, the classification model being capable of determining a solution to a pending problem, and the first subset being different from the second subset.
US11521084B2
A data processing system and a method for detecting an anomaly in the data processing system are provided. The method includes receiving a plurality of program counter values from a processing core of the data processing system. Each of the plurality of program counter values corresponds to an instruction being executed in the data processing system. A histogram is constructed using the plurality of program counter values. The histogram is provided to a machine learning (ML) model and used for training the ML model. If training has already been accomplished, the histogram is provided during inference operation of the ML model. The ML model and the histogram are used to detect an anomaly in the data processing system. If an anomaly is detected, an indication of the anomaly may be provided.
US11521081B2
Provided is a method for the computer-assisted creation of digital rules for monitoring a technical system. In the method, an ontology is used, which contains a plurality of classes including classes of components of the technical system and classes of operating state characteristics of the technical system and contains semantic relations between the classes. By means of a user interface, a user can formulate abstract rules by means of the classes and the semantic relations from the ontology. The abstract rules are converted into concrete rules valid for the specific technical system in an automated manner. The method has the advantage that corresponding rules no longer have to be formulated individually for individual technical systems by the user. Instead, abstract rules only have to be created one time for identical or similar technical systems.
US11521071B2
The present disclosure relates to utilizing a deep recurrent neural network for accurately performing punctuation restoration. For example, the disclosed systems can provide a sequence of words to a punctuation restoration neural network having multiple bi-directional recurrent layers and one or more neural attention mechanisms. In one or more embodiments, the punctuation restoration neural network incorporates layer-wise attentions and/or multi-head attention. The disclosed systems can utilize the punctuation restoration neural network to generate probabilities for each word, indicating the likelihood that each possible punctuation mark is associated with that word. Based on these probabilities, the disclosed systems can generate a punctuated transcript that includes punctuation before the appropriate words.
US11521063B1
A system and method for reducing laser communication terminal pointing uncertainty. The method trains an artificial neural network (ANN) with input data characterizing terminal pointing error and dependent parameters. The method inputs the trained ANN a set of data of these dependent parameters with unknown pointing error. The method uses the ANN output to apply corrections to the terminal pointing solution to reduce pointing uncertainty. The method can condition the ANN generated corrections to avoid cases where application of the ANN correction could exceed the original pointing uncertainty. This conditioning includes computing the Euclidean distance between current ANN input parameter values and values in the ANN training dataset, and bounding the allowed magnitude of the ANN pointing correction. The method can train the ANN incrementally during terminal operation for real-time updates or train the ANN offline with gathered data and implement the trained ANN on the terminal for subsequent links.
US11521060B2
A machine-learning system includes a quaternion (QT) computation engine. Input data to the QT computation engine includes quaternion values, each comprising a real component and three imaginary components, represented as a set of real-valued tensors. A single quaternion value is represented as a 1-dimensional real-valued tensor having four real-valued components, wherein a first real-valued component represents the real component of the single quaternion value, and wherein a second, a third, and a fourth real-valued component each respectively represents one of the imaginary components. A quaternion-valued vector having a size N is represented as a 2-dimensional real-valued tensor comprising N 1-dimensional real-valued tensors. A quaternion-valued matrix having N×M dimensions is represented as a 3-dimensional real-valued tensor comprising M 2-dimensional real-valued tensors comprising N 1-dimensional real-valued tensors.
US11521057B2
According to one embodiment of the present disclosure, provided is a learning system that updates a parameter for a neural network, the learning system including: a plurality of differential value calculators; and a parameter update module.
US11521054B2
An analog neuromorphic circuit is disclosed, having input voltages applied to a plurality of inputs of the analog neuromorphic circuit. The circuit also includes a plurality of resistive memories that provide a resistance to each input voltage applied to each of the inputs so that each input voltage is multiplied in parallel by the corresponding resistance of each corresponding resistive memory to generate a corresponding current for each input voltage and each corresponding current is added in parallel. The circuit also includes at least one output signal that is generated from each of the input voltages multiplied in parallel with each of the corresponding currents for each of the input voltages added in parallel. The multiplying of each input voltage with each corresponding resistance is executed simultaneously with adding each corresponding current for each input voltage.
US11521053B2
Described is a system for specifying control of a device based on a Bayesian network model. The system includes a Bayesian neuromorphic compiler having a network composition module having probabilistic computation units (PCUs) arranged in a hierarchical composition containing multi-level dependencies. The Bayesian neuromorphic compiler receives a Bayesian network model as input and produces a spiking neural network topology and configuration that implements the Bayesian network model. The network composition module learns conditional probabilities of the Bayesian network model. The system computes a conditional probability and controls a device based on the computed conditional probability.
US11521052B2
Hardware and neural architecture co-search may be performed by operations including obtaining a specification of a function and a plurality of hardware design parameters. The hardware design parameters include a memory capacity, a number of computational resources, a communication bandwidth, and a template configuration for performing neural architecture inference. The operations further include determining, for each neural architecture among a plurality of neural architectures, an overall latency of performance of inference of the neural architecture by an accelerator within the hardware design parameters. Each neural architecture having been trained to perform the function with an accuracy. The operations further include selecting, from among the plurality of neural architectures, a neural architecture based on the overall latency and the accuracy.
US11521051B2
A neural network computing engine having an array of charge-trap-transistor (CTT) elements which are utilized as analog multipliers with all weight values preprogrammed into each CTT element as a CTT threshold voltage, with multiplicator values received from the neural network inference mode. The CTT elements perform computations of a fully connected (FC) neural network with each CTT element representing a neuron. Row resistors for each row of CTT element sum output currents as partial summation results. Counted pulse generators write weight values under control of a pulse generator controller. A sequential analog fabric (SAF) feeds multiple drain voltages in parallel to the CTT array to enable parallel analog computations of neurons. Partial summation results are read by an analog-to-digital converter (ADC).
US11521050B2
A control circuit for a neural network system includes a first multiply accumulate circuit, a first neuron value storage circuit and a first processor. The first multiply accumulate circuit includes n memristive cells. The first terminals of the n memristive cells receive a supply voltage. The second terminals of the n memristive cells are connected with a first bit line. The control terminals of the n memristive cells are respectively connected with n word lines. Moreover, n neuron values of a first layer are stored in the first neuron value storage circuit. In an application phase, the first neuron value storage circuit controls the n word lines according to binary codes of the n neuron values. The first processor generates a first neuron value of a second layer.
US11521041B2
A fact validation method including the following steps: a statement to be validated is inputted and a searching is made for the statement to obtain an evidence set of the statement; a hierarchical heterogeneous graph consisting of an entity node, a sentence node and a context node is constructed based on the evidence set; the statement and the evidence set are spliced and a node is initialized to obtain feature representation of the node; the feature representation of the node is updated based on inference according to a propagation direction of a neural network of the node in the hierarchical heterogeneous graph; and an inference path for the updated feature representation of the node is built and a prediction result of the statement is output according to the inference path.
US11521036B2
A memory card and a terminal, where the memory card includes a storage device, a controller, and a memory card interface. The storage device and the controller are disposed inside a card body of the memory card. The memory card interface is disposed on the card body of the memory card. The controller is electrically coupled to the storage device and the memory card interface separately. Because a shape of the memory card is the same as that of a nano subscriber identity module (SIM) card, and a size of the memory card is the same as that of the nano SIM card, a nano SD card is provided.
US11521029B1
A computer-implemented method is provided for dosing ink in a digital printing device with multiple ink channels, when printing on a reflective substrate. A digital printing system configured with the method is also provided. Target color data of a target color to be printed on the reflective substrate is captured, including both color data and spectral reflectance data. The captured color data is processed with a printer model to output a preliminary dosing ratio for each ink channel. A digital opacity value for the target color is computed from the dosing ratio of each ink channel. A natural opacity value for the for the target color is computed from the captured spectral reflectance data, and a difference between the digital and natural opacity values is calculated. A predicted dosing ratio for each ink channel is obtained by interpolating the difference against an ink step of a diffuse ink component of the target color.
US11521022B2
Provided are methods, systems, and devices for updating a sensor based on sensor data and the semantic state associated with an area. Sensor data can be received by a computing system. The sensor data can be based on sensor outputs from sensors. The sensor data can include information associated with states of areas detected by the sensors. An estimated semantic state of one of the areas from a target sensor that can detect the states of the areas can be generated. Based on a comparison of the estimated semantic state to semantic states of the area from the sensors, an uncertainty level associated with an accuracy of the estimated semantic state can be determined. In response to the uncertainty level satisfying one or more update criteria, an updated version of the sensor data from the target sensor can be obtained.
US11521020B2
Certain aspects involve evaluating modeling algorithms whose outputs can impact machine-implemented operating environments. For instance, a computing system generates, from a comparison of a set of estimated attribute values of an attribute to a set of validation attribute values of the attribute, a discretized evaluation dataset with data values in multiple categories. The computing system computes, for a modeling algorithm used to generate the estimated attribute values, an evaluation metric. The computing system provides a host computing system with access to the evaluation metric, one or more modeling outputs generated with the modeling algorithm, or both. Providing one or more of these outputs to the host computing system can facilitate modifying one or more machine-implemented operations.
US11521018B1
Techniques are generally described for predicting text relevant to image data. In various examples, the techniques may include receiving image data comprising a first portion. The first portion of the image data may correspond to a first plurality of pixels when rendered on the display. Text data comprising a first text related to the first portion of the image data may be received. A first vector representation of the first portion of the image data may be determined. In some examples, a correspondence between the first portion of the image data and the first text may be determined based at least in part on the first vector representation. A first identifier of the first portion of image data may be stored in a data structure in association with a second identifier of the first text.
US11521011B2
A neural network model training apparatus for enhancing image detail is provided. The apparatus includes a memory and at least one processor configured to obtain a low quality input image patch and a high quality input image patch, obtain a low quality output image patch by inputting the low quality input image patch to a first neural network model, obtain a high quality output image patch by inputting the high quality input image patch to a second neural network model, and train the first neural network model based on a loss function set to reduce a difference between the low quality output image patch and the high quality input image patch, and a difference between the high quality output image patch and the high quality input image patch. The second neural network model is identical to the first neural network model.
US11521008B2
A method is performed by a computer. The method includes obtaining motion data indicating a motion change of a work vehicle, and determining an operation classification of the work vehicle from the motion data by performing image classification using a trained classification model. The motion data is generated from a plurality of images indicating the work vehicle in operation in time series.
US11521007B2
A method for configuring a set of hardware accelerators to process a CNN. In an embodiment, the method includes one or more computer processors determining a set of parameters related to a feature map to analyze at a respective layer of the CNN, the set of parameters include quantization value and respective values that describe a shape of the feature map. The method further includes configuring a set of hardware accelerators for the respective layer of the CNN. The method further includes receiving a portion of the feature map to the configured set of hardware accelerators for the respective layer of the CNN, wherein the received portion of the feature map includes a group of sequential data slices. The method further includes analyzing the group of sequential data slices among the configured set of hardware accelerators.
US11521006B2
A code reader for reading an optical code is provided that has a linear image sensor having a plurality of linear arrangements of light reception pixels for recording image data having the code and a control and evaluation unit that is configured to locate and read the code in the image data, wherein the light reception pixels have a different spectral sensitivity. Here, at least one linear arrangement is a white line whose reception pixels are sensitive to white light for recording a gray scale image and the other linear arrangements are color lines whose reception pixels are sensitive to light of only one respective color for recording a color image.
US11521005B2
The present invention relates to a container, a package, a production system, and a distribution system. The container comprises a first identification and a second identification. The first identification is unique for identifying the container and is not exposed. The second identification is unique for identifying the container and is accessible. The second identification is different from the first identification. The second identification is associated with the first identification. The distribution system comprises a processor and a memory. The memory includes instructions causing the processor to perform operations. The operations include: inputting a first identification and a second identification of a first container, wherein the first identification and the second identification are different from each other and are unique for identifying the first container, the first identification is not exposed, and the second identification is accessible; and associating the second identification and the first identification.
US11520999B2
A rendering engine and method for reducing character clutter in display of composite text formed from a first text string and a second text in a single viewing field. The composite text having foreign language text and truncated translation characters of the foreign language in which the foreign language text is embedded in area vacated by truncation of translation character strokes to enable readers to identify translation text based on remaining distinguishing character strokes with reduction of eye shift between the two text strings.
US11520990B2
Systems and methods include receiving textual data and a predicted answer to a question associated with a text object. The text object includes a structured data field of the textual data. The predicted answer includes a confidence level. The confidence level is determined by a machine learning system based at least in part on one or more models of the machine learning system and the textual data. In response to determining the confidence level being larger than or equal to a predetermined confidence threshold, the predicted answer and a reference is stored in a storage for retrieval and display. The reference indicates a location of the text object in the textual data. In response to determining the confidence level being smaller than the predetermined confidence threshold, the question and the text object associated with the question is displayed, at the user interface, to a user for inputting a true answer.
US11520984B2
There is provided a system and method for generating predictions. The predictions are generated using a model configured to associate text with at least one action associated with at least one of a plurality of applications.
US11520981B2
A method detects anomalies in a system having sensors for collecting multivariate sensor data including discrete event sequences. The method determines, using a NMT model, pairwise relationships among the sensors based on the data. The method forms sequences of characters into sentences on a per sensor basis, by treating each discrete variable in the sequences as a character in natural language. The method translates, using the NMT, the sentences of source sensors to sentences of target sensors to obtain a translation score that quantifies a pairwise relationship strength therebetween. The method aggregates the pairwise relationships into a multivariate relationship graph having nodes representing sensors and edges denoted by the translation score for a sensor pair connected thereto to represent the pairwise relationship strength therebetween. The method performs a corrective action to correct an anomaly responsive to a detection of the anomaly relating to the sensor pair.
US11520978B2
A form customization method and device, through establishment of a form information table, a form field information table and a form field option information table, the form information table and form field information table are associated by primary key and foreign key, the form field information table and form field option information table are associated by “foreign key-primary key”, so as to define the form template and complete the form design quickly and conveniently. The form is then rendered by the form template data and the corresponding CSS style. The form customization device mainly includes a form template creation unit, a form template generation and presentation unit and a form template modification unit.
US11520974B2
Techniques are disclosed for sharing user markings between digital documents and corresponding physically printed documents. The sharing is facilitated using an Augmented Reality (AR) device, such as a smartphone or a tablet. The device streams images of a page of a book on a display. The device accesses a corresponding digital document that is a digital version of content printed on the book. In an example, the digital document has a digital user marking, e.g., a comment associated with a paragraph of the digital document, wherein a corresponding paragraph of the physical book lacks any such comment. When the device streams the images of the page of the book on the display, the device appends the digital comment on the paragraph of the page of the book within the image stream. Thus, the user can view the digital comment in the AR environment, while reading the physical book.
US11520969B2
In various example embodiments, heavy document object model (DOM) elements in a heavy web page are removed directly from a DOM tree subsequent to a request being received to navigate to another web page but before the web browser actually navigates to that other web page. In one example embodiment, the heavy DOM elements are deleted from the previous page during an ‘onbeforeunload’ event using a scripting language such as Javascript, to ensure that the render of the next page starts faster.
US11520964B1
A method for assertion-based formal verification includes executing a plurality of formal verification regression runs on a model of an electronic design; for each of the regression runs, using a unique signature function, calculating and saving a unique signature value for each instantiation of a property of a plurality of properties of the model of the electronic design and a status result for that instantiation of the property in that regression run; and signing off a current version of the model of the electronic device and presenting as a status result for each the instantiations of a plurality of the properties of the current version of the model of the electronic design the preferred status result obtained for that instantiation of the property per the same unique signature value that was calculated for that instantiation of the property in previous runs of the plurality of formal verification regression runs.
US11520963B2
A system and method for formulating a sequential equivalency problem for fault (non)propagation with minimal circuit logic duplication by leveraging information about the location and nature of a fault. The system and method further apply formal checking to safety diagnoses and efficiently models simple and complex transient faults.
US11520962B1
Techniques and systems for determining an output waveform at an output of a complementary metal-oxide-semiconductor (CMOS) logic gate are described. Some embodiments can identify at least one set of inputs of the CMOS logic gate that, when switched together, causes multiple transistors coupled in parallel to simultaneously turn-on and drive the output of the CMOS logic gate. Next, the embodiments can determine a set of current source models that are coupled in parallel to model the CMOS logic gate when the set of inputs of the CMOS logic gate are switched together. The embodiments can then simulate the set of current source models together to determine the output waveform at the output of the CMOS logic gate when the set of inputs of the CMOS logic gate are switched together.
US11520961B2
In an approach, a processor receives an input indicative of a set of registers, the set of registers being configured for obtaining output data from a design-under-test (DUT) in a field-programmable gate array (FPGA) module. A processor executes a set of instructions for monitoring the output data in the set of registers;. A processor generates data indicative of at least one portion of changes of the output data in the set of registers during the execution of the set of instructions. A processor causes a separate machine to analyze the data via utilizing an interface to send the data to the separate machine.
US11520958B2
Methods and systems for verifying a hardware design for a multi-stage component is stall independent. The multi-stage component is configured to receive input data and generate output data by processing the input data at each of a plurality of successive stages wherein each stage is independently enabled by a set of one or more enable signals. The method comprises: for each stage of the plurality of stages from the second stage to the last stage: (a) verifying that a relevant portion of the output data of an instantiation of the hardware design is the same if the instantiation is in the same state when that stage is enabled in a cycle by any set of inputs and any subsequent stages are enabled in subsequent cycles by a first minimal sequence of inputs; and (b) verifying that the relevant portion of the output data of an instantiation of the hardware design is the same if the instantiation is in the same state (i) when that stage is enabled in a cycle and any subsequent stages are enabled in subsequent cycles by a second minimal sequence of inputs and (ii) when that stage is stalled, then that stage is enabled in the next cycle and the subsequent stages are enabled in subsequent cycles by the second minimal sequence of inputs.
US11520954B2
Reusable information is extracted from a result of executing a simulation of a plurality of models.
A simulation management method for managing data for use in a simulation by a management device having a processor and a memory, the method including: executing a simulation using a model and data, by a simulator; extracting intermediate data indicating that an internal state of the model that is being simulated matches a predetermined state, by the management device; and holding the extracted intermediate data as useful intermediate data, by the management device.
US11520948B2
Systems and methods for creating electronic indoor maps from computer-assisted-design (CAD) files are disclosed. The methods involve receiving a set of CAD files relating to a facility, classifying each CAD file of the set as a site plan or a floor plan, defining one or more layers of at least one electronic map for the facility based on the set, generating an electronic map for each CAD file of the set. The electronic map includes one or more layers and each layer include at least one object. The method also involves aligning objects in the electronic map for the facility, based on the layer of the object; assigning text data in each CAD file of the set to an object in the electronic map file of that CAD file; and storing the at least one electronic map for the facility on at least one storage component.
US11520944B2
Methods for modeling of parts with lattice structures and corresponding systems and computer-readable mediums. A method includes receiving a model of an object to be manufactured. The method includes receiving a user specification of a void region within the model to create a lattice. The method includes performing a trimming operation to create a trimmed lattice by tessellating void surfaces and grouping together at least one row of connected rods to be treated as a single entity.
US11520939B2
USB traffic is intercepted between a USB device and a computer system. It is determined whether the USB device has previously had a policy associated with it as to whether USB traffic from the device should be blocked, allowed, or sanitized. In response to not having a previous policy for the USB device, a request is made for a user to be prompted to provide a policy of one of block, allow, or sanitize for the USB device. In response to a user-provided-policy, one of the following are performed: blocking the traffic, allowing the traffic, or sanitizing the traffic between the USB device and the computer system. Apparatus, methods, and computer program products are disclosed.
US11520931B2
The present invention discloses a privacy masking method using format-preserving encryption in an image security system, and a recording medium for performing the method. In a privacy masking method using format-preserving encryption in an image security system according to an aspect of the present invention, an image corresponding to a privacy region is encrypted using format-preserving encryption, so that it is possible to prevent waste of additional storage space required for encryption and to solve a problem of exposure of personal information.
US11520919B2
A solution is proposed for managing containers isolating corresponding application environments from one or more shared operating systems in a computing system. One or more relevant groups are determined among one or more candidate groups (each comprising private data in common among a plurality of the containers); the candidate groups are determined according to corresponding access commands submitted by the containers and the relevant groups are determined according to one or more relevance policies. The private data of the relevant groups are consolidated into corresponding shared data.
US11520915B2
Techniques for secure fast channel change in live content streaming are described. In some embodiments, during content preparation, a packager and/or an encoder encrypts media content items at both the service level (e.g., by encrypting a first portion of the plurality of segments with a service level access key unique to a service) and the channel level (e.g., by encrypting a second portion of the plurality of segments with a channel level access key unique to a channel associated with the service). On the receiving end, a client device (e.g., a media player) requests a service level access key prior to content acquisition. As such, a client can join any channel on a segment protected with the service level key without waiting for a license for that channel first, and the channel license can be acquired in parallel with the content acquisition during channel switching.
US11520907B1
An illustrative method includes a data protection system determining an encryption indicator for a first recovery dataset associated with a storage system, the encryption indicator representative of a likelihood that a threshold amount of data associated with the first recovery dataset is encrypted; and performing, based on the encryption indicator for the first recovery dataset, an action with respect to a second recovery dataset associated with the storage system.
US11520906B2
A computer-readable medium comprises instructions that, when executed, cause a processor to execute an untrusted workload manager to manage execution of at least one guest workload. The instructions, when executed, also cause the processor to (i) receive a request from a guest workload managed by the untrusted workload manager to access a memory using a requested guest address; (ii) obtain, from the untrusted workload manager, a translated workload manager-provided hardware physical address to correspond to the requested guest address; (iii) determine whether a stored mapping exists for the translated workload manager-provided hardware physical address; (iv) in response to finding the stored mapping, determine whether a stored expected guest address from the stored mapping matches the requested guest address; and (v) if the stored expected guest address from the stored mapping matches the requested guest address, enable the guest workload to access contents of the translated workload-manager provided hardware physical address.
US11520901B2
A method, system and product for detecting firmware vulnerabilities, including, during a testing phase of a firmware of a device, continuously polling states and activities of the device, wherein said polling is at a testing agent that is functionality separate from the firmware; correlating between at least one event that is associated with the states or the activities of the device and test results of the testing phase; based on said correlating, determining for the firmware one or more normal events and one or more abnormal events; and after the testing phase, providing indications of the one or more normal events and one or more abnormal events from the testing agent to a runtime agent, whereby said providing enables the runtime agent to protect the firmware from vulnerabilities associated with the one or more abnormal events.
US11520891B1
A computer chip, such as an System on chip (SOC), can receive firmware updates having two separate signatures; a first of the signatures is used to authenticate the firmware using a processor within the computer chip, and a second of the signatures is used by a controller, separate from the processor. A first key, used by the processor to authenticate the firmware, can be a boot key that is hardwired in the computer chip. A second key, used by the controller, can be a key that is provided to the controller at any time and is updatable. The controller can suspend the processor so that the controller can perform a first authentication of the firmware using the second signature and the second key. If the authentication is successful, the controller can release the processor, which then uses the first key and the first signature to perform a second authentication.
US11520890B2
A medical device includes at least one memory device storing data; a communication interface defining a first communication path to allow communications between the medical device and an external device or network; and a hardware key interface defining a second communication path that is separate from the first communication path. A hardware key is configured to be coupled to the meter via the second communication path defined by the hardware key interface. The data on the at least one memory device cannot be modified unless the hardware key interface is physically coupled to the hardware key. The hardware key may include a key code component and conducting lines, where the hardware key interface receives the key code via the conducting lines and the data on the at least one memory device cannot be modified unless the key code provided by the hardware key is validated.
US11520888B2
There is disclosed in one example a computing apparatus, including: a hardware platform, including a processor, a memory, and a network interface; a bucketized reputation modifier table; and instructions encoded within the memory to instruct the processor to: perform a feature-based malware analysis of an object; assign the object a malware reputation according to the feature-based malware analysis; query and receive via the network interface a complementary score for a complementary property of the object; query the bucketized reputation modifier table according to the complementary score to receive a reputation modifier for the object; adjust the object's reputation according to the reputation modifier; and take a security action according to the adjusted reputation.
US11520887B2
Client devices detect malware based on a ruleset received from a security server. To evaluate a current ruleset, an administrative client device initiates a ruleset evaluation of the malware detection ruleset. A security server partitions stored malware samples into a group of evaluation lists based on an evaluation policy. The security server then creates scanning nodes on an evaluation server according to the evaluation policy. The scanning nodes scan the malware samples of the evaluation lists using the rulesets and associate each malware sample with a rule of the ruleset based on the detections, if any. The security server analyzes the associations and optimizes the ruleset and stored malware samples. The security server sends the optimized ruleset to client devices such that they more efficiently detect malware samples.
US11520886B2
Methods, apparatuses and computer program products implement embodiments of the present invention that include protecting a computer system coupled to a storage device by storing, to the storage device, a set of protected files and one or more decoy files, wherein any modification to the decoy file indicates a cyber-attack on the computer system. Upon receiving a request from a process executing on the computing device to enumerate files stored on the storage device, the process is analyzed so as to classify the process as benign or suspicious. The protected files are enumerated to the process whether the process was classified as benign or suspicious. However, the one or more decoy files are enumerated to the process only upon process being classified as suspicious.
US11520878B2
The technology disclosed herein provides a proof-of-work key wrapping system for verifying device capabilities. An example method may include: accessing a wrapped key and a cryptographic attribute for the wrapped key from an encrypted memory region, wherein the wrapped key encodes a cryptographic key; deriving, by a processing device, the cryptographic key in view of the wrapped key and the cryptographic attribute, wherein the deriving consumes computing resources for a duration of time; using the cryptographic key to access program data; and executing, by the processing device, the program data, wherein the executed program data evaluates a condition related to the duration of time.
US11520877B2
Generally discussed herein are systems, apparatuses, and methods for cyber resiliency. An apparatus can include one or more memory devices including a plurality of instruction sets corresponding to respective application variants stored thereon, one of the application variants including an unmodified version of an application, and one of the application variants including a modified version of the application including the application altered to be resistant to a specified type of cyberattack, processing circuitry to execute the application variants based on a same input, and generate an output, and a monitor to compare output from each of the application variants, and in response to detecting that the output from an application variant of the application variants is not equal to the output from other application variants of the application variants executing a time delayed version of the application variants or restoring the application variants to a known good operating state.
US11520873B2
A method for enrolling a device in a secure network to which an information system is connected, the method comprising the steps, implemented by a trusted device connected to the secure network, of: a) receiving from a user terminal, distinct from the device to be enrolled, an authorization to connect to the device to be enrolled, b) generating cryptographic keys intended for the device to be enrolled to access the secure network, and c) transmitting the cryptographic keys to the device to be enrolled.
US11520864B2
Digital rights management systems and methods for audience measurement are disclosed. Example methods disclosed herein include enabling a media handler implemented by a media device to begin presenting first media based on a first digital license associated with the first media. Such example methods also include retrieving a second digital license different from the first digital license from a license server separate from the media device. Such example methods further include causing the media handler to perform a first media monitoring operation based on the second digital license, the first media monitoring operation being deactivated by default.
US11520852B2
A client device requests a web page via a clientless VPN. In response to the request, web page content comprising at least one script element is received at the clientless VPN. The clientless VPN inserts a wrapper function around at least a portion of the script element, forming modified web content. The client device is provided with the modified web content.
US11520848B2
Aspects of the disclosure provide methods, apparatuses, and non-transitory computer-readable storage mediums for receiving media data. One apparatus includes processing circuitry receives a media presentation description (MPD) file that includes an essential property descriptor for a dynamic adaptive streaming over hypertext transfer protocol (DASH) operation. The essential property descriptor is associated with a first session-based description (SBD) file and indicating that a part of a uniform resource locator (URL) is to be modified based on the first SBD file. The part of the URL has been generated based on a second SBD file. The processing circuitry modifies the part of the URL based on the first SBD file and receives the media data based on the modified part of the URL.
US11520841B2
An information recommendation method and a related device. The method includes: receiving first recommended information recommended by a server in a first time period, the first recommended information being information associated with a first type of information associated with viewed information of a user with a viewed amount not less than a first threshold and determined according to a first behavior record of the user; receiving second recommended information recommended by the server in a second time period; and receiving third recommended information recommended by the server in a third time period, the third recommended information being information associated with a second type of information associated with second viewed information of the user with a second viewed amount not less than a second threshold and determined according to a second behavior record of the user.
US11520839B2
A first user access, directed to a first network document, of a first user is detected. One or more first network document concepts in the first network document are detected. A first user profile of the first user is retrieved based on the first user access. A first knowledge gap of the first user is identified based on the first network document concepts and based on the first user profile. One or more additional network documents are obtained based on the one or more first network document concepts. The additional network documents include at least a first concept of the one or more first network document concepts. The first network document is modified to include at least a portion of the first concept from the one or more additional network documents. The modification is based on the first knowledge gap and on the one or more additional network documents.
US11520830B2
Techniques for generating and searching semantic flow graphs are provided that include creating, by a system operatively coupled to a processor employing a semantic flow graph creation process, a semantic flow graph based on an ontology associated with a set of subjects and a raw flow graph determined from an analysis of a data set relating to the set of subjects and searching, by the system, the semantic flow graph to determine a subset of information of the semantic flow graph that is responsive to a query based on the query and information of the semantic flow graph.
US11520829B2
A method, computer program product, and/or computer system protects a question-answer dialog system from being attacked by adversarial statements that incorrectly answer a question. A computing device accesses a plurality of adversarial statements that are capable of making an adversarial attack on a question-answer dialog system, which is trained to provide a correct answer to a specific type of question. The computing device utilizes the plurality of adversarial statements to train a machine learning model for the question-answer dialog system. The computing device then reinforces the trained machine learning model by bootstrapping adversarial policies that identify multiple types of adversarial statements onto the trained machine learning model. The computing device then utilizes the trained and bootstrapped machine learning model to avoid adversarial attacks when responding to questions submitted to the question-answer dialog system.
US11520822B2
A content model data base stores past target information, which includes past first video information acquired in advance, reference IDs, which are linked with the past target information, and which correspond to contents, and three or more levels of degrees of content association between the past target information and the reference IDs. A first acquiring unit acquires the target information from a user terminal, a first evaluation unit looks up the content model database and acquires ID information, which includes the degrees of content association between the target information and the reference IDs, and a judging unit judges the ID information. Contents that correspond to the ID information are output to the user terminal based on the result of judgment by the judging unit.
US11520821B2
Systems and methods are described for responding to a search query with a contextually relevant voice output. An illustrative method receives a search query, determines an answer to the search query, identifies a media content reference included in the search query, determines, based on the media content reference, a personality associated with the media content reference, identifies a voice profile of the personality, and generates audio output using the voice profile of the personality, the audio output including the answer to the search query.
US11520819B2
This invention discloses a computer-implemented method, caused by a server, for hierarchical causality-based stitching of content and for serving said stitched content as output content, said method comprising: tracking, and measuring, a first set of markers, for a first content consumer, consuming a first content item; tracking, and measuring, a first set of markers, for a second content consumer, consuming a second content item; receiving, by said first content consumer, a request corresponding to a marker from said first set of markers; computing a “pertinence indicator”; computing a “colliding score”; automatically collating said first content item, correlative to said first user, and a second content item, correlative to said second user, to form at least an output content, if said “pertinence indicator” is within said pre-defined rules of correlation and if said “colliding score” is within said pre-determined threshold; and serving said collated output content.
US11520814B2
This application relates to a new paradigm of data reasoning based on natural language inputs. A data structure based on the new paradigm is a canonical of a basic data structure in the shape of a triangle. The basic data structure includes a first node being a primary node, a second node being a context node, a third node being a resultant node. The basic data structure also includes a first link connecting the first and second nodes and configured to assign an attribute of abductive reasoning between the first and second nodes and a second link connecting the second and third nodes and configured to assign an attribute of inductive reasoning between the second and third nodes. The basic data structure further includes a third link connecting the first and third nodes and configured to assign an attribute of deductive reasoning between the first and third nodes.
US11520805B2
Techniques are used for replication in a storage system. The techniques may be used to provide, among other things, the determination that a data block has more than one instance in a storage system. A similarity hash for the data block is determined, and an instruction is transmitted from a source system to a target system to replicate the data block based on the similarity hash.
US11520802B2
A method comprising receiving, via a first application and from a client device, a request for a data format conversion of transaction data; responsive to receiving the request, transmitting, via the first application, a verification request comprising an institution identifier and an account identifier to a second application, receiving, via the first application from the second application, verification that the first account identifier is associated with a valid user account; converting, via the first application, a portion of the transaction data from a first format to a second format; transmitting, via the first application, an update request to the second application, receipt of the update request causing the second application to (1) select an established connection with an institution, and (2) initiate an update transaction with the institution based on the converted transaction data; receiving, via the first application, an indication that the update transaction was successful.
US11520796B2
A method for managing data processing includes receiving, from a user of a data query system, a data query for data stored in a data store in communication with the data query system. The method also includes receiving a staleness parameter indicating an upper time boundary for the data query. The upper time boundary limits a query response to data within the data store that is older than the upper time boundary. The method further includes determining whether the data stored within the data store satisfies the staleness parameter. When a portion of the data within the data store fails to satisfy the staleness parameter, the method includes generating the query response that excludes the portion of the data that fails to satisfy the staleness parameter.
US11520791B2
A system for performing cascading search includes an associative memory array, a controller, a similarity search processor and an exact match processor. The associative memory array stores a plurality of multiportion data vectors stored in at least one column of the associative memory array. Each vector has a first portion and a second portion which are aligned to each other in the column. The controller controls the associative memory array to perform a similarity search of a similarity query on the first portion and an exact search of an exact query on the second portion. The similarity match processor generates a match row including match bit indications aligned with each similarity matched column. The match row indicates which columns have first portions which match to the similarity query. The exact match processor outputs exact match columns from among the similarity matched columns which have second portions which match the exact query.
US11520790B2
In an approach for character encoding, a processor receives a first query involving an attribute, wherein the first query utilizes a value encoded in accordance with a first encoding scheme. A processor identifies a table comprising values of the attribute in a compressed format. A processor creates at least one dictionary associated with the attribute, wherein the at least one new dictionary associated with the attribute maps a compressed value to a corresponding uncompressed value. A processor executes the first query by invoking a conversion operation in a query plan of the first query for decoding one or more queried values of the attribute. A processor fills the at least one new dictionary with one or more decoded query values to create at least one full dictionary. A processors stores the at least one full dictionary in a cache using a predefined cache management policy of the cache.
US11520789B2
In some examples, a database management node updates object metadata with indicators of access frequencies of a plurality of objects in a data store that is remotely accessible by the database management node over a network. The database management node selects a subset of the plurality of objects based on the indicators, and caches the subset in the local storage.
US11520784B2
A device may receive source code from a source data structure, and may receive information associated with a target data structure. The device may analyze the source code to extract statements, and may utilize natural language processing on the statements to identify functions and keywords associated with the source data structure. The device may train a machine learning model with the functions and the keywords to generate a trained machine learning model, and may process the information associated with the target data structure, with the trained machine learning model, to transform a source query to a target query compatible with the target data structure. The device may process the target query, with a neural network model, to generate an optimized target query, and may cause data from the source data structure to be migrated to the target data structure based on the optimized target query.
US11520780B2
Systems and techniques are described for efficient, general-purpose, and potentially decentralized databases, distributed storage systems, version control systems, and/or other types of data repositories. Data is represented in a database system in such a way that any value is represented by a unique identifier which is derived from the value itself. Any database peer in the system will derive an identical identifier from the same logical value. The identifier for a value may be derived using a variety of mechanisms, including, without limitation, a hash function known to all peers in the system. The values may be organized hierarchically as a tree of nodes. Any two peers storing the same logical value will deterministically represent that value with a graph, such as the described “Prolly” tree, having the same topology and hash value, irrespective of possibly differing sequences of mutations which caused each to arrive at the same final value.
US11520779B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for digital asset management. One of the methods includes: obtaining a request for creating a digital asset corresponding to a tangible asset, wherein the request comprises one or more characteristics of the digital asset; generating a blockchain contract corresponding to the tangible asset based on the one or more characteristics of the digital asset; and deploying the generated blockchain contract on a blockchain, wherein the deployed blockchain contract is executable to issue the digital asset corresponding to the tangible asset.
US11520772B2
Methods and systems are disclosed for tracking change data in a database. A database, stored at a computer system, is accessed with a plurality of data written to fields in the database, wherein each data in the fields comprises a record header. Data is changed in at least one field of the plurality of data in the database via the computer system, wherein the changing the data changes the record header for the at least one field. A transaction identification (ID) is stored in the record header for each change to the at least one field. A flag is created in the record header signaling the change to the at least one field. Successive versions of the database are linked together such that a subscriber accessing the database can automatically view a current version of the database with the change by accessing the record header and identifying the flag.
US11520769B1
Embodiments of the present disclosure relate to a method, system, and computer program product for block level lock on a data table. According to the method, in response to first transactional processing to be applied on a data table, one or more processors determine that first target data to be accessed during execution of the first transactional processing is comprised in a continuous range of data in the data table. One or more processors determine whether a block lock is available for locking the continuous range of data for the first transactional processing. In accordance with a determination that the block lock is available, one or more processors grant the first transactional processing with the block lock, the block lock being associated with lock information indicating the continuous range of data.