US11856390B2
A game headset receives a plurality of channels of game and/or chat audio during game play, monitors the plurality of channels, and detect one or more sounds on the channels during the monitoring. The game headset determines characteristics of the detected one or more sound and outputs one or more signals for generating a visual representation of the detected one or more sounds based on the determined characteristics. The game headset output the signals to a game console that provides the game play. The game console displays the visual representation during the game play based on the communicated visualization information. The one or more signals is a video stream of an in-game visualization. The game headset outputs the one or more signals to a second screen communication device that generates the visual representation during the game play based on the signals.
US11856386B2
An apparatus for processing audiovisual data for a scene comprises a receiver (201) for receiving audiovisual data for the scene. The audiovisual data comprises audio data for the scene comprising a plurality of audio elements and image data for at least a first image of the scene where the first image has a first aspect ratio. An image remapper (203) performs a content dependent non-uniform mapping of the first image to a second image which has a different aspect ratio. The image remapper (207) is arranged to generate mapping data describing the content dependent non-uniform mapping. An audio remapper (207) replaces a first audio element of the plurality of audio elements by a second audio element generated by modifying a spatial property for the first audio element in response to the mapping data. The spatial property being modified may be a position and/or spatial spread of the first audio element.
US11856384B2
A speaker including a frame; a magnetic circuit system fixed to the frame, comprises a plurality of magnetic circuit devices connected to each with a magnetic gap; a vibration system driven by the magnetic to vibrator, comprises a diaphragm fixed to the frame and a plurality of voice coil assembly inserted into the magnetic gap drive the diaphragm vibrate jointly. the speaker can drive the diaphragm to vibrate and produce sound with a greater driving force, and the magnetic circuit system has a higher magnetic field. The efficiency makes the speaker have a better sound effect.
US11856374B2
At least one embodiment of the current invention provides a wireless audio assembly for use with recessed lighting fixtures and comprising: a wireless speaker, a powerbase module, a mounting support and a frame extension. The wireless audio assembly is attached to an existing recessed light, gets its power from recessed light power lines and has an opening in the center with a concave surface that appears as a continuation to the recessed light center opening.
US11856373B2
An apparatus includes a wire connector configured to receive a connection to an external device. The external device includes a speaker and is configured to output audible sounds. The apparatus includes a connection detection circuit configured to determine whether the external device has connected to the apparatus through the wire connector. The apparatus includes an output test circuit configured to, upon detection of a connection to the external device, issue a test signal to the external device, evaluate a response to the test signal, the response based upon a resistance value within the external device, and determine an identity of the external device based upon the response to the test signal.
US11856371B2
Disclosed herein, among other things, are methods and apparatus for own-voice sensing in hearing assistance devices. One aspect of the present subject matter includes an in-the-ear (ITE) hearing assistance device adapted to process sounds, including sounds from a wearer's mouth. According to various embodiments, the device includes a hollow plastic housing adapted to be worn in the ear of the wearer and a differential sensor mounted to an interior surface of the housing in an ear canal of the wearer. The differential sensor includes inlets located within the housing and the differential sensor is configured to improve speech intelligibility of sounds from the wearer's mouth, in various embodiments.
US11856368B1
An electronic hearing protection system includes an electronic hearing device having a housing that is disposed in a recessed cavity in an earplug. The housing of the electronic hearing device is configured to be rotatable between multiple positions, including a first position in which a speaker of the electronic hearing device aligns with a sound tube in the earplug to permit sound generated by the speaker to travel through the sound tube to the user's ear canal, and a second position in which the housing blocks the sound tube to at least partially prevent sound from reaching the user's ear canal.
US11856366B2
Driver circuitry is disclosed for driving an electroacoustic transducer to provide an output comprising both ultrasonic and audio signal components. The driver circuitry comprises an adjustment module configured to reduce the level of said ultrasonic component signal in response to an increase in an operational variable indicative of a level of said audio signal component, while also increasing the pulse duration, duty cycle, repetition frequency or frequency span or bandwidth of the ultrasonic component.
US11856360B2
The present invention relates to a vibration sensor comprising a pressure generating element for generating pressure differences between a first and a second volume in response to vibrations of the vibration sensor, the first and second volumes being acoustically sealed from each other, and a pressure transducer for measuring pressure differences between the first and second volumes. The present invention also relates to an associated method for detecting vibrations.
US11856354B2
Disclosed is a wireless earbud, which includes: a charging port configured to be connected to an earbud charging voltage and receive/send a communication signal; a communication switching circuit including a first input/output terminal connected to the charging port and a second input/output terminal, the communication switching circuit is configured to switch to an off state when the charging port is connected to the earbud charging voltage, and switch to an on state when the charging port is connected to the communication signal; a communication on-off circuit connected to the second input/output terminal of the communication switching circuit; and an earbud control circuit configured to perform box entry detection on the wireless earbud and generate a corresponding detection signal to control the communication switching circuit to turn on/off an electrical connection between the earbud control circuit and the communication on-off circuit according to the detection signal.
US11856349B2
A mobile terminal includes a first terminal portion disposed with a first sound output hole and a second terminal portion disposed with a second sound output hole and a receiver. The second terminal portion can move between a first position and a second position relative to the first terminal portion. At the first position, the first sound output hole is connected to the second sound output hole, and at the second position, the second sound output hole is staggered from the first terminal portion. A baffle is disposed on the second terminal portion. The second terminal portion is located at the second position relative to the first terminal portion, and the baffle covers the second sound output hole. The second terminal portion is located at the first position relative to the first terminal portion, the baffle is removed away from the second sound output hole.
US11856340B2
A position specifying method includes generating relation information based on first coordinates and second coordinates, the first coordinates indicating coordinates of a portion of a target object in three dimensions, at which a specific point is located, in a state where a projector projects the projection image having the specific point onto the target object, the second coordinates indicating coordinates of the specific point in the projection image in two dimensions, the relation information indicating a correspondence between a three-dimensional coordinate system and a projector coordinate system, the three dimensional coordinate system being used by a measuring instrument that specifies the first coordinates, the projector coordinate system defining the second coordinates and coordinates of the projector, and specifying a position of the projector in the three-dimensional coordinate system based on the coordinates of the projector, by using the relation information.
US11856321B1
A video processing method includes: receiving a video stream from a camera component; converting the video stream into at least one first data packet, where the at least one first data packet is independently encoded or decoded; and storing a first data packet obtained in a first reporting cycle as a first video clip.
US11856316B2
Provided is an image capturing method performed by an image capturing apparatus, including acquiring information on first positions which are current positions of a sensor and a generator, moving the sensor and the generator to second positions which are positions at which an image having a magnification power different from a magnification power of an image of an object acquired when the sensor and the generator are located at the first positions is acquired, and acquiring an image of the object, wherein the sensor and the generator move the same distance so that a distance between the sensor and the generator is not changed.
US11856300B2
A method for detecting interference patterns for an under-screen camera, a compensation method and a circuit system are provided. The circuit system includes an image-processing circuit and an under-screen camera module. The under-screen camera module captures an image by a lens through a glass substrate of a display module. After receiving the image, the image-processing circuit detects and compensates an interference pattern. In the method, multiple reference points are set in the image, and a brightness average value and a brightness target value for each of the reference points are obtained for calculating an area brightness ratio of the reference points. A binarized image is then obtained. The interference pattern is determined according to symmetrical characteristics of the binarized image. A target matrix is decided for compensating the interference pattern according to weights of all of the reference points of the image.
US11856295B2
Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for multi-camera video stabilization. In some implementations, a video capture device has a first camera and a second camera. The video capture device provides a digital zoom capability permitting user-specified magnification changes within a digital zoom range during video recording. The video capture device is configured to use video data from different cameras over different portions of the digital zoom range. The video capture device can process image data captured using the second camera by applying a set of transformations including (i) a first transformation to a canonical reference space for the second camera, (ii) a second transformation to a canonical reference space for the first camera, and (iii) a third transformation to apply electronic image stabilization to image data in the canonical reference space for the first camera.
US11856291B2
Dual-aperture digital cameras with auto-focus (AF) and related methods for obtaining a focused and, optionally optically stabilized color image of an object or scene. A dual-aperture camera includes a first sub-camera having a first optics bloc and a color image sensor for providing a color image, a second sub-camera having a second optics bloc and a clear image sensor for providing a luminance image, the first and second sub-cameras having substantially the same field of view, an AF mechanism coupled mechanically at least to the first optics bloc, and a camera controller coupled to the AF mechanism and to the two image sensors and configured to control the AF mechanism, to calculate a scaling difference and a sharpness difference between the color and luminance images, the scaling and sharpness differences being due to the AF mechanism, and to process the color and luminance images into a fused color image using the calculated differences.
US11856289B1
In one aspect, a portable media capture device comprises an image sensor and a support portion configured to receive a mobile device. In use, the support portion supports the image sensor (which is external to the mobile device) in a front-facing configuration relative to the mobile device, in which a user region forward of a display screen of the mobile device falls within a field of view of the image sensor. The portable media capture device additionally comprises a host computer configured to pair with the mobile device, enabling the host computer to receive messages from the mobile device indicating changes in display state at the mobile device, and to thereby synchronize its external video capture function with changes in the display state of the mobile device.
US11856283B2
A multi-matching sensing system applied to a vehicle includes a rotation drum to which first, second and third pop-up modules pulled by electromagnetic attraction according to the supply of current and pushed by a spring restoring force of the spring are fixed to have angle relationship, a rotation device configured to rotate the rotation drum, and a multi-matching body holder having a connector connected to a wire harness in which a power line is formed with a transmission/reception circuit connected to each of the first, second and third pop-up modules and the rotation device.
US11856281B2
The imaging device includes: a modulator configured to modulate a light intensity in accordance with a real pattern; an image sensor configured to create a sensor image in accordance with the modulated light; and a micro lens array including a plurality of micro lenses arranged to correspond to a plurality of pixels of the image sensor. The imaging device has a distribution property of a relative positional difference amount between a center position of a light receiver of each pixel of the plurality of pixels and a center position of each micro lens of the plurality of micro lenses of the micro lens array in a plane of the image sensor. This property has at least one point or more with a changing difference value of the difference amount between the adjacent pixels from a positive value to a negative value or from a negative value to a positive value.
US11856278B2
The present disclosure provides an embedded mounting bracket and camera assembly comprising same. The embedded mounting bracket is used for mounting a camera, and the embedded mounting bracket includes a bracket body and a mounting member. The bracket body includes a bracket side wall, the bracket side wall includes a lower end surface and an upper end surface opposite to the lower end surface, and the upper end surface includes multiple step surfaces with different heights from the lower end surface. The mounting member is detachably assembled to the bracket body for bearing the camera. The mounting member is selectively assembled on the step surfaces with different heights, so as to replaceably assemble at least two cameras with different body heights to the bracket body.
US11856268B1
Systems and methods are provided for customizing a profile page. A first user profile and a second user profile are accessed by a computing device. First and second pluralities of content items associated with the first and second user are identified. Based on the first and second user profiles, first and second subsets of content items of the first and second plurality of content items are selected. For each content item of the first subset of content items, an image associated with the content item is identified. For each content item of the second subset of content items, an image associated with the content item is identified. Based on the identified images, first and second image collages are generated for the first and second user profiles. The first and second image collages and first and second indicators corresponding to the first and second user profiles are generated for display.
US11856266B2
The present disclosure provides a bullet-screen comment display method, a bullet-screen comment display apparatus, an electronic device, and a computer storage medium, and relates to the technical field of human-computer interaction. The method includes: obtaining a number of bullet-screen comments corresponding to a display page of a current display interface; determining, based on the number of the bullet-screen comments, a bullet-screen comment number value to be displayed on the current display interface; displaying the bullet-screen comment number value in the current display interface; and displaying, in response to a bullet-screen comment display operation by a user for the display page, the bullet-screen comments of the display page.
US11856255B2
Aspects of the present disclosure involve a system comprising a computer-readable storage medium storing a program and method for selecting ads for a video. The program and method provide for receiving a request for an ad to insert into a video playing on a client device, the request including a first content identifier that identifies a first type of content included in the video; determining a set of content identifiers associated with the first content identifier, the set of content identifiers identifying second types of content to filter with respect to providing the ad in response to the request; selecting an ad from among plural ads, by filtering ads tagged with a second content identifier included in the set of content identifiers; and providing the selected ad as a response to the request.
US11856253B2
Methods, apparatus, and systems are disclosed for synchronizing streaming media content. An example apparatus includes a storage device, and a processor to execute instructions to identify a first source streaming broadcast media to a first computing device based on an audio fingerprint of audio associated with the broadcast media, identify sources broadcasting the broadcast media streaming to the first computing device, the sources available to a second computing device including the processor, select a second source of the identified sources for streaming the broadcast media to the second computing device, the second source different than the first source, detect termination of the streaming of the broadcast media on the first computing device, the termination corresponding to a termination time of the broadcast media, and automatically start, by using the selected second source, streaming of the broadcast media to the second computing device at the termination time.
US11856252B2
A method for providing captured video to a subsequent user device, via a video host, including at least some of allowing a user to designate, via a mobile device, at least one video host; allowing the subsequent user, via the subsequent user device, to be associated with the at least one video host; allowing the user to capture video, via the mobile device, and upload or stream the captured video to the video host device(s), wherein the captured video includes at least one categorization for the captured video, as designated by the user prior to capturing the video; and allowing the subsequent user to access, via the subsequent user device, the captured video, via the video host device associated with the at least one video host, wherein the captured video is accessed, based on the at least one categorization for the captured video.
US11856250B2
Methods, apparatus, systems, and articles of manufacture are disclosed to determine a duration of media presentation based on tuning session duration. Example apparatus a receiver to obtain a first tuning session duration indicative of an amount of time between channel changes of a first media presentation device at a first media presentation location, a presentation session estimator to select a model from storage, the model selected based on a match of the first tuning session duration and a second tuning session duration, the model including a relation between the second tuning session duration and a first presentation session duration of media presented on a second media presentation device at a second media presentation location, and estimate a second presentation session duration of media presented within the first tuning session duration based on the model.
US11856249B2
A viewing abandonment factor estimation device includes a memory; and a processor configured to include an estimation model for estimating a factor, the estimation model including a plurality of feature quantities measurable for viewing of a video relevant to an adaptive bit rate video distribution as inputs and the factor of the viewing abandonment in the viewing as an output.
US11856230B2
A method of point cloud coding (PCC) implemented by a video decoder. The method includes receiving an encoded bitstream including a group of frames header, the group of frames header specifying a profile and a level of the encoded bitstream, and decoding the encoded bitstream.
US11856229B2
Decoder retrieval timing information, ROI information and tile identification information are conveyed within a video data stream at a level which allows for an easy access by network entities such as MANEs or decoder. In order to reach such a level, information of such types are conveyed within a video data stream by way of packets interspersed into packets of access units of a video data stream. In accordance with an embodiment, the interspersed packets are of a removable packet type, i.e. the removal of these interspersed packets maintains the decoder's ability to completely recover the video content conveyed via the video data stream.
US11856227B2
Video encoding methods and apparatuses in a video encoding system receive an input residual signal of a current block by a shared transform circuit, apply horizontal transform and vertical transform by a shared transform circuit to generate transform coefficients, apply quantization and inverse quantization to generate recovered transform coefficients, apply inverse vertical transform and inverse horizontal transform to the recovered transform coefficients by the shared transform circuit to generate a reconstructed residual signal for the current block, and encode the current block based on quantized levels of the current block. The shared transform circuit and a coefficient buffer in the folded 4-time transform architecture reuse computation resources in each transform stage. In some embodiments of the folded 4-time transform architecture, a hierarchical design for block size grouping is implemented with fixed throughput for uniform hardware scheduling.
US11856225B2
A method of decoding image data is provided. The method may include generating a dequantized block of an image based on a coded bitstream; determining whether to use one from among an implicit method and an explicit method for selecting a hybrid transform kernel from among one or more hybrid transform kernel that are available for decoding the dequantized block, wherein the one or more hybrid transform kernel are available for decoding the dequantized block based on associations between prediction modes and sizes of blocks; selecting, by using the one from among the implicit method and the explicit method, the hybrid transform kernel from among the one or more hybrid transform kernel; and performing inverse transform coding of the dequantized block based on the selected hybrid transform kernel.
US11856219B2
A proposed intermediate way of handling the renderable portion of the first view results in more efficient coding. Instead of omitting the coding of the renderable portion completely, even more efficient coding of multi-view signals entails merely suppressing the coding of the residual signal within the renderable portion, whereas the prediction parameter coding still takes place from the non-renderable portion of the multi-view signal across the renderable portion so that prediction parameters for the renderable portion may be exploited for predicting parameters for the non-renderable portion. The additional coding rate for transmitting the prediction parameters for the renderable portion may be kept low as this merely aims at forming a continuation of the parameter history across the renderable portion to serve as a basis for prediction parameters of other portions of the multi-view signal.
US11856215B2
Examples of video encoding methods and apparatus and video decoding methods and apparatus are described. An example method of video processing includes performing a conversion between a video and a bitstream of the video according to a rule, wherein the bitstream includes network abstraction layer (NAL) units for multiple video layers according to a rule; wherein the rule defines that a sub-bitstream extraction process to generate an output bitstream comprising an output layer set (OLS) includes one or more operations that are selectively performed responsive to the following conditions: (1) a list of NAL unit header layer identifier values in the OLS does not includes all values of NAL unit header layer identifiers in all video coding layer (VCL) NAL units in the bitstream, and (2) the output bitstream containing a supplemental enhancement information (SEI) NAL unit that contains a scalable-nesting SEI message.
US11856207B2
A three-dimensional data encoding method of encoding three-dimensional points obtained by a sensor includes: encoding local coordinate information indicating sets of local coordinates that are coordinates of the three-dimensional points and are dependent on a location of the sensor; and generating an encoded bitstream including the local coordinate information encoded and global coordinate information indicating global coordinates that are coordinates of a reference point or at least one of the three-dimensional points and are independent from the location of the sensor.
US11856203B1
Advances in deep generative models (DGM) have led to the development of neural face video compression codecs that are capable of using an order of magnitude less data than “traditional” engineered codecs. These “neural” codecs can reconstruct a target image by warping a source image to approximate the content of the target image and using a DGM to compensate for imperfections in the warped source image. The determined warping operation may be encoded and transmitted using less data (e.g., transmitting a small number of keypoints, rather than a dense flow field), leading to the bandwidth savings compared to traditional codecs. However, by relying on a single source image only, these methods can lead to inaccurate reconstructions. The techniques presented herein improve image reconstruction quality while maintaining bandwidth savings, via a combination of using multiple source images (i.e., containing multiple views of the first human subject) and novel feature aggregation techniques.
US11856192B2
A decoder comprises circuitry and memory. The circuitry, using the memory, in operation, determines a number of first pixels and a number of second pixels used in a deblocking filter process, wherein the first pixels are located at an upper side of a block boundary and the second pixels are located at a lower side of the block boundary, and performs the deblocking filter process on the block boundary. The number of the first pixels and the number of the second pixels are selected from among candidates, wherein the candidates include at least 4 and M larger than 4. Response to a location of the block boundary being a predetermined location, the number of the first pixels used in the deblocking filter process is limited to be 4.
US11856185B2
Techniques for video encoding and decoding are described. A method of video processing is disclosed. The method includes, determining, based on a video characteristic of a first video block, an enabling or disabling of a pruning process for a table updating process; updating one or multiple tables, based on the determination and motion information of the first video block, the one or multiple motion tables being History-based Motion Vector Prediction HMVP (HMVP) tables; and performing a conversion between a subsequent video block of the video and bitstream representation of the subsequent video block based on the updated tables.
US11856184B2
A video encoder or decoder processes portions of video using intra coding and with variable block shapes. Under the general aspects, intra prediction directions are adapted to the block shape or aspect ratio. The general aspects described adaptively replace several conventional angular intra prediction modes with wide-angle intra prediction modes for non-square blocks. The total number of angular directions for any block can remain the same as in prior video coding standards or can be reduced or expanded. To keep the same number of prediction directions, directions along a shorter rectangular edge of a target block are removed but replaced with addition directions along the longer edge of the rectangular target block. For directions with wide angles, reference sample smoothing is performed. Signaling can be provided to inform a corresponding decoder regarding the prediction modes and directions.
US11856183B2
According to the disclosure of the present document, a quantization parameter for a quantized escape value in a palette mode can be derived on the basis of minimum quantization parameter information about a conversion skip mode to perform a scaling process on the quantized escape value. Therethrough, the data amount that is required to be signaled for palette mode coding can be reduced, and the efficiency of escape coding in the palette mode can be enhanced.
US11856174B2
A data processing method, a system and a user interface are disclosed, for dosing ink in a digital printer with at least 6 ink channels. A forward transformation model is obtained or computed for defining a relationship between coordinates of device-dependent ink values across the ink channels and coordinates of device-independent colorimetric values in a color space. An inverse model of the forward transformation model is computed, wherein the inverse model comprises an adjustable constraint on each ink channel. One or more constraints are applied to each ink channel with predetermined and/or user-defined value(s). A target colorimetric value is input to the inverse model. An ink value is computed for each ink channel with the inverse model, wherein each computed ink value corresponds to ink dosage in its respective ink channel and the computed ink values collectively correspond substantially to the target colorimetric value.
US11856170B2
Provided are a medium conveyance apparatus, control method, and control program is to enable more precisely detecting an end part in a main scan direction of a medium from an image. A medium conveyance apparatus includes a conveying module to convey a medium, an imaging device to capture an image of the conveyed medium, a storage device to store a low reliability region inside an input image of a medium captured by the imaging device based on a positional relationship between an imaging position of the imaging device and arrangement position of the conveying module, an edge pixel detection module to detect edge pixels from the input image, an end part detection module to detect an end part in a main scan direction of the medium based on edge pixels detected from a region not including the low reliability region inside the input image, and an output control module to output information relating to the detected end part.
US11856167B2
An image forming apparatus includes an operating key, an illuminance sensor, and a controller. The operating key contains a lamp. The illuminance sensor detects an ambient illuminance. The controller controls turning on and off of the lamp. The operating key functions as a first trigger for return from a power-saving mode to a normal mode. The controller turns the lamp off when the ambient illuminance detected by the illuminance sensor in the power-saving mode is equal to or more than a first threshold value, and the controller turns the lamp on when the ambient illuminance detected by the illuminance sensor in the power-saving mode is less than the first threshold value.
US11856157B2
An image reading apparatus includes a cover, a reading device including a light source and a sensor, and a control device including circuitry. The circuitry acquires first data with the light source turned off, acquires second data with the light source turned on, calculates a first evaluation value for each of plural locations of the first data, calculates a second evaluation value for each of plural locations of the second data, determines an open or closed state of the cover based on the first evaluation value and the second evaluation value, determines that the cover is open when at least one of a determination result based on the first evaluation value or a determination result based on the second evaluation value indicates the open state of the cover, and determines that the cover is closed when the two determination results both indicate the closed state of the cover.
US11856156B2
A set of criteria for deploying an advertisement campaign to a set of audience members associated with a region are received. An audience propensity dataset associated with media platforms are received. The media platforms can include a first and second set of media platforms. Content output by the first set of media platforms can be monitorable by an organization, and content output by the second set of media platforms is not monitorable by the organization. A pricing dataset indicating pricing information associated with the first set of media platforms at the region is received. A viewing dataset indicating viewing information for the set of audience members using the first set of media platforms is received. A media plan generated based on a predicted viewership dataset, a tier dataset, and a cost dataset.
US11856149B2
This application discloses a method for establishing a call connection, a first terminal, a server, and a storage medium. The method includes: obtaining, by a first terminal, a second vocoder list of a second terminal, the second vocoder list including vocoders supported by the second terminal and with corresponding priorities; determining, by the first terminal, a first vocoder with the highest priority among vocoders that exist in both a first vocoder list of the first terminal and the second vocoder list, the first vocoder list including vocoders supported by the first terminal and with corresponding priorities, and the priorities of the vocoders being positively correlated with audio frequencies in encoding and decoding of the vocoders; and requesting, by the first terminal by using the first vocoder, to establish a first call connection to the second terminal.
US11856144B2
Disclosed herein are systems and methods for determining whether an automated telephone call has been answered by a particular user, a different person, or a voicemail service. In response to determining that the call has been answered by the user, a different person, or a voicemail service, the systems and methods can output different respective messages, initiate messaging to the user via alternate communication paths, or perform other actions.
US11856140B2
A computer implemented method and computer system for generating outbound calls in a call center in which a plurality of agents are to communicate respectively with outside parties through the outbound calls. The method includes determining a number of agents available for outbound calls, determining phone numbers respectively corresponding to the outside parties, creating an ordered list of calls corresponding to the phone numbers and periodically generating new call attempts by automatically dialing the phone numbers at a dynamic rate, wherein a number of new call attempts is based on a predictive algorithm.
US11856136B2
Systems and methods are described herein for handling video calls placed on hold or otherwise parked by one or more parties within the video call. The systems and methods can determine a video call has been placed on hold (or otherwise set to be parked), and transfer the video call to a call park server (CPS). The systems and methods can then access a content server, retrieve one or more content items (e.g., video clips, interactive content or advertisements, and so on), and present the content items within the on hold video call.
US11856130B2
Systems and methods for providing secure communication between an inmate and an outside user are disclosed. In various aspects, account information of both the user and the inmate is stored. A message transmission is received from a first device that includes a header portion and an encrypted payload portion. The system verifies that confidential communication between the inmate and the outside user is permitted based on the header portion and the stored account information. Once verified, the message is transmitted to a second device without decrypting the payload portion of the message.
US11856127B1
A method and system for triggering hand-off of an incoming call event from a default first telephony application to a second telephony application on a device are disclosed, comprising receiving an incoming call event addressed to the device, causing a notification of the incoming call event using the default first telephony application on the device, during the notification of the incoming call event, and without answering the incoming call event using the default first telephony application, receiving a navigation input on a user interface of the device to navigate to the second telephony application on the device, and, responsive to receiving the input to navigate to the second telephony application on the device, causing the second telephony application to be displayed on the device, and accepting the incoming call event using the second telephony application, creating a telephony connection corresponding to the incoming call event.
US11856108B1
Disclosed in some examples are methods, systems, and machine readable mediums for secure end-to-end digital communications involving mobile wallets. The result is direct, secure, in-band messaging using mobile wallets that may be used to send messages such as payments, requests for money, financial information, or messages to authorize a debit or credit.
US11856106B2
Provided is a method for secure configuration of a device, having the following steps:—ascertaining a block chain data structure based on a cryptocurrency, wherein the block chain data structure has at least one block containing transaction data;—ascertaining at least one transaction belonging to the transaction data, the transaction having a piece of device configuration information;—examining the block chain data structure; and—configuring the device on the basis of the piece of device configuration information on successful examination. A complex independent examination by the device or an entity associated with the device is dispensed in an advantageous manner. The complex step of examination of the actual transaction is transferred to the block chain network and the client merely needs to validate a block chain data structure on the basis of a stability of the block chain.
US11856101B2
A method for providing a secured client computer that includes peripheral components. Each peripheral component processes a corresponding peripheral component data of a data type that is not compatible with peripheral component data types processed by a processor of other peripheral components. The processor of each peripheral component codes the corresponding data of the data type for establishing a secured peer-to-peer communication with other peripheral components.
US11856098B2
A mobility surrogate includes a humanoid form supporting at least one camera that captures image data from a first physical location in which the first mobility surrogate is disposed to produce an image signal and a mobility base. The mobility base includes a support mechanism, with the humanoid form affixed to the support on the mobility base and a transport module that includes mechanical drive mechanism and a transport control module including a processor and memory that are configured to receive control messages from a network and process the control messages to control the transport module according to the control messages received from the network.
US11856097B2
A network interface card, such as a SmartNIC, is used to provide encryption, such as network encryption virtual function (NEVF), for a virtual machine, so that a customer can control network keys in a virtual cloud network. The NEVF includes a memory device (e.g., SRAM) and a crypto processor (e.g., a crypto core). The memory device stores a crypto key. The crypto processor uses the crypto key to encrypt data to and from a virtual machine in the virtual cloud network. A key management system can be used to securely transfer crypto keys to the NEVF. Having one NEVF per virtual machine can enable a customer to manage the crypto key for a virtual cloud network.
US11856093B2
A method for performing spacetime-constrained oblivious transfer between various laboratories of a first party A and various laboratories of a second party B. The method includes providing the spacetime-constrained oblivious transfer to satisfy various conditions. The method further includes encoding, by the laboratories of the first party A, various messages in a quantum state selected from various non-orthogonal quantum states. The method further includes transmitting, by the laboratories of the first party A, the quantum state to a first laboratory of the second party B. The method further includes applying, by the first laboratory of the second party B, a quantum measurement on the quantum state to obtain a classical measurement outcome. The method further includes transmitting, by the first laboratory of the second party B, the classical measurement outcome to the laboratories of the second party B.
US11856088B2
Methods and systems for remote, asynchronous key entry and extraction are provided. A credential device can store a first key thereon, and can store an encrypted key component. A hardware security module manages a key template including a plurality of key components. The hardware security module manages a complementary key to the first key. The key component on the credential device can be encrypted with the first key for storage on the credential device and decrypted by the complementary key at the hardware security module. Alternately, the key component can be encrypted with the complementary key and provided to the credential device for decryption at a secure system via the first key. Accordingly, a key custodian may supply or extract a key component at a hardware security module remotely and at a time convenient to that key custodian.
US11856085B2
An information using device 300 adds an encryption public key held to a blockchain, an information holding device 200 transmits encrypted information as a result of acquiring the encryption public key from the blockchain 400 and encrypting the target information, the information management device 100 stores the encrypted information received, and transmits a storage destination address, the information holding device 100 adds the storage destination address of the encrypted information received to the blockchain 400, the information using device 300 acquires the storage destination address of the encrypted information, and accesses the storage address, the information management device 100 transmits the encrypted information at the storage destination address, in response to the access from the information using device 300, and the information using device 300 decrypts the encrypted information received, using an encryption secret key held.
US11856080B2
A method for synchronizing a first time domain with a second time domain of a system on chip includes a detection of at least one periodic trigger event generated in the first time domain, the second time domain or in a third time domain; acquisitions, made at the instants of the at least one trigger event, of the current timestamp values representative of the instantaneous states of the time domain(s) other than the trigger time domain; a comparison, made in the third time domain, between differential durations between current timestamp values which are respectively acquired successively; and a synchronization of the second time domain with the first time domain, on the basis of the comparison.
US11856049B2
Systems and methods for processing and displaying information for multiple applications on a computing device are disclosed herein. An example method includes a mobile device retrieving, from a pinboard server, pin blocks corresponding to applications. The mobile device may then filter the pin blocks based on (i) a geolocation of the mobile device, (ii) a user profile activated on the mobile device, (iii) a time of day, (iv) a date, or (v) an activity associated with a user. The mobile device may then display the filtered pin blocks.
US11856046B2
Systems, devices, and techniques are disclosed for endpoint URL generation and management. An entity identifier may be received. The entity identifier may be hashed with a hashing algorithm to generate an alphanumeric string. A custom endpoint URL may be generated by combining the alphanumeric string with a URL that identifies an endpoint located on a server of a cloud computing system. A CNAME record in a DNS database may be updated to associate the URL that identifies the endpoint located in a stack of cloud computing system with the custom endpoint URL.
US11856044B1
Apparatuses, systems, and techniques for isolating the performance of a quality-of-service (QoS) policy for improved data streaming systems and applications. In at least one embodiment, a metric is determined for a QoS policy used to provide an application session based on a value of at least one characteristic of the application session that reflects an impact of one or more external conditions beyond the control of the QoS policy.
US11856041B2
Disclosed is distributed routing and load balancing in a dynamic service chain, receiving a packet at a first service instance, including a NSH imposed on the by a service classifier. The NSH includes a stream affinity code consistent for packets in a stream. The method also includes processing the packet at the first instance where the instance performs a first service in a service chain that includes second and third services. The first service instance accesses a flow table using the stream affinity code to select a second service instance performing the second service from among service instances performing the second service, and the first instance routes the packet to the selected second service instance upon egress from the first service instance. The method can include hashing the stream affinity code to access the flow table and access an available instance using the hash as a key to a CHT.
US11856032B2
Technologies for providing policy-based secure containers for multiple enterprise applications include a client computing device and an enterprise policy server. The client computing device sends device attribute information and a request for access to an enterprise application to the enterprise policy server. The enterprise policy server determines a device trust level based on the device attribute information and a data sensitivity level based on the enterprise application, and sends a security policy to the client computing device based on the device trust level and the data sensitivity level. The client computing device references or creates a secure container for the security policy, adds the enterprise application to the secure container, and enforces the security policy while executing the enterprise application in the secure container. Multiple enterprise applications may be added to each secure container. Other embodiments are described and claimed.
US11856029B2
The present disclosure relates to securing networks against attacks launched via connection of peripheral devices to networked devices. According to one aspect, there is provided a computer-implemented method of automatically updating a network security policy, the method comprising: running a machine learning algorithm to continuously update a plurality of weighting coefficients associated with a respective plurality of threat factors, the threat factors each having values defined for each of a plurality of requests for respective peripheral devices to connect to one or more networked devices which are communicably coupled to a secure network; and automatically updating a security policy associated with the secure network in respect of a particular threat factor when that threat factor's associated weighting coefficient changes by more than a predetermined amount in a predetermined period, wherein requests for peripheral devices to connect to the networked devices are automatically approved or denied in dependence on that policy.
US11856020B2
Systems and methods are described for scanning or monitoring of Domain Name System (DNS) records of an entity for identifying anomalous changes to the DNS records that may be indicative of possible DNS hijacking. According to one embodiment, DNS monitoring engine running on a network security appliance protecting a private network, or implemented as a cloud-based service can be used for monitoring DNS records of the entity. Any modification in the monitored DNS record(s) can be detected within a pre-defined or configurable time-frame. The detected modification can be determined to be anomalous or not, by assigning a criticality value based on current value and previous value of one or more fields of the DNS record, one or more attributes of the DNS record and one or more derived attributes based on the DNS record.
US11856015B2
An anomalous action security assessor is disclosed. An anomaly is received from a set of anomalies. A series of linked queries associated with the anomaly is presented to the user. The series of linked queries includes a base query and a subquery. The base query tests an attribute of the anomaly and resolves to a plurality of outcomes of the base query. The subquery is associated with an outcome of the plurality of outcomes of the base query. The series of linked queries finally resolve to one of tag the anomaly and dismiss the anomaly. A security alert is issued if the series of linked queries finally resolves to tag the anomaly.
US11856013B2
A system includes a log receiving module, an authentication graph module, a sampling module, an embedding module, a training module, a link prediction module, and an anomaly detection module. The log receiving module is configured to receive a first plurality of network-level authentication logs. The authentication graph module is configured to generate an authentication graph. The sampling module is configured to generate a plurality of sequences. The embedding module is configured to tune a plurality of node embeddings according to the plurality of sequences. The training module is configured to train a link predictor according to the plurality of node embeddings and ground-truth edge information from the authentication graph. The link prediction module is configured to apply the link predictor to performs a link prediction. The anomaly detection module is configured to perform anomaly detection according to the link prediction.
US11856010B2
Malicious domain finding using DNS query pattern analysis is disclosed. A first DNS query signature and a second DNS query signature are generated, using a set of DNS query records. The first and second DNS query signatures are compared, and the second DNS query signature is identified as malicious based on a detected match between the first and second DNS query signatures.
US11856001B2
One variation of a method for end-to-end encryption of electronic mail includes: receiving an email encrypted according to a first encryption protocol and designating a recipient within an external domain; verifying encryption protocol supported by the recipient's mail client; in response to a recipient exclusion database identifying the recipient, encrypting the email to a less-robust encryption protocol supported by the recipient mail client and transmitting the email to the !recipient; in response to the recipient exclusion database excluding the recipient and the recipient mail client supporting the first encryption protocol, transmitting the email encrypted according to the first encryption protocol to the recipient; and, in response to the recipient exclusion database excluding the recipient and the recipient mail client not supporting the first encryption protocol, generating a notification email including a hyperlink to a secure webpage containing content of the email and transmitting the notification email to the recipient.
US11856000B2
An apparatus and method for improving the security of trigger action platforms of a type providing interoperability between computer services send the trigger service additional information about an interoperability rule for the computer services so that the trigger service may implement a minimizer reducing the data communicated when the interoperability is implemented. Implementation of the minimizer may be done in a way that is transparent to the trigger action platform eliminating the need for disruption of existing interoperability services.
US11855992B2
Service-to-service role mapping systems and methods are disclosed herein. An example role mapping service is positioned between a directory service and a search engine service, the directory service managing user information and permissions for users, the role mapping service mapping one or more search engine service roles to a user based on the user information and permissions received from the directory service.
US11855987B1
A method of utilizing a distributed ledger for a cloud service access control. The method may include receiving, by an identity and access management (IAM) service, an identifier of a client of a cryptographically protected distributed ledger; transmitting, to a proxy service, a subscription request for distributed ledger transactions initiated by the client; receiving, from the proxy service, a transaction notification comprising an identifier of the client, an identifier of an autonomous agent, and an identifier of a cloud service; receiving, from the cloud service, a validation request with respect to an action request submitted by the autonomous agent; validating, using the transaction notification, the action request; and notifying the cloud service of validity of the action request.
US11855984B2
A system and method are disclosed for providing secure access to a cloud service. In one embodiment, the method includes: receiving a request to access a cloud service hosted on a cloud computing system from a tenant device of a tenant; authenticating the tenant to access the requested cloud service via the application based on a tenant identifier and unique identifier associated with the cloud service; generating a ticket indicating that the tenant is authorized to access the application, wherein the ticket includes a unique identifier associated with the application associated with the requested cloud service; transmitting the ticket to the third-party server communicatively coupled to the cloud computing system; and providing access to the cloud service to the tenant via the application hosted on the third-party server in response to successful validation of the ticket by the third-party server.
US11855971B2
A method is disclosed and includes receiving, by a first communication device, a first local authentication model, the first local authentication model being derived from a master authentication model at a remote server computer, and receiving a request to perform an interaction with a second communication device, the interaction being performed in an offline manner. The method may further include applying, by the first communication device, the first local authentication model to the interaction to determine a first authentication result and determining whether or not to allow the interaction to proceed based upon the first authentication result. The method may also include updating the first local authentication model using the master authentication model when the first communication device is online.
US11855965B1
A bridge application receives a request from a remote device to access a support server. Subsequently, the bridge application established a secure connection between the bridge application and the support server and establishes a secure connection between the bridge application and the remote device. Once these secure connections are both established, communications are relayed between the remote device and the support server to effect a software change to network device. The secure connections are later terminated upon completion of the software change to the remote device. Related apparatus, systems, techniques and articles are also described.
US11855959B2
Some embodiments provide a method for providing dynamic host configuration protocol (DHCP) services to different data compute nodes (e.g., virtual machines) that belong to different logical networks (e.g., for different tenants in a datacenter). In some embodiments, the method inserts a logical network identifier (LNI) value to each DHCP packet and forwards the packet to a DHCP server module for processing the DHCP request. Based on the LNI value, the DHCP server of some embodiments identifies the logical network from which the DHCP packet is received. The DHCP server then provides the requested DHCP service (e.g., assigning an IP address to a data compute node that has originated the DHCP packet, assigning a domain name, etc.) according to a DHCP service configuration for the identified logical network.
US11855958B2
A map of IP addresses of a distributed cloud computing network to one or more groupings is stored. The IP addresses are anycast IP addresses for which compute servers of the distributed cloud computing network share. These IP addresses are to be used as source IP addresses when transmitting traffic to destinations external to the cloud computing network. The map is made available to external destinations. Traffic is received at the distributed cloud computing network that is destined to an external destination. An IP address is selected based on the characteristic(s) applicable for the traffic and the map. The distributed cloud computing network transmits the traffic to the external destination using the selected IP address.
US11855930B2
TDD configuration may be dynamically and/or semi-statically signaled to user equipment devices by a base station. Semi-static TDD configuration may include: an initial portion for downlink transmission; a flexible portion; and a terminal portion for uplink transmission. TDD structure of the flexible portion may be determined later by transmission of dynamic physical layer configuration information such as downlink control information (DCI) and/or slot format indicator (SFI). (The SFI may be included in a group common PDCCH of a slot.) The downlink portion and/or the uplink portion may include subsets whose nominal transmit direction is subject to override by transmission of dynamic physical layer configuration information.
US11855917B2
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure discloses a system, a data transmission method and a network equipment supporting a Packet Data Convergence Protocol (PDCP) duplication function. The data transmission method supporting a PDCP duplication function comprises the steps of: transmitting, by a first network equipment, a configuration instruction message of a radio bearer supporting a PDCP duplication function to a second network equipment; and, performing, by the first network equipment and the second network equipment, transmission of a data packet of the radio bearer configured with the PDCP duplication function.
US11855914B2
Embodiments herein describe a group of APs that uses a shared radar cache to select a new channel after vacating a current channel when performing dynamic frequency selection (DFS). The group of APs can set aside memory to store status information about the DFS channels in the frequency band. For example, when one AP detects a radar event (and has to vacate a DFS channel), the AP updates an entry for that channel in the shared radar cache. The APs can also query the cache to determine a new channel after vacating its current channel. That is, the shared radar cache may store the most recent radar events occurring in a channel. In this manner, the APs can select a new channel that has little or no recent radar events, which reduces the likelihood the AP will have to vacate the new channel.
US11855901B1
In response to certain events in a network device, visibility packets may be generated. A visibility packet may be or comprise at least a portion of a packet that is in some way associated with the event, such as a packet that was dropped as a result of an event, or that was in a queue at the time of an event related to that queue. A visibility packet may be tagged or otherwise indicated as a visibility packet. The network device may include one or more visibility samplers through which visibility packets are routed on their way to a visibility queue, visibility subsystem, and/or out of the network device. The samplers allow only a limited sample of the visibility packets that they receive to pass through the sampler, essentially acting as a filter to reduce the amount of visibility packets that will be processed.
US11855899B2
A network device for use with a client device and a cable modem termination system (“CMTS”), the client device being configured to run applications requiring data traffic of a first and second quality of service (“QoS”). The CMTS is configured to provide a first service flow and a second service flow to the network device. The network device provides a local area network (“LAN”) for connection to the client device and a network address translation (“NAT”). The NAT is configured to map the network device IP address to the client device IP address; divide the source ports into a first range and a low latency range; assign the respective data traffic of the applications to at least one port within the first range and to at least one port within the low latency range; and modify the low latency range of source ports based on a change in data traffic.
US11855895B2
Methods and systems are provided for latency-oriented router. An incoming packet is received on a first interface. The type of the incoming packet is determined. Upon the detection that the incoming packet belongs to latency-critical traffic, the incoming packet is duplicated into one or more copies. Subsequently, the duplicated copies are sent to a second interface in a delayed fashion where the duplicated copies are spread over a time period. The duplicated copies are received and processed at the second interface.
US11855882B2
A display system for a vehicle includes: an application server including a switched outputter that switches between destinations to one of which the vehicle signal is to be outputted, and outputs the vehicle signal, and image generators that generate an image signal based on the vehicle signal; display clients that display an image based on the image signal; and a signal path determiner that determines a first signal path for transmission of the vehicle signal and the image signal among signal paths connecting the switched outputter, the image generators, and the display clients. When an anomaly occurs in at least one element among the image generators and the display clients, the signal path determiner changes a signal path for transmission of the vehicle signal and the image signal from the first signal path to a second signal path.
US11855877B2
An information management method includes that a controller generates a first message carrying an address of a first next hop of a network device. The first message includes first identification information. The first identification information instructs the network device to delete, from a next hop table stored in the network device, an entry of the first next hop corresponding to the address of the first next hop. The network device receives the first message, and deletes the entry of the first next hop as indicated by the first identification information. The controller withdraw an unavailable next hop by separately sending information about the next hop to the network device without route prefix information, effectively saving a system resource occupied for route withdrawal message exchanging between the controller and the network device, and improving service processing efficiency.
US11855870B2
Techniques and systems for providing a trend server outside a content provider network to communicate with the content provider network to build a trend record based on responses received from the content provider network for monitoring certain activity trend or tendency in the content provider network and provide an alert when the content provider network behaves abnormally.
US11855869B2
Disclosed herein are methods, systems, and processes for centralized containerized deployment of network traffic sensors to network sensor hosts for deep packet inspection (DPI) that supports various other cybersecurity operations. A network sensor package containing a pre-configured network sensor container is received by a network sensor host from a network sensor deployment server. Installation of the network sensor package on the network sensor host causes execution of the network sensor container that further causes deployment of an on-premise network sensor along with a network sensor management system, a DPI system, and an intrusion detection/prevention (IDS/IPS) system. The configurable on-premise network sensor is deployed on multiple operating system distributions of the network sensor host and generates actionable network metadata using DPI techniques for optimized log search and management and improved intrusion detection and response (IDR) operations.
US11855865B2
Methods, systems, and storage media are described for Internet of Things (IoT) hubs and IoT cradles in mesh networks and/or fog computing systems while providing interoperability among IoT devices provided by various manufacturers, vendors, and service providers. IoT devices may be connected or attached to IoT cradles, and the IoT cradles may communicate data among themselves over a cradle network. The IoT cradles may also communicate IoT data with the IoT hub over a hub network. The IoT hub may communicate the IoT data with clients and/or servers over a wide area network using wired or wireless communication protocols. Clients may access resources and/or services provided by the IoT devices by accessing the IoT hub via a dedicated application. Other embodiments may be described and/or claimed.
US11855860B1
A plurality of resolved incident tickets may each include a worklog providing a history of actions taken during attempts to resolve a corresponding resolved incident and a resolution having at least one resolution statement. An iterative processing of the plurality of resolved incident tickets may include processing each resolution statement of the resolution with at least one domain-specific statement classifier specific to the incident domain to either discard or retain a classified resolution statement; processing each retained classified resolution statement in conjunction with the worklog to determine whether to discard or retain the resolved incident; providing an updated resolution for the resolved incident when the resolved incident is retained, and adding the resolved incident with the updated resolution to the processed incident tickets. Then, at least one machine learning model may be trained to process a new incident ticket, using the processed incident tickets.
US11855857B2
Upon receiving a virtual network function (VNF) creation request including location information, a VNF manager (VNFM) of a network virtualization system transmits the VNF creation request to a VNF orchestrator (NFVO). Using the location information included in the VNF creation request, the NFVO extracts a virtual infrastructure manager (VIM) that satisfies the requirement of the location information with reference to the VIM information, and selects, from among the extracted VIMs, the VIM that satisfies a creation requirement other than the location information with reference to physical device/virtual resource information.
US11855856B1
Systems and methods described herein provide an interface for an Network Data Analytics Function (NWDAF) to extract events from an Edge Application Server Discovery Function (EASDF) for a given network slice. An NWDAF in a core network receives an information request for an Edge Application Server (EAS) discovery service. The NWDAF sends, to an EASDF, a data request based on the information request. The NWDAF receives event data from the EASDF that is responsive to the data request and generates an analytics report based on the event data.
US11855851B2
A lazy graph construction with compression includes receiving a query related to a network; one of generating a site graph for the network and accessing the site graph already in memory; performing a search on the site graph based on the query; accessing data in a database and generating, in the memory, a plurality of sub-graphs using the data, for the query; and providing a solution to the query based on the search and a search of the plurality of sub-graphs. The site graph can be at a site level and includes network elements and associated connections in the network, and the plurality of sub-graphs can be at an intra-site level including any of component-to-component connections and intra-component connections.
US11855846B2
The present disclosure relates to communication methods and communication apparatuses. In one example method, a first data analytics network element receives first information of an application from a first network element, where the first information includes at least one of first application description information or an application status that correspond/corresponds to the application. The first application description information includes an application identifier and first IP information that correspond to the application, and the application status includes a foreground state or a background state of the application. The first data analytics network element determines second information based on the first information. The first data analytics network element sends the second information to a second network element.
US11855842B1
In embodiments, a computer system of a primary entity receives from a secondary entity a first communication about a relationship instance between the primary entity and the secondary entity, and transmits to an Online Service Provider (OSP) a second communication with a dataset. The dataset has dataset parameters about the relationship instance. The second communication causes the OSP to select a file template per the dataset, to produce a resource for the dataset, and to prepare a digital exhibit that is arranged to report the resource as answering the identified requirement. The OSP then transmits to the computer system a third communication that includes an access indicator adapted to facilitate viewing the digital exhibit. Upon receiving the third communication, the computer system transmits a fourth communication to the device of the secondary entity, the fourth communication including the access indicator.
US11855839B2
A system, apparatus, and method for automatically provisioning a new IoT device. For example, one embodiment of a system comprises: an Internet of Things (IoT) service comprising: an IoT database to store user account data and IoT devices associated with each user account; an application programming interface (API) exposed to one or more online retail services to allow the online retail services to submit data related to IoT device purchases to the IoT service; a first IoT device purchased from the online retail service by a first user associated with a first user account on the IoT service, wherein in response to the first user purchasing the first IoT device, the online retail service is to transmit first identification data to identify the first IoT device and second identification data to identify the first user account; and device provisioning circuitry and/or logic to automatically add the first IoT device to the first user account on the IoT database in response to receipt of the first and second identification data.
US11855838B1
Various examples described herein are directed to systems and methods for providing a user interface at a plurality of computing devices. A first interface application executing at a first computing device may determine a first state for a user interface. The first interface application may detect a set of user computing devices for providing the user interface to a user and select a second computing device that is in the set of user computing devices based at least in part on the first state of the user interface. The first interface application may send a description of the user interface to the second computing device.
US11855837B2
Example techniques for adaptive time window-based log message deduplication are described. In an example, message values are obtained from received log messages. Further, the number of log messages received in a time window having a message value is counted. A log message from which the message value is obtained and the counted number are transmitted upon expiry of the time window. A length of a time window in which a subsequent counting of log messages is to be performed is determined based on various parameters.
US11855834B2
An electronic device includes a traffic redirect module that creates a traffic sink interface that enables data to be sent to it, without generating an error if an underlying physical link does not exist. To send data over a physical link, a processor of the electronic device creates a network interface to connect to another electronic device using a transport connection over the physical link. If the physical link disconnects, then the processor removes the network interface, and the traffic redirect module redirects data to be sent to the other electronic device to use the traffic sink interface, without indicating that the physical link has disconnected. When the physical link reconnects, or a new physical link to the other electronic device is established, the processor creates a new network interface to connect to the other electronic device using the transport connection over the reconnected or new physical link.
US11855819B2
Wireless communications systems and methods related to multiplexing different waveforms in wireless networks are provided. A first wireless communication device identifies a configuration for communicating a first guard interval (GI)-based waveform signal after at least one of a second GI-based waveform signal or a cyclic prefix (CP)-based waveform signal. The first wireless communication device communicates, with a second wireless communication device, the first GI-based waveform signal including a plurality of first symbols, wherein a beginning symbol of the plurality of first symbols include repetitions of a reference signal sequence based on the configuration.
US11855813B2
The nonlinearity of power amplifiers (PAs) has been a severe constraint in performance of modern wireless transceivers. This problem is even more challenging for the fifth generation (5G) cellular system since 5G signals have extremely high peak to average power ratio. Nonlinear equalizers that exploit both deep neural networks (DNNs) and Volterra series models are provided to mitigate PA nonlinear distortions. The DNN equalizer architecture consists of multiple convolutional layers. The input features are designed according to the Volterra series model of nonlinear PAs. This enables the DNN equalizer to effectively mitigate nonlinear PA distortions while avoiding over-fitting under limited training data. The non-linear equalizers demonstrate superior performance over conventional nonlinear equalization approaches.
US11855794B2
A system for wireless presentation is provided, including a server, and a plurality of user terminals connected to the server, wherein each user terminal includes a user display and at least one first processing apparatus associated to a display unit and configured to establish a connection to the server. The server can be adapted to preconfigure a plurality of virtual rooms, each virtual room being selectable by at least one user terminal. The server can further be configured to simultaneously manage a plurality of temporary sessions, each temporary session corresponding to one of the plurality of virtual rooms. The system can be configured, when a first user terminal selects a virtual room, to create a temporary session corresponding to the selected virtual room and to allow said first user terminal to access the temporary session. Each temporary session can be accessible by at least another user terminal. The at least one first processing apparatus can be associated to a predetermined virtual room and can be configured to access a temporary session corresponding to the predetermined virtual room. In each temporary session, at least one user terminal which has accessed the temporary session is a presenter user terminal which is configured to transmit an image signal to all the other user terminals which have accessed the same temporary session and to the first processing apparatus which has accessed the same temporary session. All the user terminals other than the presenter user terminal which have accessed the same temporary session as the presenter user terminal can be configured to display, via the respective user displays, first image content on the basis of the image signal. Furthermore, the at least one first processing apparatus can be configured to cause the display unit to display second image content on the basis of the image signal.
US11855786B2
Systems and methods described herein provide for intelligent differentiated retransmissions in Radio Access Networks (RANs), such as Fifth Generation New Radio (5G-NR) networks, to provide consistent low latency for different service requirements. A network device determines if consistent low latency is required for a communication session requested by a user equipment (UE) device. The network device selects, based on the determining, retransmission settings for the communication session and sends the retransmission settings to an access station of a radio access network (RAN).
US11855780B2
Various aspects related to ACK/NACK feedback for multi-TRP transmission scenarios are described. A base station, may send, to a UE, information indicating PDCCH monitoring occasions for each of a plurality of TRPs. In one aspect, the base station may send information indicating whether ACK/NACK feedback across the plurality of TRPs is allowed. The base station may send rules to the UE for performing ACK/NACK feedback bundling for providing feedback to the plurality of TRPs. The base station may also send information indicating a DAI definition for interpreting DAIs transmitted by the plurality of TRPs in corresponding PDCCH transmissions indicating whether the DAIs are independent or joint. The base station may receive a joint ACK/NACK feedback from the UE in a PUCCH based on the rules, or may receive multiple ACK/NACK feedback from the UE in a PUCCH for a first TRP independent from a second TRP.
US11855778B2
A network interface for a storage controller includes a processor and a memory that stores an instruction code to be executed by the processor. The processor executes protocol processing for transmitting and receiving packets via a network. The processor reproduces a first packet not received from the network, from a plurality of other received packets included in an error correction packet group same as that of the first packet.
US11855766B2
Technologies for dynamically managing resources in disaggregated accelerators include an accelerator. The accelerator includes acceleration circuitry with multiple logic portions, each capable of executing a different workload. Additionally, the accelerator includes communication circuitry to receive a workload to be executed by a logic portion of the accelerator and a dynamic resource allocation logic unit to identify a resource utilization threshold associated with one or more shared resources of the accelerator to be used by a logic portion in the execution of the workload, limit, as a function of the resource utilization threshold, the utilization of the one or more shared resources by the logic portion as the logic portion executes the workload, and subsequently adjust the resource utilization threshold as the workload is executed. Other embodiments are also described and claimed.
US11855762B2
Provided are a method in which a terminal determines whether or not information is successfully transmitted to a plurality of terminals in a group in a wireless communication system, and a device supporting same. The method can comprise the steps of: transmitting the information to a plurality of terminals in the group; receiving zero or one or more feedback information items on a first resource in response to the transmitted information; and determining whether or not the information is successfully transmitted to the plurality of terminals in the group, on the basis of power measured in the first resource and power measured in a second resource.
US11855755B2
A WDM1r combiner for a PON. The output end of an input waveguide is connected to the input end of a first grating filter, the output end of the first grating filter is connected to the input ends of a first mode filter, a second grating filter, a second mode filter, a connecting waveguide, a third grating filter, a third mode filter, and a fourth grating filter in sequence, and the output end of the fourth grating filter is connected to an output waveguide. The function of the WDM1r combiner for a PON is achieved in the form of cascaded grating filters; different central wavelengths and bandwidths of four channels are obtained by optimizing a grating structure; an on-chip WDM1r combiner which is low in insertion loss and crosstalk and has flat-top response is obtained; the combiner has the advantages of being simple in structure, simple in process, excellent in performance, etc.
US11855752B2
Embodiments of the present disclosure disclose a method and an apparatus for pushing information, a method and an apparatus for controlling presentation of content. The method for pushing information includes: determining vehicle information of a communicatively connected autonomous vehicle, the vehicle information including autonomous vehicle driving route information; selecting to-be-played content matching the vehicle information from a pre-stored set of to-be-played contents according to the vehicle information, and storing the elected to-be-played content to the sub-set of to-be-played contents; and transmitting the sub-set of to-be-played contents to the autonomous vehicle so that the autonomous vehicle plays the to-be-played content in the sub-set of to-be-played contents. According to the embodiment, targeted to-be-played content can be sent to the autonomous vehicle.
US11855735B2
The present application relates to devices and components including apparatus, systems, and methods for beam failure recovery operations in wireless communication systems.
US11855728B2
A method performed by a wireless device (510, 800, 1200) for reporting channel state information (CSI) for a downlink channel is disclosed. The method comprises transmitting (601, 705) a CSI report for the downlink channel to a network node (560, 1100), the CSI report comprising: a set of reported coefficients; an indication of how the network node is to interpret the set of reported coefficients; and an indication of a payload size of the set of the reported coefficients.
US11855727B2
The generation of a channel state information report is provided. The generation includes transmitting reference signals to a user equipment, and receiving a reported set of quantized weighting coefficients, each of the weighting coefficients corresponding to a respective beam index and a respective tap index, where a set of beams based on the received reference signals is selected, where each of the beams corresponds to a discrete Fourier transform vector, and where each of the beams has a corresponding beam index. The tap index corresponds to a member of a Fourier basis set, where at least two subsets of the reported set of weighting coefficients are quantized according to separate quantization procedures.
US11855724B2
An apparatus and a method for generating a frame for communication using beamforming in a wireless communication system are provided. A method for transmitting a signal in a transmitting stage includes determining a beam change time of a region for transmitting information in a frame, and transmitting the information to a receiving stage over the region for transmitting the information by considering the beam change time. The frame includes a plurality of regions divided based on a type of the information transmitted to the receiving stage, and the plurality of the regions includes different beam change times.
US11855723B2
A beamforming training method includes sending, by a first device, first indication information to a second device, where the first indication information instructs the second device to not perform an initiator sector sweep (ISS), sending, by the first device, a sector sweep frame of a responder sector sweep (RSS) to the second device, and receiving, by the first device, feedback information obtained by the second device during the RSS.
US11855721B2
Methods, systems, and devices for wireless communications are described. A method of wireless communication at a user equipment (UE) is described that may include receiving a data packet transmission over a wireless channel from a base station. The method may further include determining a set of intrinsic log likelihood ratios (LLRs) based at least in part on the data packet transmission and determining an accumulated capacity for the wireless channel based at least in part on the set of intrinsic LLRs. The method may also include determining a channel quality indicator index or a transmission rank for the wireless channel based at least in part on the accumulated capacity and transmitting a feedback message that indicates the channel quality indicator index or the transmission rank for the wireless channel to the base station.
US11855713B2
The present disclosure relates to a method implemented by a first NFC device, wherein the establishment of a transaction with a second NFC device configured in reader mode is performed when the signal level received by the first device, configured in card mode, reaches a first threshold, depending on the type of modulation technology of the second device.
US11855710B2
An echo cancellation device and an echo cancellation method thereof applied in a communication device are provided. The echo cancellation device includes an echo canceller and a combine circuit. The echo canceller obtains a plurality of delayed signals from a local signal of the communication device, and the delayed signals are divided into a plurality of delayed signal groups. The echo canceller selectively ignores at least one of the delayed signal groups, and the echo canceller generates an echo cancellation signal with the others of the delayed signal groups. The combine circuit is coupled to an interface circuit of the communication device to receive a received signal. The combine circuit cancels an echo component of the received signal with the echo cancellation signal to generate a cancelled signal.
US11855709B2
Methods, systems, and storage media are described for the Embodiments discussed herein may relate to enhancements to radio link monitoring (RLM) for new radio (NR) systems. Other embodiments may be described and/or claimed.
US11855704B1
A communication network includes a coherent optics transmitter, a coherent optics receiver, an optical transport medium operably coupling the coherent optics transmitter to the coherent optics receiver, and a coherent optics interface. The coherent optics interface includes a lineside interface portion, a clientside interface portion, and a control interface portion.
US11855703B2
A coherent transceiver includes a modulator, a receiver, a filter, a splitter, a detector, and a controller. The modulator modulates a data on the basis of laser light and outputs transmission light. The receiver receives reception light with same wavelength as the transmission light from input multiplexed light, on the basis of the laser light. The filter is arranged on an input stage of the receiver and includes a first port that inputs the multiplexed light, a filter body that transmits the reception light from the multiplexed light, and a second port that outputs the transmitted reception light. The splitter splits the transmission light travelling from the modulator and inputs the splitted transmission light. The detector detects a level of the splitted transmission light input. The controller adjusts a passband of the filter on the basis of the detected level.
US11855702B2
A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
US11855698B2
Methods and systems for a distributed optical transmitter with local domain splitting are disclosed and may include, in an optical modulator integrated in a silicon photonics chip: receiving electrical signals, communicating the electrical signals to domain splitters along a length of waveguides of the optical modulator via one or more delay lines, and generating electrical signals in voltage domains utilizing the domain splitters for modulating the optical signals in the waveguides of the optical modulator by driving diodes with the electrical signals generated in the voltage domains. The delay lines may comprise one delay element per domain splitter, or may comprise a delay element per domain splitter for a first subset of the domain splitters and more than one delay element per domain splitter for a second subset of the domain splitters.
US11855696B2
Methods, systems, and devices for network communications to reduce optical beat interference (OBI) in upstream communications are described. For example, a fiber node may provide a narrow band seed source to injection lock upstream laser diodes. Therefore, upstream communications from each injection locked laser diode may primarily include the wavelength associated with each seed source. The seed sources may be unique to each end device and configured to minimize OBI. That is, the upstream laser diodes may be generic, but the received seed source may enable upstream communications at varying wavelengths. The fiber node may provide each seed source by filtering (e.g., by a grating filter) a broadband light source.
US11855692B2
An apparatus and method is provided to correlate radiation beams, such as RF beams, optical beams, and/or acoustic beams. A plurality of sensors are distributed according to a first pattern and disposed adjacent to a first interference region. The plurality of sensors may capture incoming radiation and convert the incoming radiation to a plurality of signals. A plurality of radiating elements are distributed according to a second pattern that differs from the first pattern and are disposed adjacent to a second interference region. A plurality of channels are connected between the sensors and the radiating elements, each channel connecting a corresponding sensor to receive a corresponding signal. Each of the radiating elements is in communication with a corresponding one of the plurality of channels to provide an outgoing radiation corresponding to the signal received by the channel. The second pattern has a relationship to the first pattern such that first and second beams of incoming radiation in the first interference region captured by the plurality of sensors are respectively mapped to corresponding first and second beams of outgoing radiation emitted by the plurality of radiating elements into the second interference region.
US11855691B1
The disclosure describes a system that includes a self-driving system for operating a vehicle autonomously, one or more optical transmitters mounted on the vehicle, and one or more computing devices in communication with the self-driving system and the one or more optical transmitters. The one or more computing devices are configured to operate the self-driving system to cause the vehicle to approach a designated location in proximity of a structure on which one or more receivers are mounted and determine that the one or more optical transmitters have an alignment with the one or more receivers. Then, the one or more computing devices are configured to operate the one or more optical transmitters to establish an optical communication link with the one or more receivers and transmit data to the one or more receivers over the optical communication link.
US11855687B2
In order to measure the signal quality of each of optical signals transmitted/received via a plurality of transmission lines, an optical communication system 1 is provided with a dummy light source 10 for outputting dummy light, a switching means 20 for outputting the dummy light to a first transmission line 40a, and a light-receiving means 30 for acquiring first signal quality from the dummy light received via the first transmission line 40a, the switching means 20 switching the output destination of the dummy light from the first transmission line 40a to a second transmission line 40b, and the light-receiving means 30 acquiring second signal quality from the dummy light received via the second transmission line 40b.
US11855685B2
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may transmit uplink transmissions according to a frequency hopping pattern. The UE may identify that a first set of uplink transmissions are to be transmitted to a base station by a first set of resources (e.g., a first set of slots, a first set of frequency resources) as indicated by the frequency hopping pattern. The UE may further identify, based on the frequency hopping pattern, that a second set of uplink transmissions are to be transmitted to the base station by a second set of resources (e.g., a second set of slots, a second set of frequency resources). The first set of slots and the second set of slots may each include more than one slot. Additionally, the first and second set of resources may be within a same bandwidth part or in different bandwidth parts.
US11855672B2
A converged device with dual RFPA technology for a dynamic switchable mode. One example provides a communication device comprising a RF transmitter system and a controller. The RF transmitter system includes a plurality of RFPAs, each RFPA having a biasing system and outputting an output signal, and a summing junction, wherein the output signal of each RFPA are combined to form an output RF transmitter signal. The controller is configured to control the biasing state of each biasing system to a nominal bias state for a first mode of the communication device. The controller is configured to control a first plurality of offset voltages applied to each biasing system for a second mode of the communication device. The controller is configured to control a second plurality of offset voltages applied to each biasing system for a third mode of the communication device.
US11855662B2
A method of compressing data is described in which the compressed data is generated by either or both of a primary compression unit or a reserve compression unit in order that a target compression threshold is satisfied. If a compressed data block generated by the primary compression unit satisfies the compression threshold, that block is output. However, if the compressed data block generated by the primary compression unit is too large, such that the compression threshold is not satisfied, a compressed data block generated by the reserve compression unit using a lossy compression technique, is output.
US11855655B2
A circuit with an interface, a transmit data register coupled to the interface, a storage device coupled to the transmit data register and including a plurality of storage locations, each storage location adapted to store a data unit, and a serial register coupled between the storage device and an output. The circuit also includes a CRC generation circuit having an input coupled between an output of the transmit data register and the storage device. The CRC generation circuit includes a first CRC generation block for providing a CRC in response to an X-bit data unit and an X-bit polynomial and a second CRC generation block with a collective X-bit input for providing a CRC in response to an X-bit data unit and a 2X-bit polynomial in a single clock cycle and a 2X-bit data unit and a 2X-bit polynomial in two clock cycles.
US11855653B2
A physical quantity detection circuit includes an analog/digital conversion circuit having an input capacitance and sampling an analog signal in the input capacitance to convert the analog signal into a digital signal, a precharge circuit for precharging the input capacitance before the analog/digital conversion circuit sample the analog signal in the input capacitance, a digital arithmetic circuit for performing arithmetic processing to the digital signal, and a reference voltage circuit for supplying a power supply voltage to the precharge circuit and the digital arithmetic circuit, wherein the arithmetic processing start timing and the arithmetic processing end timing of the digital arithmetic circuit are set to the timings avoiding the precharge period in which the precharge circuit precharges the input capacitance.
US11855652B2
A multiplexer (MUX) calibration system includes main MUX circuitry, first replica MUX circuitry, digital-to-analog (DAC) circuitry, detection circuitry, and control circuitry. The main MUX circuitry receives clock signals and outputs a first data signal based on the clock signals. The first replica MUX circuitry receives the clock signals and outputs a second data signal based on the clock signals. The DAC circuitry generates an offset voltage. The detection circuitry receives the second data signal and the offset voltage and generates a first error signal based on one or more of the second data signal and the offset voltage. The control circuitry receives the first error signal and generates a first control signal indicating an adjustment to the clock signals.
US11855646B2
A circuit device includes an oscillation circuit configured to generate an oscillation signal using a resonator, a temperature sensor circuit configured to output temperature detection data, a temperature compensation circuit configured to perform, based on the temperature detection data, temperature compensation on an oscillation frequency of the oscillation signal, a memory configured to store correction data for correcting the temperature detection data to obtain a temperature, and an interface circuit configured to output the temperature detection data and the correction data.
US11855643B2
A phase interpolating (PI) system includes: a PI stage configured to receive first and second clock signals and a multi-bit weighting signal, and generate an interpolated clock signal; and an amplifying stage configured to receive and amplify the interpolated clock signal, the amplifying stage including a capacitive component. The capacitive component is tunable to exhibit non-zero capacitances. The capacitive component has a Miller effect configuration resulting in a reduced footprint of the amplifying stage.
US11855640B2
Programmable clamping methods and devices providing adjustable clamping powers to accommodate different applications and requirements are disclosed. The described devices can use switchable clamping circuits having different structures, body-controlled clamping circuits, or clamping circuits adjusting their input power levels using programmable resistive ladders. Examples of how the disclosed devices can be combined to improve design flexibility are also provided.
US11855634B2
A communications system includes: a control device; a standard proxy input/output circuit configured to control a standard electric device; and an extension proxy input/output circuit configured to control an extension electric device. The control device and the standard proxy input/output circuit are provided on one substrate, and the control device and the extension proxy input/output circuit are connected to each other via an electric wire.
US11855629B2
Systems and methods are provided for a level shifter. A level shifter includes a network of transistors configured to receive a signal at a first node in a first voltage domain and to generate a corresponding signal at a second node in a second voltage domain during a transition period of time. A self timing circuit is configured to receive an initiation signal based on the signal at the first node and to generate a voltage transition accelerator signal that is used to pull up the second node prior to the expiration of the transition period of time.
US11855628B2
A power domain change circuit includes an input circuit and an output circuit. The input circuit is suitable for operating in a first power domain and generating first and second intermediate processing signals. The output circuit is suitable for operating in a second power domain and generating a final output signal by averaging and combining transition jitter components of the first and second intermediate processing signals.
US11855626B1
Asynchronous circuit elements are described. Asynchronous circuit elements include a consensus element (c-element), completion tree, and validity tree. The c-element is implemented using adjustable threshold based multi-input capacitive circuitries. The completion tree comprises a plurality of c-elements organized in a tree formation. The validity tree comprises OR gates followed by c-elements. The multi-input capacitive circuitries include capacitive structures that may comprise linear dielectric, paraelectric dielectric, or ferroelectric dielectric. The capacitors can be planar or non-planar. The capacitors may be stacked vertically to reduce footprint of the various asynchronous circuitries.
US11855619B2
An integrated circuit device includes: an integrated circuit module; a first field-effect transistor coupled between the integrated circuit module and a first reference voltage, and controlled by a first controlled signal; and a second field-effect transistor coupled between the integrated circuit module and the first reference voltage; wherein the second field-effect transistor is a complementary field-effect transistor of the first field-effect transistor, and the first field-effect transistor and the second field-effect transistor are configured to generate a second reference voltage for the integrated circuit module according to the first control signal.
US11855597B2
This application relates to circuitry for monitoring for instability of an amplifier. The amplifier (100) has a first signal path between an amplifier input (INN) and an amplifier output (VOUT) and a feedback path from the output to form a feedback loop with at least part of the first signal path. A comparator (212) has a first input configured to receive a first signal (INN) derived from a first amplifier node which is part of said feedback loop and a second input configured to receive a second signal (INP) derived from a second amplifier node which varies with the signal at the amplifier input but does not form part of said feedback loop. The comparator is configured to compare the first signal to the second signal and generate a comparison signal (COMP), wherein in the event of amplifier instability the comparison signal comprises a characteristic indicative of amplifier instability.
US11855595B2
Composite cascode power amplifiers for envelope tracking applications are provided herein. In certain embodiments, an envelope tracking system includes a composite cascode power amplifier that amplifies a radio frequency (RF) signal and that receives power from a power amplifier supply voltage, and an envelope tracker that generates the power amplifier supply voltage based on an envelope of the RF signal. The composite cascode power amplifier includes an enhancement mode (E-MODE) field-effect transistor (FET) for amplifying the RF signal and a depletion mode (D-MODE) FET in cascode with the E-MODE FET.
US11855590B2
Disclosed is an amplifying circuit and method. In one embodiment, an amplifying circuit, includes: a common-gate (CG) amplifier, wherein the CG amplifier comprises a first transistor, wherein source terminal and body terminal of the first transistor is coupled together through a first resistor.
US11855578B2
A system and method for automated shutdown, disconnect, or power reduction of solar panels. A system of solar panels includes one or more master management units (MMUs) and one or more local management units (LMUs). The MMUs are in communication with the LMUs with the MMUs and LMUs “handshaking” when the system is in operation. The MMUs are connected to one or more controllers which in turn are connected to emergency detection sensors. Upon a sensor detection of an emergency, the associated MMU is notified which in turn instructs associated LMUs to take appropriate action. In the event that communication with the MMUs has been cut off, the LMUs take the initiative to shut down, disconnect, or reduce the output of associated string(s) of solar panels.
US11855577B2
A regulating module for a rotary electric machine having an operating mode in which a battery of the vehicle is disconnected. The regulating module includes a rotor module and a stator module. The rotor module is arranged to generate a first intermediate setpoint (I_RotRef) on the basis of which is generated the first output quantity (V_Rot) for controlling the rotor, said first intermediate setpoint being determined on the basis of a power potential reference signal (Pdc_MaxRef) and of a speed of rotation (W) of the rotor and being independent of a power or of a control torque of the machine. The stator module is arranged to generate a second intermediate setpoint on the basis of which is generated the second output quantity for controlling the stator, said second intermediate setpoint being determined on the basis of the output voltage of the machine.
US11855573B2
An efficient, large dynamic range electric motor system and method of operating same, including a frame, at least a first rotor-stator pair, together having a first dynamic range, and a second rotor-stator pair, having a second dynamic range, with the first and second pairs mounted within the frame for rotation about a common central axis of an output shaft, mounted for rotation about the first axis and configured to transfer torque from the first and second pairs. A clutch is configured to isolate at least one of the first and second pairs away from the output shaft, thereby establishing an at least one isolated pair, and preventing torque transfer between the at least one isolated pair and the output shaft. A controller is connected to the first and second pairs and is configured to control power delivery to the first and second pairs.
US11855564B2
This control device for controlling an inverter circuit calculates an input current of the inverter circuit on the basis of an output current instruction value for controlling an output current of the inverter circuit, and calculates, on the basis of the calculated input current, an output voltage compensation amount according to the fluctuation amount of an input voltage of the inverter circuit.
US11855563B2
Motor controllers and methods for controlling drive circuit bypass signals are provided. The motor controller includes a drive circuit configured to generate variable frequency power based on input power received from a power source, and a drive contactor coupled between an output of the drive circuit and the motor. The drive contactor is configured to couple the drive circuit to the motor when a drive enable signal is received from an external controller, and decouple a line power enable signal from a line contactor by the external controller based on a presence of the drive enable signal. The line contactor is configured to couple the motor directly to the power source when the line power enable signal is received by the line contactor.
US11855560B2
A motor control method includes the following steps: receiving a frequency command and an excitation current setting value as a motor speed command; running a magnetic flux calculation program to generate a magnetic flux voltage command; generating a synchronous coordinate voltage command, and providing a three-phase current to a sensorless motor; calculating a synchronous coordinate feedback current based on the three-phase current, and calculating an effective current value of three-phase current; calculating a reactive power feedback value based on synchronous coordinate voltage command and the synchronous coordinate feedback current; running a steady state calculation program to calculate a reactive power command based on frequency command and the effective current value; calculating a reactive power error value between the reactive power command and the reactive power feedback value; and adding magnetic flux voltage command and reactive power error value to adjust synchronous coordinate voltage command and change three-phase current.
US11855552B2
A multi-level inverter having one or more banks, each bank containing a plurality of low voltage MOSFET transistors. A processor configured to switch the plurality of low voltage MOSFET transistors in each bank to switch at multiple times during each cycle.
US11855546B2
An output stabilization circuit includes: a primary-side circuit including first and second self-excited oscillator circuits connected to a direct-current power supply; and a secondary-side circuit, wherein the first and second self-excited oscillator circuits include power transmission coils, resonant capacitors, switching element pairs, and feedback coils, the second self-excited oscillator circuit further includes a phase shift filter, the phase shift filter includes a primary-side control coil that is magnetically coupled to a secondary-side control coil included in the secondary-side circuit and that has a characteristic that an inductance changes depending on a current flowing through the secondary-side control coil.
US11855545B1
A voltage controlled bridge is coupled to a line voltage and a transformer primary harmonic voltage, and a current controlled bridge is coupled to a line current and a transformer secondary harmonic voltage. A synchronous average harmonic current compensator integrates error between a measure of bridge current and commanded current synchronously over each half of a switching period and samples compensator output to control line current and linearize harmonic coupling between isolated bridges. A synchronous pulse width modulation process tracks commanded line voltage. One or more of a primary harmonic command circuit and secondary harmonic command circuit adjust the harmonic coupling voltage of the voltage controlled and current controlled bridge respectively. Line voltage, line current, and primary and secondary harmonic commands provide generalized line and isolated voltage bus regulation degrees of freedom in a single stage.
US11855543B2
An energy conversion apparatus includes: an inductor, where a first end of the inductor is connected to an external charging port; a bridge arm converter, connected between an external battery and the external charging port, where the bridge arm converter includes a first phase bridge arm, a second phase bridge arm, and a third phase bridge arm connected in parallel, and a second end of the inductor is connected to the first phase bridge arm; a voltage transformation unit, where an input end of the voltage transformation unit is connected to the second phase bridge arm and the third phase bridge arm; and a first bidirectional H-bridge, connected between an output end of the voltage transformation unit and the external battery. The external battery is connected to and drives an external motor. The external charging port is connected to a power supply and charges the external battery.
US11855540B2
A device includes a circuit assembly and a first conductive winding support having a first end attached to the circuit assembly and having a first winding support surface a first distance from the circuit assembly. The device also includes a second conductive winding support having a second end attached to the circuit assembly and having a second winding support surface a second distance from the circuit assembly, the second distance being different than the first distance. A conductive winding has first and second winding ends. The first winding end is attached to the first winding support surface, and the second winding end is attached to the second winding support surface.
US11855538B2
A control circuit includes a timeout circuit configured to receive a first control signal. The timeout circuit asserts a timeout output signal on a timeout circuit output responsive to an expiration of a time period following assertion of the first control signal. A counter circuit has an input coupled to the timeout circuit output and has a counter circuit output. Responsive to assertion of the first control signal, the counter circuit selectively increments an output count value on the counter circuit output responsive to the timeout output signal having a first logic state or decrements the output count value on the counter circuit output responsive to the timeout output signal having a second logic state. A comparator circuit has a control input coupled to the counter circuit output. The comparator circuit adjusts a magnitude of a reference signal responsive to the output count value from the counter circuit.
US11855531B2
A power converter for converting an input voltage at an input of the power converter into an output voltage at an output of the power converter may include a switching node, a power inductor coupled between the switching node and the output, a flying capacitor having a first flying capacitor terminal and a second flying capacitor terminal, a pump capacitor having a first pump capacitor terminal and a second pump capacitor terminal, the second pump capacitor terminal coupled to ground, a first switch coupled between the input and the first flying capacitor terminal, a second switch coupled between the first flying capacitor terminal and the switching node, a third switch coupled between the second flying capacitor terminal and the switching node, a fourth switch coupled between the second flying capacitor terminal and a ground voltage, a fifth switch coupled between the second flying capacitor terminal and the first pump capacitor terminal, and a sixth switch coupled between the output and the first pump capacitor terminal.
US11855529B2
The invention discloses a novel control scheme/strategy for the stacked structure LLC resonant converter. The control scheme includes a control signal as a gating signal of the fourth switch, and gating signals of the first, second and third switches that are operably generated according to the gating signal of the fourth switch. The gating signals of the second switch has a same duty ratio as and a phase shift of 180 degrees from the gating signal of the fourth switch. The gate signals of the first and third switches are complementary with the gate signals of the second and fourth switches, respectively. By adopting the control strategy, a three level LLC resonant network input voltage is generated, which includes Vin, Vin/2 and 0.
US11855528B2
A power conversion apparatus, comprising: a semiconductor component for power conversion; a heat transfer member to which the semiconductor component is fixed such that the heat transfer member is thermally connected to a heat dissipation surface formed on at least one surface of the semiconductor component; and a housing, wherein the housing includes a heat dissipation wall portion, a fitting portion that fits to the heat transfer member is formed on the heat dissipation wall portion at an inside of the housing space, an area of contact between the fitting portion and the heat transfer member is greater than an area of the heat dissipation surface of the semiconductor component, and an occupied area of the fitting portion as seen in plan view is smaller than an area of the at least one surface of the semiconductor component on which the heat dissipation surface is formed.
US11855525B2
A connection structure of a snubber circuit within a semiconductor device includes: a first substrate having a first electrode wiring line; a second substrate facing the first substrate, the second substrate having a second electrode wiring line facing the first electrode wiring line; and a stack ceramic capacitor having connection terminals provided on opposite ends, respectively, of the stack ceramic capacitor installed in an upright position in such a manner that entire surfaces of the connection terminals are connected to the first and second electrode wiring lines, respectively, where the stack ceramic capacitor is installed adjacent to a switching element attached on the first substrate, and the connection terminal and one electrode terminal on the switching element are connected with the first electrode wiring line interposed therebetween.
US11855519B2
The present disclosure provides a magnetic suspension bearing stator, a compressor and an air conditioner. The bearing stator includes a frame, a bearing iron core and an axial winding, the frame is provided with an accommodation recess used to position the axial winding. A position-limiting portion is disposed in the accommodation recess, and the position-limiting portion is used to keep the axial winding in the accommodation recess. The frame is provided with a first positioning portion for connecting with the bearing iron core on the outer wall surfaces of both sides of the accommodation recess. The frame is not easy to come out from the bearing core, and the axial winding is not easy to come out from the frame, so that the relative position between the axial winding and the bearing iron core is fixed.
US11855512B2
A rotating shaft of a rotary electric machine is supported by a rotary electric machine housing. For the rotary electric machine housing, compressed air flow passages are formed. In a gas turbine engine, an air bleed port is formed in a shroud case, and compressed air that is compressed by a compressor wheel flows into the air bleed port. The compressed air that has passed through the air bleed port flows through air bleed passages formed in an engine housing and the compressed air flow passages. Then, the compressed air flows into a rotary electric machine housing.
US11855508B1
Provided is a waterproof motor for preventing external liquid from entering a housing thereof. The waterproof motor includes a housing, a motor shaft, a bearing, a motor packing, and a motor shaft O-ring provided between the motor packing and the bearing, wherein the motor shaft O-ring has a through hole formed in the center of a body part so that the motor shaft is inserted thereinto, projection parts are formed on the inner wall surface of the through hole toward the center of the through hole so as to be elastically deformed while outer surfaces of the projection parts come into contact with the outer surface of the motor shaft, and a storage groove is formed between the projection parts and stores lubricating oil such as grease.
US11855507B2
The invention relates mainly to a rotary electric machine for a motor vehicle, having: —a casing (11), —an electronic assembly (47) mounted on the casing, —a protective cover (50) positioned around the electronic assembly (47), and —a screw (55) that extends along an axis (X′) and allows the cover (50) to be fastened to the casing (11) and/or electronic assembly (47). The protective cover (50) has at least one opening that forms a fastening zone into which there extends at least one tongue (56) delimiting a central opening (57) for the screw (55) to pass through. The screw (55) has a screw head (70) and a retaining groove (71) such that the tongues (56) are housed in said groove (71).
US11855506B2
The present disclosure provides a base assembly of voice coil motor and a voice coil motor. The base assembly includes a base body having an elastic piece connecting area with a protrusion; a lower elastic piece disposed on the elastic piece connecting area with a first connecting hole, a second connecting hole, and a first trench, the protrusion is exposed from the first connecting hole, and the first trench is disposed between the first connecting hole and the second connecting hole; a connecting piece; and a terminal having a conductive part and a terminal connecting part, wherein the conductive part is disposed in the base body, the terminal connecting part passes through the elastic piece connecting area and protrudes from the elastic piece connecting area, and a part of the terminal connecting part is exposed from the second connecting hole to be fixedly connected to the lower elastic piece.
US11855505B2
The present disclosure is of energy harvesting generators producing power to electrical loads by a novel method of the inline triggering of a horizontal pendulum that vertically oscillates for an established time duration. The horizontal pendulum component has disposed and fixed, a magnet whose travel is under the direct influence of the motion of the pendulum component. This oscillation of the pendulum and its disposed magnet is situated proximal to an electrical coil that has disposed a magnet enclosure with a disposed magnet that is in the center of the coil arrangement. The instant triggering is accomplished by a novel trigger whose end has a first trigger tooth that upon an external applied force comes in contact with a second trigger tooth that forces the pendulum downward beyond it release position to allow the pendulum and magnet to freely oscillate. Converse action occurs when the triggering force is instantly removed.
US11855502B2
A winding of at least one conductor element is provided. At least some sections of the winding are enclosed in a casting compound, and the conductor element including an internal conductive material as well as a first sheath layer and a second sheath layer for insulation purposes, the second sheath layer being made of a material that differs from a material of the first sheath layer, and the conductor element further including at least one third sheath layer, wherein the ductility of the third sheath layer is greater than the ductility of the casting compound.
US11855492B2
A rotor for a rotary electric machine and having: a plurality of permanent magnets, which are axially oriented and are arranged beside one another around a rotations axis so as to form a closed ring; a support cylinder, which has an outer surface, on which the permanent magnets rest, and a central cavity; and two half-shafts, which are independent of and separate from one another and are singularly inserted in opposite ends of the central cavity of the support cylinder so as to form one single block with the support cylinder. The permanent magnets are circumferentially arranged one following the other according to a Halbach array so as to nullify the magnetic field radially on the inside of the permanent magnets and so as to maximize the magnetic field radially on the outside of the permanent magnets.
US11855479B2
A dual battery system, including: a primary battery which drives a starter motor; an auxiliary battery which drives one or more auxiliary loads; an alternator which supplies current to recharge the primary battery; and a power supply circuit which supplies current from the alternator to recharge the auxiliary battery when a surplus condition is detected, the surplus condition indicating that the alternator is generating more electrical power than is required for recharging the primary battery, wherein the power supply circuit ceases to supply current to recharge the auxiliary battery when absence of the surplus condition is detected so that the primary and auxiliary batteries become electrically isolated, thereby ensuring that recharging of the auxiliary battery does not have an adverse effect on the level of charge of the primary battery.
US11855459B2
A method for three-phase infeed of electrical power from a DC source into a three-phase AC grid by means of an inverter includes measuring phase-specific grid voltages of the three-phase AC grid, and determining a grid frequency from the measured phase-specific grid voltages. The method also includes generating phase-specific voltage reference values from the phase-specifically measured grid voltages and the determined grid frequency, and generating phase-specific target current values using phase-specific predetermined target current amplitude values, the phase-specific voltage reference values and respective grid voltage amplitudes.
US11855458B2
A method for controlling a renewable energy generator, the renewable energy generator being connected to a Point of Interconnection of an external power grid by a connecting network, wherein the connecting network has an associated impedance level. The method comprising: monitoring at least one parameter of the connecting network and the voltage level at the Point of Interconnection; generating, during normal operating conditions, at least one current injection profile based upon the at least one measured parameter and a predetermined injection profile; and operating the renewable energy generator, during a grid fault, to output current according to the at least one current injection profile, so as to achieve a current set point at the Point of Interconnection.
US11855428B2
A wall plate system for an electrical device, including but not limited to indoor wall switches, includes a wall plate and a shield. The wall plate defines an aperture, and the wall plate is configured to receive a portion of an electrical device in the aperture. The shield extends at least partially through the aperture, and the shield is configured to form a seal between the wall plate and the electrical device.
US11855426B1
Described are various embodiments of a dip cable protection device and system using same. In one embodiment, the dip cable protection device provides improved protection against damage to dip cables. In addition, one or more such dip protection devices can be stacked and installed against a same utility pole, such as a telecommunication pole having one or more dip cables, thus providing a full dip cable protection system. The system comprises at least one rubber dip protection device that is vertically engaged against a vertically oriented pole so as to enclose and protect in a cavity formed thereby the dip cables. The device can be easily partially buried, via a ground level indicator, to provide protection above and below ground level. Additional protection devices can be vertically stacked or mounted via a raised tab and recess on the top and bottom edges of the adjacent devices, respectively.
US11855424B2
An apparatus configured to grasp, including a lower and upper arms that are hingedly connected by a first hinge, an elastic element maintaining the apparatus in a non-operative state, a guiding route located below or above at least one of the arms, configured to receive a section of a threading aspect, wherein during an operative state, a simultaneous press of the two arms, one towards the other, applies a grasping force.
US11855423B2
An apparatus for dismounting and mounting a high-voltage line T-connector in a hot-line operation includes a lifting platform, a four-axis platform and an end-effector mechanism; the four-axis platform and the end-effector mechanism are both electrically conductive structures; the four-axis platform is fixedly mounted on the top of the lifting platform, and an insulating layer is provided between the four-axis platform and the lifting platform; the four-axis platform is movable in the X direction, the Y direction, and the Z direction, and is rotatable around the Z direction; the four-axis platform is provided with an equipotential mechanism; the end-effector mechanism is detachably fastened to the four-axis platform; and a bolt loosening/tightening mechanism or a nut cutting device capable of moving in the X direction, the Y direction, and the Z direction is provided on the end-effector mechanism.
US11855419B2
The disclosure is a relay module structure. A relay includes a main body and multiple pins connected to the main body. A loading box includes a box body receiving the main body and a flexible latch portion connected to the box body. The box body has a force exerting portion and multiple slots. The pins project from the slots. A relay seat includes a seat body having a recess, a positioning portion, and terminal holes. The loading box is inserted in the recess by engagement between the flexible latch portion and the positioning portion. The pins are inserted in the terminal holes. The flexible latch portion is separated from the positioning portion by exerting a force on the force exerting portion to make the loading box separate from the relay seat.
US11855413B2
A vertical-cavity surface-emitting laser (VCSEL) array may include an n-type substrate layer and an n-type metal on a bottom surface of the n-type substrate layer. The n-type metal may form a common anode for a group of VCSEL. The VCSEL array may include a bottom mirror structure on a top surface of the n-type substrate layer. The bottom mirror structure may include one or more bottom mirror sections and a tunnel junction to reverse a carrier type within the bottom mirror structure. The VCSEL array may include an active region on the bottom mirror structure and an oxidation layer to provide optical and electrical confinement. The VCSEL array may include an n-type top mirror on the active region, a top contact layer over the n-type top mirror, and a top metal on the top contact layer. The top metal may form an isolated cathode for the VCSEL array.
US11855410B2
A semiconductor optical module includes a semiconductor laser element region having an active layer, a first cladding layer which is formed such that the active layer is embedded therein, a second cladding layer which is formed underneath the active layer and the first cladding layer, and a heater unit which produces a temperature change in a waveguide; an optical waveguide element region including a spot-size converter which converts a spot size of incident laser light, and an optical waveguide core layer which is formed such that the spot-size converter is embedded therein, the first cladding layer contains InP, the second cladding layer is made of a material lower in refractive index and higher in thermal conductivity than the first cladding layer, and a third cladding layer which is made of a material lower in refractive index and lower in thermal conductivity than the second cladding layer is formed underneath the spot-size converter and the heater unit.
US11855405B2
The present disclosure relates to a device and a method for adjusting a pulse width of a laser beam by using the plasma generated by being induced from laser as a shutter, and more particularly, to a device and a method for adjusting a laser pulse width, which can precisely and quickly adjust the laser pulse width by dividing the laser generated from a laser light source into a target pulse and a shutter pulse; converting the optical path of the divided laser; and chopping the target pulse by using the plasma induced from the shutter pulse as an optical shutter in a cell having adjustable internal pressure.
US11855404B2
A terminal block structure (1, 1A) is provided and includes an insulative housing (10), separation members (20, 20A) and conductive wire and terminal crimping members (30). The separation member (20, 20A) is secured to the insulative housing and includes a base (21) and a pressing mechanism (22) operably connected to the base (21). The pressing mechanism (22) includes a pressing portion (221) and a tail portion (222) extended outward from the pressing portion (221). The conductive wire and terminal crimping members (30) are arranged inside the insulative housing (10). When an acting force is exerted on the pressing portion (221), the pressing mechanism (22) generates deformation or rotation to drive the tail portion (222) to ascend. Accordingly, the pressing operation of the terminal block structure (1, 1A) is facilitated, and it is equipped with simple structure for easy installation.
US11855399B1
A grounding bushing with a central opening for electrically grounding a conduit, electrical metal tubing (EMT), or a pipe. The grounding bushing includes a stationary bushing portion and a rotatable bushing portion having slotted ends held together by mounting fasteners. The slotted ends permit rotation of the rotatable bushing portion away from the stationary bushing portion. After attachment to a conduit or similar structure, one or more mounting fasteners can be loosened to allow installation of additional wires through the central opening and into the conduit, EMT, or pipe. An electrically insulated liner extending around the entire inner periphery of the bushing prevents chafing or abrasion of any electrical wires by the end of the conduit.
US11855397B1
Systems involve implementations such as a stand assembly including a base having an exterior face; a wall portion including an exterior face, the wall portion coupled to the base, the exterior face of the wall portion extending perpendicular with respect to the exterior face of the base; a support assembly including a first elongated portion extending perpendicular with respect to the wall portion; and an interface including a plurality of electrical contacts, wherein the interface is movably coupled having at least a first position and a second position. Other aspects are described in the claims, drawings, and text forming a part of the present disclosure.
US11855396B2
A power adapter with a Lightning female socket includes a main body and a housing, a Lightning female socket and an adapter unit on the main body, the Lightning female socket being electrically connected to the adapter unit; the housing being provided with an opening communicated to the Lightning female socket, the housing being sleeved on an exterior of the main body, and making the opening correspond to the Lightning female socket; the adapter unit being capable of providing electrical energy directly or indirectly to the Lightning female socket and outputting voltage and current outwardly through the Lightning female socket. By designing a power adapter with a Lightning female socket, a charging device and system, communication with an external terminal device and charging to the outside is achieved through the Lightning female socket.
US11855381B2
Example implementations relate to an insertion key assembly for a pluggable module. The insertion key assembly includes a stopper element having a stopping tab, a biasing element, and a driver element having a driving tab. The biasing element is connected to the stopper element and the driver element. In a relaxed state of the biasing element: i) the stopper element is pushed outwards by the biasing element to protrude the stopping tab into a passageway defined by a plurality of walls of a chassis, to block insertion of the pluggable module inside the passageway, and ii) the driver element is pushed outwards by the biasing element to protrude the driving tab into adjacent passageway. In a biased state of the biasing element, the stopper element is pulled inwards by the biasing element to retract the stopping tab from the passageway to allow insertion of the pluggable module inside the passageway.
US11855375B2
A power conversion device includes first and second components and pairs of engagement members each including male and female engagement members. The male engagement member includes an insertion part having a substantially flat plate shape. The female engagement member includes first and second clamping parts arranged to be opposed to each other. In each of the pairs of engagement members, the male and female engagement members are respectively arranged on one and another of the first and second components. The first and second components are coupled when the female engagement member clamps the insertion part inserted between the first and second clamping parts in each of the pairs of engagement members. Each of the first and second clamping parts is bent to form a projecting portion toward an opposed surface. A gap is provided at a distal end of each of the first and second clamping parts.
US11855370B2
A power adapter assembly structure is disclosed and includes a circuit board, a socket and at least one elastic element. The socket is disposed adjacent to the circuit board. The circuit board and the socket are configured to collaboratively form at least one abutting surface and at least one fixing surface. The elastic element is connected between the circuit board and the socket, and includes a main body, a fixed portion and a hanging arm. The fixed portion and the hanging arm are disposed at two opposite ends of the main body, the fixed portion spatially corresponds to the fixing surface, and the hanging arm constantly abuts the abutting surface. A height is formed between the main body of the at least one elastic element and the at least one abutting surface, and less than a length of the hanging arm extended from the main body.
US11855368B2
An electric connection member comprises a conductive member, a fixing member which brings the conductive member into contact with a connection target member and holds the conductive member in a state of compression in a thickness direction Z. The conductive member has a compressive stress of 1.0 N/mm2 or more and 15.0 N/mm2 or less when compressed by 25% in the thickness direction. The fixing member has an elongation of 400 μm or less when drawn at 96 kPa for 30 minutes in a direction along the thickness direction Z.
US11855367B2
Trace wire connectors that include a cover that can be attached to a base and used to electrically interconnect two or more tracer wires without having to remove insulation from the tracer wires. The cover has multiple portals that permit one or more tracer wires to pass into an inner cavity of the cover. The base has multiple cradles on which tracer wires passing into the cavity can rest. The cover can be oriented relative to the base for use with a through tracer wire and a dead-end tracer wire, or for use with multiple dead-end tracer wires.
US11855347B2
An antenna having a wedge plate-based waveguide with feed segmentation and a method for using the same are disclosed. In one embodiment, the antenna comprises an aperture having an array of radio-frequency (RF) radiating antenna elements and a segmented wedge plate radial waveguide comprises a plurality of wedge plates that form a plurality of sub-apertures, wherein each sub-aperture includes one wedge plate and a distinct subset of RF radiating antenna elements in the array, wherein each wedge plate of the plurality of wedge plates has a feed point to provide a feed wave for propagation through said each wedge plate for interaction with its distinct subset of RF radiating antenna elements in the array.
US11855346B2
Antenna structures and assemblies for use in RADAR sensor assemblies and the like. In some embodiments, the assembly may comprise a feed waveguide comprising one or more feeding slots and a parallel plate waveguide operably coupled with the feed waveguide such that each of the one or more feeding slots of the feed waveguide is configured to inject electromagnetic energy into the parallel plate waveguide. A plurality of radiating slots may be formed in a plurality of rows and/or columns extending away from the feed waveguide to deliver electromagnetic energy out of the antenna assembly.
US11855338B2
A radar device includes: a transmitting antenna having at least one element antenna; and a receiving antenna having a plurality of element antennas. The plurality of element antennas of the receiving antenna are arranged at different positions in a first direction and a second direction perpendicular to the first direction. A distance between two adjacent element antennas among the plurality of element antennas of the receiving antenna in the first direction is equal to each other. A distance between two adjacent element antennas among the plurality of element antennas of the receiving antenna in the second direction is equal to each other.
US11855333B2
Sensor packages and manufacturing methods thereof are disclosed. One of the sensor packages includes a semiconductor chip and a redistribution layer structure. The semiconductor chip has a sensing surface. The redistribution layer structure is arranged to form an antenna transmitter structure aside the semiconductor chip and an antenna receiver structure over the sensing surface of the semiconductor chip.
US11855319B2
When leakage of fuel gas is detected by detection signals or disruption of the detection signals is detected, a FCECU limits a supply amount of the fuel gas from a fuel gas supply device, and shuts off the supply of the fuel gas by the fuel gas supply device when determining, after limiting the supply amount of the fuel gas, that the leakage of the fuel gas or the disruption of the detection signals has occurred.
US11855313B2
Disclosed is a separator assembly for a fuel cell and a fuel cell stack including the same. The separator assembly includes (I) a plate-shaped first separator including a first reaction area where a flow path to which a reaction gas or a coolant flows on a center thereof and first manifolds to which the reaction gas or the coolant is introduced or discharged to opposite side areas of the first reaction area, and (ii) a plate-shaped second separator integrated with the first separator by bonding and including a second reaction area corresponding to a position where the first reaction area is formed and second manifolds communicating with the first manifolds. The first and second separators may have at least a portion of an inner edge of the respective first and second manifolds that are bent, thereby being disposed on an interface between the first and second separators.
US11855292B2
Embodiments herein relate to simplified and space efficient designs for multiplate batteries. In an embodiment, an electrochemical cell is included having an multiplate anode and multiplate cathode with a separator to provide physical separation between anode and cathode plates. Anode collectors can be in electrical communication with each anode plate and anode tabs in electrical communication with each anode collector. Cathode collectors can be in electrical communication with each cathode plate and cathode tabs in electrical communication with each cathode collector. An anode busbar can interconnect the plurality of anode tabs in parallel and a cathode busbar can interconnect the plurality of cathode tabs in parallel. The cathode busbar can be oriented such that the cathode tabs are not disposed between the cathode busbar and the plurality of cathode plates. Other embodiments are also included herein.
US11855290B2
Disclosed are a binder solution for an all-solid-state battery including a binder in the form of particles, and a method of manufacturing the same. The binder solution may include a rubber-based binder, a first solvent for dissolving the rubber-based binder, and a second solvent in which the rubber-based binder is insoluble and which is miscible with the first solvent.
US11855289B2
The present application provides a negative electrode active material, a process, a battery, a battery module, a battery pack and an apparatus related to the same. The negative electrode active material comprises a core material and a polymer modified coating on at least a part of a surface of core material; wherein the core material is one or more of a silicon-based negative electrode material and a tin-based negative electrode material; the negative electrode active material has a weight loss rate satisfying 0.2%≤weight loss rate≤2% in a thermogravimetric analysis test wherein temperature is elevated from 25° C. to 800° C. under a non-oxidizing inert gas atmosphere. The present application can reduce damage to the surface structure of the negative electrode active material, reduce loss of active ions and capacity, meanwhile can well improve coulomb efficiency and cycle performance of the battery.
US11855288B2
A low-swelling graphite anode material, a preparation method thereof, and a lithium ion battery including the graphite anode material. The preparation method of the graphite anode material includes: (1) mixing a graphite raw material with a modifier, and then performing heating modification; (2) performing heat treatment on the modified graphite under a protective atmosphere; and (3) performing post-treatment on the heat-treated graphite to obtain the graphite anode material. The graphite anode material has an extremely low swelling rate, excellent cycle performance, and outstanding rate performance, an swelling rate being 24.3% or lower, a normal temperature 10C/1C discharge capacity retention rate being greater than 90%, and a capacity retention rate after charging and discharging for 300 times being 91% or greater.
US11855283B2
The present invention provides a method of evaluating a characteristic of a positive electrode active material for non-aqueous electrolyte secondary batteries, including a lithium-metal composite oxide powder including a secondary particle configured by aggregating primary particles containing lithium, nickel, manganese, and cobalt, or a lithium-metal composite oxide powder including both the primary particles and the secondary particle. The secondary particle has a porous internal structure. The characteristic being evaluated is a slurry pH, a soluble lithium content rate, or a porosity.
US11855278B2
Disclosed herein are embodiments of strain tolerant particles, methods of manufacturing such structures, and feedstock to form said structures. In some embodiments, the structures can include alternating regions of an energy storage structure and a reinforcing structure. Advantageously, when the strain tolerant particles are used within an anode of a lithium ion battery, the reinforcing structure may provide mechanical stability to the particles and thus increase cycle life.
US11855275B2
A method for preparing a cathode based on an aqueous slurry is provided. The cathode slurry with improved stability in water comprises a cathode active material, especially a nickel-containing cathode active material. Treatment of nickel-containing cathode active materials with lithium compounds may improve stability of the cathode by preventing undesirable decomposition of the material. In addition, battery cells comprising the cathode prepared by the method disclosed herein exhibit impressive electrochemical performances.
US11855270B2
A heat exchanger may include a perforated plate having a plurality of openings sandwiched between a first plate and a second plate. The first plate may have a first plate central planar surface, a first plate peripheral wall extending from an internal face of the first plate central planar surface towards the second plate, and an inlet permitting fluid flow on to the internal face of the central planar surface. The second plate may have a second plate central planar surface, a second plate peripheral wall extending from an internal face of the second plate central planar surface towards the first plate, and an outlet permitting fluid to exit the heat exchanger. The first plate, the second plate and the perforated may be coupled and define a fluid passage for flow of a heat exchanger fluid from the inlet to the outlet.
US11855259B2
The present invention relates to a lithium secondary battery electrolyte and a lithium secondary battery including the same and, more specifically, to a flame retardant or nonflammable lithium secondary battery electrolyte having excellent stability even at a high voltage and a lithium secondary battery including the same.
US11855258B2
A secondary battery cell includes a cathode of a first electrode material, an anode of a second electrode material, and a solid polymer electrolyte layer disposed between the cathode and anode. The solid polymer electrolyte includes a first surface in contact with the cathode and a second surface in contact with the anode. The solid polymer electrolyte layer includes a cellulosic polymer matrix. The cellulosic polymer matrix includes a network of the cellulosic polymer. Lithium ions are dispersed in the cellulosic polymer matrix. Ceramic particles are dispersed in the cellulosic polymer matrix. The ceramic particles include a metal oxide. One or more plasticizers are dispersed in the cellulosic polymer matrix. One or more polymer networks are in contact with the cellulosic polymer matrix. The one or more polymer networks include an acrylate-containing polymer.
US11855244B1
A light emitting device has a substrate having a rectangular planar shape, one or a plurality of light emitting elements mounted on the substrate, a dam resin having a frame-like planar shape, arranged so as to surround the light emitting element, and having an inclined surface whose height increases as its distance from the light emitting element increases, and a seal resin arranged in an area surrounded by the dam resin and which seals the light emitting element, and the dam resin has a protruding portion extending and protruding from at least one side toward the opposite side.
US11855225B2
Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises semiconductor layers over a substrate, wherein the semiconductor layers are stacked up and separated from each other, each semiconductor layer includes a first portion in a first channel region of the substrate and a second portion in a second channel region of the substrate, epitaxial layers formed in a source/drain region between the first channel region and the second channel region, wherein the epitaxial layers are separated from each other and each epitaxial layer is formed between the first portion and the second portion of each semiconductor layer, and a conductive feature wrapping each of the epitaxial layers.
US11855222B2
In a method of manufacturing a semiconductor device including a Fin FET, a fin structure extending in a first direction is formed over a substrate. An isolation insulating layer is formed over the substrate so that an upper portion of the fin structure is exposed from the isolation insulating layer. A gate structure extending in a second direction crossing the first direction is formed over a part of the fin structure. A fin mask layer is formed on sidewalls of a source/drain region of the fin structure. The source/drain region of the fin structure is recessed. An epitaxial source/drain structure is formed over the recessed fin structure. In the recessing the source/drain region of the fin structure, a plasma process combining etching and deposition processes is used to form a recess having a rounded corner shape in a cross section along the second direction.
US11855217B2
A representative method for manufacturing a semiconductor device (e.g., a fin field-effect transistor) includes the steps of forming a gate structure having a first lateral width, and forming a first via opening over the gate structure. The first via opening has a lowermost portion that exposes an uppermost surface of the gate structure. The lowermost portion of the first via opening has a second lateral width. A ratio of the second lateral width to the first lateral width is less than about 1.1. A source/drain (S/D) region is disposed laterally adjacent the gate structure. A contact feature is disposed over the S/D region. A second via opening extends to and exposes an uppermost surface of the contact feature. A bottommost portion of the second via opening is disposed above a topmost portion of the gate structure.
US11855216B2
A semiconductor device and a method of forming the same are provided. A semiconductor device according to the present disclosure includes a first source/drain feature, a second source/drain feature, a first semiconductor channel member and a second semiconductor channel member extending between the first and second source/drain features, and a first dielectric feature and a second dielectric feature each including a first dielectric layer and a second dielectric layer different from the first dielectric layer. The first and second dielectric features are sandwiched between the first and second semiconductor channel members.
US11855205B2
A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a fin structure that includes a first negative capacitance material, and an isolation structure formed over the substrate. The semiconductor device structure includes a gate structure formed over the fin structure, and a source feature and a drain feature formed over the fin structure. An interface between the fin structure and the source feature is lower than a top surface of the isolation structure.
US11855204B2
Provided is a memory device. The memory device includes: a substrate; a gate insulating film disposed on the substrate; a ferroelectric thin film disposed on the gate insulating film; a blocking film disposed on the ferroelectric thin film; and a gate pattern disposed on the blocking film, wherein the ferroelectric thin film includes a spacer having a fixed polarization regardless of an electric field that is applied from an outside, and a ferroelectric domain having a polarization controlled by the electric field that is applied from the outside, and a plurality of spacers and a plurality of ferroelectric domains are alternately and repeatedly provided in a direction parallel to a top surface of the substrate (in a b-lattice direction).
US11855196B2
The present disclosure relates to semiconductor structures and, more particularly, to transistor with wrap-around extrinsic base and methods of manufacture. The structure includes: a substrate; a collector region within the substrate; an emitter region over the substrate and which comprises silicon based material; an intrinsic base; and an extrinsic base overlapping the emitter region and the intrinsic base; an extrinsic base overlapping the emitter region and the intrinsic base; and an inverted “T” shaped spacer which separates the emitter region from the extrinsic base and the collector region from the emitter region.
US11855192B2
A method includes forming a fin structure including a plurality of first semiconductor layers and a plurality of second semiconductor layers alternately stacked over a substrate. A dummy gate structure is formed across the fin structure. The exposed second portions of the fin structure are removed. A selective etching process is performed, using a gas mixture including a hydrogen-containing gas and a fluorine-containing gas, to laterally recess the first semiconductor layers. Inner spacers are formed on opposite end surfaces of the laterally recessed first semiconductor layers. Source/drain epitaxial structures are formed on opposite end surfaces of the second semiconductor layers. The dummy gate structure is removed to expose the first portion of the fin structure. The laterally recessed first semiconductor layers are removed. A gate structure is formed to surround each of the second semiconductor layers.
US11855185B2
A method includes forming a semiconductor layer over a substrate; etching a portion of the semiconductor layer to form a first recess and a second recess; forming a first masking layer over the semiconductor layer; performing a first thermal treatment on the first masking layer, the first thermal treatment densifying the first masking layer; etching the first masking layer to expose the first recess; forming a first semiconductor material in the first recess; and removing the first masking layer.
US11855179B2
A semiconductor device is described. An isolation region is disposed on the substrate. A plurality of channels extend through the isolation region from the substrate. The channels including an active channel and an inactive channel. A dummy fin is disposed on the isolation region and between the active channel and the inactive channel. An active gate is disposed over the active channel and the inactive channel, and contacts the isolation region. A dielectric material extends through the active gate and contacts a top of the dummy fin. The inactive channel is a closest inactive channel to the dielectric material. A long axis of the active channel extends in a first direction. A long axis of the active gate extends in a second direction. The active channel extends in a third direction from the substrate. The dielectric material is closer to the inactive channel than to the active channel.
US11855178B2
A semiconductor device is provided. The semiconductor device includes a fin protruding from a semiconductor substrate and a gate structure formed across the fin. The semiconductor device also includes a gate spacer formed over a sidewall of the gate structure. The gate spacer includes a sidewall spacer and a sealing spacer formed above the sidewall spacer. In addition, an air gap is vertically sandwiched between the sidewall spacer and the sealing spacer. The semiconductor device further includes a hard mask formed over the gate structure and covering a sidewall of the sealing spacer.
US11855168B2
A semiconductor device includes a first device formed over a substrate. The first device includes a first device formed over a substrate, and the first device includes a first gate stack structure encircling a plurality of first nanostructures. The semiconductor device includes a first epitaxy structure wrapping an end of one of the first nanostructures, and a second device formed over the first device, wherein the second device includes a second gate stack structure encircling a plurality of second nanostructures. The semiconductor device includes a second epitaxy structure wrapping an end of one of the second nanostructures, and the second epitaxy structure is directly above the first epitaxy structure.
US11855167B2
A semiconductor device structure and a method for forming a semiconductor device structure are provided. The semiconductor device structure includes a stack of channel structures over a semiconductor fin and a gate stack wrapped around the channel structures. The semiconductor device structure also includes a source/drain epitaxial structure adjacent to the channel structures and multiple inner spacers. Each of the inner spacers is between the gate stack and the source/drain epitaxial structure. The semiconductor device structure further includes an isolation structure between the semiconductor fin and the source/drain epitaxial structure.
US11855166B2
There is a problem that an area of a principal current cell is reduced by an area of a bonding pad wiring layer for a sub-cell. A source electrode 9b of a current detection cell 22 is electrically connected to a bonding pad wiring layer 12 formed on an interlayer insulating film 10 via a wiring layer contact 11. The bonding pad wiring layer 12 is formed with respect to a source electrode 9a of a principal current cell 21 so as to cover a part of the source electrode 9a via the interlayer insulating film 10. As a result, the source electrode 9b is miniaturized, and a size of the source electrode 9b is made substantially equal to a size of the current detection cell 22. Therefore, the current detection cell 22 and the principal current cell 21 are disposed close to each other.
US11855164B2
A semiconductor device includes a substrate, a semiconductor fin extending from the substrate, a gate dielectric layer over the semiconductor fin, a metal nitride layer comprising a first portion over the gate dielectric layer and a second portion over the first portion, and a fill layer over the metal nitride layer. The second portion has an aluminum concentration greater than an aluminum concentration of the first portion.
US11855160B2
A thin film transistor structure, a gate driver on array (GOA) circuit and a display device are provided. The thin film transistor structure defines a plurality of thin film transistors by patterning an active layer. Therefore, when a defect appears in the gate insulating layer of one of the plurality of thin film transistors and a leakage path is formed, other thin film transistors will not be affected. Therefore, a problem of functional failure of a whole thin film transistor structure can be avoided.
US11855159B2
Various embodiments of the present application are directed to a method for forming a thin semiconductor-on-insulator (SOI) substrate without implantation radiation and/or plasma damage. In some embodiments, a device layer is epitaxially formed on a sacrificial substrate and an insulator layer is formed on the device layer. The insulator layer may, for example, be formed with a net charge that is negative or neutral. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates. The sacrificial substrate is removed, and the device layer is cyclically thinned until the device layer has a target thickness. Each thinning cycle comprises oxidizing a portion of the device layer and removing oxide resulting from the oxidizing.
US11855156B2
A structure of flash memory cell includes a substrate. A floating gate is disposed on the substrate. A low dielectric constant (low-K) spacer is disposed on a sidewall of the floating gate. A trench isolation structure has a base part disposed in the substrate and a protruding part above the substrate protruding from the base part. The low-K spacer is sandwiched between the floating gate and the protruding part of the trench isolation structure.
US11855155B2
A method including providing a device including a gate structure and a source/drain feature adjacent to the gate structure. An insulating layer (e.g., CESL, ILD) is formed over the source/drain feature. A trench is etched in the insulating layer to expose a surface of the source/drain feature. A semiconductor material is then formed in the etched trench on the surface of the source/drain feature. The semiconductor material is converted to a silicide.
US11855150B2
A device includes a substrate, a channel layer, a barrier layer, a gate electrode, and source/drain contacts. The channel layer is made of transition metal dichalcogenide. The barrier layer is over the channel layer. The gate electrode is over the barrier layer. The source/drain contacts are on opposite sides of the gate electrode and over the barrier layer.
US11855144B2
A semiconductor device comprises a fin disposed on a substrate, a source/drain feature disposed over the fin, a silicide layer disposed over the source/drain feature, a seed metal layer disposed over the silicide layer and wrapping around the source/drain feature, and a metal layer disposed on the silicide layer, where the metal layer contacts the seed metal layer.
US11855143B2
In one example aspect, the present disclosure is directed to a device. The device includes an active region on a semiconductor substrate. The active region extends along a first direction. The device also includes a gate structure on the active region. The gate structure extends along a second direction that is perpendicular to the first direction. Moreover, the gate structure engages with a channel on the active region. The device further includes a source/drain feature on the active region and connected to the channel. A projection of the source/drain feature onto the semiconductor substrate resembles a hexagon.
US11855135B2
An object of the disclosure is to provide a semiconductor device having enhanced adhesion of the electrode while improving the reverse direction breakdown voltage, which is especially useful for power devices. A semiconductor device including a semiconductor layer and an electrode layer provided on the semiconductor layer and including at least a first electrode layer and a second electrode layer provided on the first electrode layer, wherein an outer edge portion of the second electrode layer is located outside an outer edge portion of the first electrode layer, wherein the semiconductor layer includes an electric field relaxation region with a different electrical resistivity from that of the semiconductor layer, and wherein the electric field relaxation region overlaps at least a part of a portion of the second electrode layer located outside the outer edge portion of the first electrode layer in plan view.
US11855133B2
Various embodiments of the present disclosure are directed towards a trench capacitor with a trench pattern for yield improvement. The trench capacitor is on a substrate and comprises a plurality of capacitor segments. The capacitor segments extend into the substrate according to the trench pattern and are spaced with a pitch on an axis. The plurality of capacitor segments comprises an edge capacitor segment at an edge of the trench capacitor and a center capacitor segment at a center of the trench capacitor. The edge capacitor segment has a greater width than the center capacitor segment and/or the pitch is greater at the edge capacitor segment than at the center capacitor segment. The greater width may facilitate stress absorption and the greater pitch may increase substrate rigidity at the edge of the trench capacitor where thermal expansion stress is greatest, thereby reducing substrate bending and trench burnout for yield improvements.
US11855130B2
A three-dimensional device structure includes a die including a semiconductor substrate, an interconnect structure disposed on the semiconductor substrate, a through silicon via (TSV) structure that extends through the semiconductor substrate and electrically contacts a metal feature of the interconnect structure, and an integrated passive device (IPD) embedded in the semiconductor substrate and electrically connected to the TSV structure.
US11855129B2
A capacitance structure comprises a metal nitride layer, such as a titanium nitride (TiN) layer, a compositionally graded film formed on a surface of the metal nitride layer by thermal oxidation, and a dielectric layer disposed on the compositionally graded film. A method of manufacturing a capacitance structure includes forming a conductive layer, performing thermal oxidation of a surface of the conductive layer to produce a compositionally graded film on the conductive layer, and forming a dielectric layer on the compositionally graded film.
US11855128B2
A MIM structure and manufacturing method thereof are provided. The MIM structure includes a substrate and a metallization structure over the substrate. The metallization structure includes a bottom electrode layer, a dielectric layer on the bottom electrode layer, a ferroelectric layer on the dielectric layer, a top electrode layer on the ferroelectric layer, a first contact electrically coupled to the top electrode layer, and a second contact penetrating the dielectric layer and the ferroelectric layer, electrically coupled to a base portion of the bottom electrode layer. The bottom electrode layer includes the base portion and a plurality of protrusions, each of the protrusions is protruding from the base portion and leveled with a lower surface of the dielectric layer, each portion of the dielectric layer over the bottom electrode layer substantially have identical thicknesses.
US11855125B2
Embodiments herein relate to a capacitor device or a manufacturing process flow for creating a capacitor that includes nanoislands within a package. The capacitor a first conductive plate having a first side and a second side opposite the first side and a second conductive plate having a first side and a second side opposite the first side where the first side of the first conductive plate faces the first side of the second conductive plate. A first plurality of nanoislands is distributed on the first side of the first conductive plate and a second plurality of nanoislands is distributed on the first side of the second conductive plate, where the first conductive plate, the second conductive plate, and the first and second pluralities of nanoislands form a capacitor. The nanoislands may be applied to the conductive plates using a sputtering technique.
US11855121B2
A light emitting chip including a first LED sub-unit, a second LED sub-unit disposed on the first LED sub-unit, a third LED sub-unit disposed on the second LED sub-unit, a first bonding layer interposed between the first and second LED sub-units, a second bonding layer interposed between second and third LED sub-units, and a first connection electrode electrically connected to and overlapping at least one of the first, second, and third LED sub-units, the first connection electrode having first and second opposing side surfaces, the first side surface having a first length and the second side surface having a second length, in which the difference in length between the first side surface and the second side surface of the first connection electrode is greater than a thickness of at least one of the LED sub-units.
US11855115B2
An image sensor includes a plurality of unit pixels, each including: a substrate including first and second sides which are opposite to each other, a photoelectric conversion layer in the substrate, and a wiring structure on the first side of the substrate. The wiring structure may include: a first capacitor, a second capacitor spaced from the first capacitor, a plurality of edge vias arranged along edges of the unit pixel, and a plurality of central vias interposed between the first capacitor and the second capacitor.
US11855113B2
Provided is an image sensor including a sensor substrate including a plurality of first pixels configured to sense first wavelength light in an infrared ray band and a plurality of second pixels configured to sense second wavelength light in a visible light band, and a color separating lens array disposed on the sensor substrate and configured to change a phase of the first wavelength light incident on the color separating lens array such that the first wavelength light is condensed to the plurality of first pixels, wherein the color separating lens array includes a plurality of light condensing regions configured to condense the first wavelength light respectively on the plurality of first pixels, and wherein an area of each of the plurality of light condensing regions is larger than an area of each of the plurality of first pixels.
US11855112B2
The present disclosure relates to a sensor chip and an electronic apparatus each of which enables carriers generated through photoelectric conversion to be efficiently used. At least one or more avalanche multiplication regions multiplying carriers generated through photoelectric conversion are provided in each of a plurality of pixel regions in a semiconductor substrate, and light incident on the semiconductor substrate is condensed by an on-chip lens. Then, a plurality of on-chip lenses is arranged in one pixel region. The present technology, for example, can be applied to a back-illuminated type CMOS image sensor.
US11855109B2
A system and method for forming pixels in an image sensor is provided. In an embodiment, a semiconductor device includes an image sensor including a first pixel region and a second pixel region in a substrate, the first pixel region being adjacent to the second pixel region. A first anti-reflection coating is over the first pixel region, the first anti-reflection coating reducing reflection for a first wavelength range of incident light. A second anti-reflection coating is over the second pixel region, the second anti-reflection coating reducing reflection for a second wavelength range of incident light that is different from the first wavelength range.
US11855107B2
The present disclosure relates to an image sensor structure and a manufacturing method thereof. A detection structure layer and a blind pixel structure layer are used. The detection structure layer and the blind pixel structure layer are effectively combined and further formed by ion implantation. Thus, the space ratio of a single pixel is reduced, the integration and device sensitivity are improved, and the blind pixel array and the pixel array are also in the same environment, thereby further improving the detection sensitivity and reducing the detection error.
US11855106B2
A signal processing device includes a plurality of pixel signal processing units and a signal line group. The plurality of pixel signal processing units is arranged in a first direction and a second direction, each of the plurality of signal processing units acquiring a digital signal having a plurality of bits based on an output from a corresponding avalanche photodiode. The signal line group is arranged corresponding to the plurality of pixel signal processing units arranged in the first direction and including a signal line to which a plurality of signals corresponding to a plurality of bits of different digits of the digital signal held in each of the plurality of pixel signal processing units arranged in the first direction are commonly output.
US11855097B2
A semiconductor device includes a gate stack, an epitaxy structure, a first spacer, a second spacer, and a dielectric residue. The gate stack is over a substrate. The epitaxy structure is formed raised above the substrate. The first spacer is on a sidewall of the gate stack. The first spacer and the epitaxy structure define a void therebetween. The second spacer seals the void between the first spacer and the epitaxy structure. The dielectric residue is in the void and has an upper portion and a lower portion under the upper portion. The upper portion of the dielectric residue has a silicon-to-nitrogen atomic ratio higher than a silicon-to-nitrogen atomic ratio of the lower portion of the dielectric residue.
US11855091B2
The present disclosure relates to an integrated circuit (IC) that includes a boundary region defined between a low voltage region and a high voltage region, and a method of formation. In some embodiments, the integrated circuit comprises an isolation structure disposed in the boundary region of the substrate. A first polysilicon component is disposed over the substrate alongside the isolation structure. A boundary dielectric layer is disposed on the isolation structure. A second polysilicon component is disposed on the sacrifice dielectric layer.
US11855088B2
A method includes the following operations: disconnecting at least one of drain regions that are formed on a first active area, of first transistors, from a first voltage; and disconnecting at least one of drain regions that are formed on a second active area, of second transistors coupled to the first transistors from a second voltage. The at least one of drain regions of the second transistors corresponds to the at least one of drain regions of the first transistors.
US11855081B2
Semiconductor structures and methods are provided. A method according to the present disclosure includes providing a workpiece that includes a plurality of active regions including channel regions and source/drain regions, and a plurality of dummy gate stacks intersecting the plurality of active regions at the channel regions, the plurality of dummy gate stacks including a device portion and a terminal end portion. The method further includes depositing a gate spacer layer over the workpiece, anisotropically etching the workpiece to recess the source/drain regions and to form a gate spacer from the gate spacer layer, forming a patterned photoresist layer over the workpiece to expose the device portion and the recessed source/drain regions while the terminal end portion is covered, and after the forming of the patterned photoresist layer, epitaxially forming source/drain features over the recessed source/drain regions.
US11855065B2
Stacked semiconductor die assemblies with support members and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first semiconductor die attached to the package substrate, and a plurality of support members also attached to the package substrate. The plurality of support members can include a first support member and a second support member disposed at opposite sides of the first semiconductor die, and a second semiconductor die can be coupled to the support members such that at least a portion of the second semiconductor die is over the first semiconductor die.
US11855064B2
Representative techniques provide process steps for forming a microelectronic assembly, including preparing microelectronic components such as dies, wafers, substrates, and the like, for bonding. One or more surfaces of the microelectronic components are formed and prepared as bonding surfaces. The microelectronic components are stacked and bonded without adhesive at the prepared bonding surfaces.
US11855063B2
A method of forming a package includes bonding a device die to an interposer wafer, with the interposer wafer including metal lines and vias, forming a dielectric region to encircle the device die, and forming a through-via to penetrate through the dielectric region. The through-via is electrically connected to the device die through the metal lines and the vias in the interposer wafer. The method further includes forming a polymer layer over the dielectric region, and forming an electrical connector. The electrical connector is electrically coupled to the through-via through a conductive feature in the polymer layer. The interposer wafer is sawed to separate the package from other packages.
US11855046B2
A package includes a memory stack attached to a logic device, the memory stack including first memory structures, a first redistribution layer over and electrically connected to the first memory structures, second memory structures on the first redistribution layer, a second redistribution layer over and electrically connected to the second memory structures, and first metal pillars on the first redistribution layer and adjacent the second memory structures, the first metal pillars electrically connecting the first redistribution layer and the second redistribution layer, wherein each first memory structure of the first memory structures includes a memory die comprising first contact pads and a peripheral circuitry die comprising second contact pads, wherein the first contact pads of the memory die are bonded to the second contact pads of the peripheral circuitry die.
US11855040B2
Methods of ion implantation combined with annealing using a pulsed laser or a furnace for cutting substrate in forming semiconductor devices and semiconductor devices including the same are disclosed. In an embodiment, a method includes forming a transistor structure of a device on a first semiconductor substrate; forming a front-side interconnect structure over a front side of the transistor structure; bonding a carrier substrate to the front-side interconnect structure; implanting ions into the first semiconductor substrate to form an implantation region of the first semiconductor substrate; and removing the first semiconductor substrate. Removing the first semiconductor substrate includes applying an annealing process to separate the implantation region from a remainder region of the first semiconductor substrate. The method also includes forming a back-side interconnect structure over a back side of the transistor structure.
US11855028B2
A semiconductor device includes a substrate; an interconnect structure over the substrate; a first passivation layer over the interconnect structure; a first conductive pad, a second conductive pad, and a conductive line disposed over the first passivation layer and electrically coupled to conductive features of the interconnect structure; a conformal second passivation layer over and extending along upper surfaces and sidewalls of the first conductive pad, the second conductive pad, and the conductive line; a first conductive bump and a second conductive bump over the first conductive pad and the second conductive pad, respectively, where the first conductive bump and the second conductive bump extend through the conformal second passivation layer and are electrically coupled to the first conductive pad and the second conductive pad, respectively; and a dummy bump over the conductive line, where the dummy bump is separated from the conductive line by the conformal second passivation layer.
US11855026B2
An electrical conductor structure comprises a substrate and an electrical conductor disposed on or in the substrate. The electrical conductor comprises a first layer and a second layer disposed on a side of the first layer opposite the substrate. The first layer comprises a first electrical conductor that forms a non-conductive layer on a surface of the first electrical conductor when exposed to air and the second layer comprising a second electrical conductor that does not form a non-conductive layer on a surface of the second electrical conductor when exposed to air. A component comprises a connection post that is electrically connected to the second layer and the electrical conductor. The first and second layers can be inorganic. The first layer can comprise a metal such as aluminum and the second layer can comprise an electrically conductive metal oxide such as indium tin oxide.
US11855025B2
A semiconductor device includes a conductive pad having a first width. The semiconductor device includes a passivation layer over the conductive pad, wherein the passivation layer directly contacts the conductive pad. The semiconductor device includes a protective layer over the passivation layer, wherein the protective layer directly contacts the conductive pad. The semiconductor device includes an under-bump metallization (UBM) layer directly contacting the conductive pad, wherein the UBM layer has a second width greater than the first width. The semiconductor device includes a conductive pillar on the UBM layer.
US11855024B2
In some examples a wafer chip scale package (WCSP) includes a semiconductor die having a device side in which a circuit is formed, and a redistribution layer (RDL) coupled to the device side that is positioned within an insulating member. In addition, the WCSP includes a scribe seal circumscribing the circuit along the device side, wherein the RDL abuts the scribe seal. Further, the WCSP includes a conductive member coupled to the RDL. The conductive member is configured to receive a solder member, and the insulating member does not extend along the device side of the semiconductor die between the conductive member and a portion of an outer perimeter of the WCSP closest to the conductive member.
US11855020B2
A method includes forming integrated circuits on a front side of a first chip, performing a backside grinding on the first chip to reveal a plurality of through-vias in the first chip, and forming a first bridge structure on a backside of the first chip using a damascene process. The bridge structure has a first bond pad, a second bond pad, and a conductive trace electrically connecting the first bond pad to the second bond pad. The method further includes bonding a second chip and a third chip to the first chip through face-to-back bonding. A third bond pad of the second chip is bonded to the first bond pad of the first chip. A fourth bond pad of the third chip is bonded to the second bond pad of the first chip.
US11855019B2
The disclosed subject matter relates generally to methods of forming a semiconductor device, such as a moisture sensor. A plurality of electrodes and a bond pad are formed in a dielectric region. A passivation layer is formed on each electrode in the plurality of electrodes and the bond pad. A barrier layer is formed on the passivation layer. A plurality of trenches are formed to extend through the barrier layer and into the dielectric region. Formation of the trenches simultaneously exposes an upper surface of the bond pad. A moisture sensitive dielectric layer is formed on the barrier layer. Formation of the moisture sensitive dielectric layer also fills the trenches to form a plurality of projections, each projection being formed between two electrodes in the plurality of electrodes.
US11855015B2
A structure includes a controlled polyimide profile. A method for forming such a structure includes depositing, on a substrate, a photoresist containing polyimide and performing a first anneal at a first temperature. The method further includes exposing the photoresist to a radiation source through a photomask having a pattern associated with a shape of a polyimide opening. The method further includes performing a second anneal at a second temperature and removing a portion of the photoresist to form the polyimide opening. The method further includes performing a third anneal at a third temperature and cleaning the polyimide opening by ashing.
US11854999B2
In some embodiments, the present disclosure relates to an integrated chip that includes bonding structure arranged directly between a first substrate and a second substrate. The first substrate includes a first transparent material and a first alignment mark. The first alignment mark is arranged on an outer region of the first substrate and also includes the first transparent material. The first alignment mark is defined by surfaces of the first substrate that are arranged between an uppermost surface of the first substrate and a lowermost surface of the first substrate. The second substrate includes a second alignment mark on an outer region of the second substrate. The second alignment mark directly underlies the first alignment mark, and the bonding structure is arranged directly between the first alignment mark and the second alignment mark.
US11854998B2
A semiconductor device has a conductive via laterally separated from the semiconductor, an encapsulant between the semiconductor device and the conductive via, and a mark. The mark is formed from characters that are either cross-free characters or else have a overlap count of less than two. In another embodiment the mark is formed using a wobble scan methodology. By forming marks as described, defects from the marking process may be reduced or eliminated.
US11854964B2
A structure and a formation method of a semiconductor device are provided. The semiconductor device structure includes an interconnection structure over a semiconductor substrate. The semiconductor device structure includes a conductive pillar over the interconnection structure. The conductive pillar has a protruding portion extending towards the semiconductor substrate. The semiconductor device structure includes an upper conductive via between the conductive pillar and the interconnection structure. A center of the upper conductive via is laterally separated from a center of the protruding portion by a first distance. The semiconductor device structure includes a lower conductive via between the upper conductive via and the interconnection structure. The lower conductive via is electrically connected to the conductive pillar through the upper conductive via. A center of the lower conductive via is laterally separated from the center of the protruding portion by a second distance that is shorter than the first distance.
US11854959B2
Various embodiments of the present disclosure are directed towards an integrated chip (IC). The IC comprises a first inter-metal dielectric (IMD) structure disposed over a semiconductor substrate. A metal-insulator-metal (MIM) device is disposed over the first IMD structure. The MIM device comprises at least three metal plates that are spaced from one another. The MIM device further comprises a plurality of capacitor insulator structures, where each of the plurality of capacitor insulator structures are disposed between and electrically isolate neighboring metal plates of the at least three metal plates.
US11854952B2
A semiconductor device includes: an oscillator including external terminals disposed on a first face with a specific distance along a first direction; an integrated circuit including a first region formed with first electrode pads along one side, and a second region formed with second electrode pads on two opposing sides of the first region; a lead frame that includes terminals at a peripheral portion, and on which the oscillator and the integrated circuit are mounted such that the external terminals, the first and second electrode pads face in a substantially same direction and such that one side of the integrated circuit is substantially parallel to the first direction; a first bonding wire that connects one external terminal to one first electrode pad; a second bonding wire that connects one terminal of one lead frame to one second electrode pad; and a sealing member that seals all of the components.
US11854948B2
A semiconductor package includes a package substrate including a redistribution layer; a semiconductor chip disposed on the package substrate and electrically connected to the redistribution layer; a wiring structure disposed on the semiconductor chip and having an upper surface on which pads are arranged; a vertical connection structure disposed between the package substrate and the wiring structure and electrically connecting the redistribution layer and the pads; and a passivation layer disposed on the wiring structure and having openings partially exposing a region of each of the pads. The pads include a first pad adjacent to a corner of the wiring structure, and a second pad closer to a center of the wiring structure than the first pad. A first width of the first pad is greater than a second width of the second pad. A contact layer is disposed in the opening on the first pad.
US11854945B2
Underfill material flow control for reduced die-to-die spacing in semiconductor packages and the resulting semiconductor packages are described. In an example, a semiconductor apparatus includes first and second semiconductor dies, each having a surface with an integrated circuit thereon coupled to contact pads of an uppermost metallization layer of a common semiconductor package substrate by a plurality of conductive contacts, the first and second semiconductor dies separated by a spacing. A barrier structure is disposed between the first semiconductor die and the common semiconductor package substrate and at least partially underneath the first semiconductor die. An underfill material layer is in contact with the second semiconductor die and with the barrier structure, but not in contact with the first semiconductor die.
US11854944B2
Embodiments of the present disclosure provide a stacking edge interconnect chiplet. In one embodiment, a semiconductor device is provided. The semiconductor device includes a first integrated circuit die comprising a first device layer having a first side and a second side opposite the first side, a first interconnect structure disposed on the first side of the first device layer, and a second interconnect structure disposed on the second side of the first device layer. The semiconductor device also includes a power line extending through the first device layer and in contact with the first interconnect structure and the second interconnect structure, and a second integrated circuit die disposed over the first integrated circuit die, the second integrated circuit die comprising a third interconnect structure in contact with the second interconnect structure of the first integrated circuit die.
US11854943B2
An integrated circuit (IC) package includes a logic die, a substrate, a memory die positioned between the logic die and the substrate, and a power distribution structure configured to electrically couple the logic die to the substrate. The power distribution structure includes a plurality of conductive segments positioned between the logic die and the memory die, a plurality of bump structures positioned between the memory die and the substrate, and a plurality of through-silicon vias (TSVs) electrically coupled to the plurality of conductive segments and the plurality of bump structures, and a TSV of the plurality of TSVs extends through, and is electrically isolated from, a memory macro of the memory die.
US11854937B2
A power module apparatus includes a power module having a package configured to seal a perimeter of a semiconductor device, and a heat radiator bonded to one surface of the package; a cooling device having a coolant passage through which coolant water flows, in which the heat radiator is attached to an opening provided on a way of the coolant passage, wherein the heat radiator of the power module is attached to the opening of the cooling device so that a height (ha) and a height (hb) are substantially identical to each other. The power module in which the heat radiator is attached to the opening formed at the upper surface portion of the cooling device can also be efficiently cooled, and thereby it becomes possible to reduce degradation due to overheating.
US11854931B2
Embodiments include semiconductor packages and a method to form such packages. A semiconductor package includes first and second bottom dies on a package substrate. The semiconductor package includes first top dies on the first bottom die, second top dies on the second bottom die, and a pedestal on the first and second bottom dies. The pedestal comprises a high thermal conductive material and is positioned on a region of top surfaces of the first and second bottom dies. The semiconductor package includes an encapsulation layer over the first and second bottom dies, and surrounds the first and second top dies and the pedestal. The semiconductor package includes a TIM over the first and second top dies, pedestal, and encapsulation layer, and an integrated heat spreader (IHS) over the TIM. The pedestal is on a periphery region of the top surfaces of the first and second bottom dies.
US11854928B2
A semiconductor package includes an integrated circuit (IC) structure, an insulating encapsulation laterally covering the IC structure, and a redistribution structure disposed on the insulating encapsulation and the IC structure. The redistribution structure is electrically connected to the IC structure. The IC structure includes a first die, a capacitor structure, a dielectric layer laterally covering the first die and the capacitor structure, and a second die disposed on the dielectric layer, the first die, and the capacitor structure. The second die interacts with the capacitor structure, where a bonding interface between the second die and the first die is substantially coplanar with a bonding interface between the second die and the dielectric layer. A manufacturing method of a semiconductor package is also provided.
US11854926B2
A semiconductor device includes a semiconductor body comprising a first surface and an edge surface, a contact electrode formed on the first surface and comprising an outer edge side, and a passivation layer section conformally covering the outer edge side of the contact electrode. The passivation layer section is a multi-layer stack comprising a first layer, a second layer, and a third layer. Each of the first, second and third layers include outer edge sides facing the edge surface and opposite facing inner edge sides. The outer edge side of the contact electrode is disposed laterally between the inner edge sides and the outer edge sides of each layer.
US11854922B2
A semiconductor package includes a semiconductor substrate forming a cavity and a redistribution layer on a first side of the semiconductor substrate, the redistribution layer forming die contacts within the cavity and a set of terminals for the semiconductor package opposite the semiconductor substrate. The redistribution layer electrically connects one or more of the die contacts to the set of terminals. The semiconductor package further includes a semiconductor die including die terminals within the cavity with the die terminals electrically coupled to the die contacts within the cavity.
US11854921B2
A device package includes a first die directly bonded to a second die at an interface, wherein the interface comprises a conductor-to-conductor bond. The device package further includes an encapsulant surrounding the first die and the second die and a plurality of through vias extending through the encapsulant. The plurality of through vias are disposed adjacent the first die and the second die. The device package further includes a plurality of thermal vias extending through the encapsulant and a redistribution structure electrically connected to the first die, the second die, and the plurality of through vias. The plurality of thermal vias is disposed on a surface of the second die and adjacent the first die.
US11854919B2
A first sealing composition includes an epoxy resin, a curing agent, an inorganic filler, and an unbaked hydrotalcite compound having a mole ratio of Mg ion to Al ion (Mg/Al) of 2.4 or more. A second sealing composition includes an epoxy resin, a curing agent, a hydrotalcite compound represented by Formula (1): Mg1-xAlx(OH)2(CO3)x/2·mH2O, in which each of x and m independently represents a positive number, and a magnesium-containing compound that is different from the hydrotalcite compound. A third sealing composition includes an epoxy resin, a curing agent, a hydrotalcite compound represented by Formula (I), and a magnesium oxide, and a content of the magnesium oxide is from 1 part by mass to 50 parts by mass parts with respect to 100 mass parts of the epoxy resin.
US11854918B2
A semiconductor package includes a first die. The first die has a first side and a second side different from the first side and includes a first seal ring. The first seal ring includes a first portion at the first side and a second portion at the second side, and a width of the first portion is smaller than a width of the second portion.
US11854917B2
A radio-frequency device comprises a semiconductor device, comprising a radio-frequency chip, and a first connection element, which is configured to mechanically and electrically connect the semiconductor device to a circuit board. The radio-frequency device furthermore comprises a waveguide component arranged over the semiconductor device, comprising a waveguide embodied in the waveguide component, and a second connection element, which mechanically connects the waveguide component to the semiconductor device. At least one from the first connection element or the second connection element is embodied in an elastic fashion.
US11854893B2
A method of manufacturing a semiconductor package, includes forming a mask layer on a wafer, the wafer including a semiconductor substrate and an insulating layer; forming a groove in the semiconductor substrate by performing a first laser grooving process; expanding an opening of the mask layer opened by the first laser grooving process by performing a second laser grooving process; exposing a portion of the insulating layer by removing a portion of the mask layer; and cutting the semiconductor substrate while removing the portion of the insulating layer exposed during the exposing by performing a dicing process.
US11854892B2
According to an embodiment of inventive concepts, a substrate dicing method may include forming reformed patterns in a substrate using a laser beam, grinding a bottom surface of the substrate to thin the substrate, and expanding the substrate to divide the substrate into a plurality of semiconductor chips. The forming of the reformed patterns may include forming a first reformed pattern in the substrate and providing an edge focused beam to a region crossing the first reformed pattern to form a second reformed pattern in contact with the first reformed pattern.
US11854888B2
An embodiment disclosed herein includes a method of dicing a wafer comprising a plurality of integrated circuits. In an embodiment, the method comprises forming a mask above the semiconductor wafer, and patterning the mask and the semiconductor wafer with a first laser process. The method may further comprise patterning the mask and the semiconductor wafer with a second laser process, where the second laser process is different than the first laser process. In an embodiment, the method may further comprise etching the semiconductor wafer with a plasma etching process to singulate the integrated circuits.
US11854882B2
Subtractive plug and tab patterning with photobuckets for back end of line (BEOL) spacer-based interconnects is described. In an example, a back end of line (BEOL) metallization layer for a semiconductor structure includes an inter-layer dielectric (ILD) layer disposed above a substrate. A plurality of conductive lines is disposed in the ILD layer along a first direction. A conductive tab is disposed in the ILD layer, the conductive tab coupling two of the plurality of conductive lines along a second direction orthogonal to the first direction. A conductive via is coupled to one of the plurality of conductive lines, the conductive via having a via hardmask thereon. An uppermost surface of each of the ILD layer, the plurality of conductive lines, the conductive tab, and the via hardmask is planar with one another.
US11854879B2
A Cu3Sn electrical interconnect and method of making same in an electrical device, such as for hybrid bond 3D-integration of the electrical device with one or more other electrical devices. The method of forming the Cu3Sn electrical interconnect includes: depositing a Sn layer in the via hole; depositing a Cu layer atop and in contact with the Sn layer; and heating the Sn layer and the Cu layer such that the Sn and Cu layers diffuse together to form a Cu3Sn interconnect in the via hole. During the heating, a diffusion front between the Sn and Cu layers moves in a direction toward the Cu layer as initially deposited, such that any remaining Cu layer or any voids formed during the diffusion are at an upper region of the formed Cu3Sn interconnect in the via hole, thereby allowing such voids or remaining material to be easily removed.
US11854873B2
A method of forming a semiconductor structure includes forming an etch stop layer on a substrate, forming a metal oxide layer over the etch stop layer, and forming an interlayer dielectric (ILD) layer on the metal oxide layer. The method further includes forming a trench etch opening over the ILD layer, forming a capping layer over the trench etch opening, and forming a via etch opening over the capping layer.
US11854864B2
A semiconductor device includes a plurality of patterns defined between a plurality of trenches and disposed on a substrate. A leaning control layer is disposed on sidewalls and bottoms of the plurality of trenches. A gap-fill insulating layer is disposed on the leaning control layer. At least one of the plurality of trenches has a different depth from one of the plurality of trenches adjacent thereto.
US11854857B1
A method for producing 3D semiconductor devices including: providing a first level including first transistors and a first single crystal layer; forming a first metal layer on top of the first level; forming a second metal layer on top of the first metal layer; forming at least one second level on top of or above the second metal layer; performing a lithography step on the second level; forming at least one third level on top of or above the second level; performing processing steps to form first memory cells within the second level and second memory cells within the third level, where the first memory cells include at least one second transistor, the second memory cells include at least one third transistor, first transistors control power delivery to some second transistors; and then forming at least four independent memory arrays which include some first memory cells and/or second memory cells.
US11854854B2
A method for calibrating the alignment of a wafer is provided. A plurality of alignment position deviation (APD) simulation results are obtained form a plurality of mark profiles. An alignment analysis is performed on a mark region of the wafer with a light beam. A measured APD of the mark region of the wafer is obtained in response to the light beam. The measured APD is compared with the APD simulation results to obtain alignment calibration data. An exposure process is performed on the wafer with a mask according to the alignment calibration data.
US11854848B2
A container includes a container body and an air processing system. The container body includes a plurality of walls defining an interior space for receiving wafers. The air processing system is attached to the container body. The air processing system includes an exchange module, an air extraction module, a first contaminant removal module, a processing module, a second contaminant removal module, a controller module and a power module. The exchange module is coupled to one of the walls of the container body. The air extraction module extracts air from the container body. The first contaminant removal module is coupled to the air extraction module and the exchange module. The processing module is coupled to the air extraction module. The second contaminant removal module is coupled to the processing module and the exchange module. The controller module is configured to turn the air extraction module on and off.
US11854844B2
A method of operating a transport system includes detecting an anomalous condition of a wafer transfer vehicle; sending the wafer transfer vehicle along a rail to a diagnosis station adjacent to the rail; and inspecting properties of the wafer transfer vehicle, such as a speed, a weight, an audio frequency, a noise level, a temperature, and an image of the wafer transfer vehicle, by using the diagnosis station.
US11854841B2
The disclosed techniques include a space filling device to be used with a wet bench in chemical replacement procedures. The space filling device has an overall density that is higher than the chemicals used to purge the wet bench. As such, when embedded into the wet bench, or more specifically, the chemical tank of the wet bench, the space filling device will occupy a portion of the interior volume space. As a result, less purging chemicals are used to fill and bath the wet bench.
US11854833B2
A method of fabricating a carrier chip for distributing signals among circuit elements of a quantum computing device, includes: providing a multilayer wiring stack, the multilayer wiring stack comprising alternating layers of dielectric material and wiring; bonding a capping layer to the multilayer wiring stack, in which the capping layer includes a single crystal silicon dielectric layer; forming a via hole within the capping layer, in which the via hole extends to a first wiring layer of the multilayer wiring stack; forming an electrically conductive via within the via hole and electrically coupled to the first wiring layer; and forming a circuit element on a surface of the capping layer, in which the circuit element is directly electrically coupled to the electrically conductive via.
US11854828B2
A semiconductor device includes a substrate, a first well, a second well, a metal gate, a poly gate, a source region, and a drain region. The first well and the second well are within the substrate. The metal gate is partially over the first well. The poly gate is over the second well. The poly gate is separated from the metal gate, and a width ratio of the poly gate to the metal gate is in a range from about 0.1 to about 0.2. The source region and the drain region are respectively within the first well and the second well.
US11854814B2
An embodiment method includes: forming a gate stack over a channel region; growing a source/drain region adjacent the channel region; depositing a first ILD layer over the source/drain region and the gate stack; forming a source/drain contact through the first ILD layer to physically contact the source/drain region; forming a gate contact through the first ILD layer to physically contact the gate stack; performing an etching process to partially expose a first sidewall and a second sidewall, the first sidewall being at a first interface of the source/drain contact and the first ILD layer, the second sidewall being at a second interface of the gate contact and the first ILD layer; forming a first conductive feature physically contacting the first sidewall and a first top surface of the source/drain contact; and forming a second conductive feature physically contacting the second sidewall and a second top surface of the gate contact.
US11854813B2
Methods for depositing molybdenum films on a substrate are described. The substrate is exposed to a molybdenum halide precursor and an aluminum precursor to form the molybdenum film (e.g., elemental molybdenum) at a low temperature. The exposures can be sequential or simultaneous.
US11854804B2
A laser irradiation method includes a first scanning wherein a laser beam is scanned in a first region having a width in the X direction and a length in the Y direction by moving a laser irradiation area on the surface of the substrate along the Y direction using a spot laser beam, and a second scanning wherein laser beam is scanned in a second region having a width in the X direction and a length in the Y direction by moving a laser irradiation area on the surface of the substrate along the Y direction using the spot laser beam. A center of the second region is spaced apart from a center of the first region in the X direction.
US11854799B2
A method of manufacturing a semiconductor device including: (a) loading a substrate into a process chamber; (b) supplying a processing gas including H2O-containing radicals to the substrate; (c) supplying a gas including a halogen element; (d) supplying a gas including one or both of an oxygen element and a nitrogen element after (c); (e) repeating (c) and (d); and (f) repeating (b) and (e).
US11854798B2
A method of forming a semiconductor device includes forming a mask layer over a substrate and forming an opening in the mask layer. A gap-filling material is deposited in the opening. A plasma treatment is performed on the gap-filling material. The height of the gap-filling material is reduced. The mask layer is removed. The substrate is patterned using the gap-filling material as a mask.
US11854792B2
A method for treating high aspect ratio (HAR) structures arranged on a surface of a substrate includes a) spin rinsing the surface of the substrate using a first rinsing liquid; b) spinning off the first rinsing liquid from the surface of the substrate; and c) directing a gas mixture containing hydrogen fluoride onto the surface of the substrate after the first rinsing liquid is dispensed.
US11854791B2
A semiconductor device according to the present disclosure includes a vertical stack of channel members, a gate structure over and around the vertical stack of channel members, and a first source/drain feature and a second source/drain feature. Each of the vertical stack of channel members extends along a first direction between the first source/drain feature and the second source/drain feature. Each of the vertical stack of channel members is spaced apart from the first source/drain feature by a silicide feature.
US11854788B2
The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 μm to 50 μm), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
US11854785B2
A package structure and method of manufacturing is provided, whereby heat dissipating features are provided for heat dissipation. Heat dissipating features include conductive vias formed in a die stack, thermal chips, and thermal metal bulk, which can be bonded to a wafer level device. Hybrid bonding including chip to chip, chip to wafer, and wafer to wafer provides thermal conductivity without having to traverse a bonding material, such as a eutectic material. Plasma dicing the package structure can provide a smooth sidewall profile for interfacing with a thermal interface material.
US11854774B2
Disclosed is a detection device which includes a measurement unit including an illumination sensor that measures an amount of light in an interior of a chamber, and a detection unit that detects whether plasma is generated in the interior of the chamber, through analysis of the amount of the light.
US11854769B2
An embodiment is an apparatus, such as a plasma chamber. The apparatus includes chamber walls and a chamber window defining an enclosed space. A chamber window is disposed between a plasma antenna and a substrate support. A gas delivery source is mechanically coupled to the chamber window. The gas delivery source comprises a gas injector having a passageway, a window at a first end of the passageway, and a nozzle at a second end of the passageway. The nozzle of the gas delivery source is disposed in the enclosed space. A fastening device is mechanically coupled to the gas delivery source. The fastening device is adjustable to adjust a sealing force against the gas injector.
US11854764B2
In one embodiment, a charged particle beam writing device writes sequentially patterns to a plurality of deflection positions on a target object by deflecting a charged particle beam by a deflector. The device includes a storage storing relation information indicating a relationship between a time elapsed since a start of deflection by the deflector and an amount of position shift in a shot position to which the charged particle beam is shot, a shot position corrector obtaining a first amount of position shift corresponding to an n-th (where n is an integer greater than or equal to 2) deflection position in sequential pattern writing and a second amount of position shift corresponding to an n−1-th deflection position by using by using a settling time and a shot time of the deflector and the relation information, obtaining an amount of position correction by adding up the first amount of position shift and the second amount of position shift, and correcting a shot position, and a writer emitting the charged particle beam to the n-th deflection position by using the shot data for which the shot position has been corrected, and writing a pattern.
US11854751B2
The present invention provides a light-transmitting electrode which has high electrical conductivity and high electron blocking performance. The present invention also provides a solar cell which is capable of achieving high energy conversion efficiency at low cost. The present invention provides a method for producing a light-transmitting electrode that has a light-transmitting substrate, a carbon nanotube film which is formed directly or indirectly on the light-transmitting substrate, and a metal oxide film which is formed directly on the carbon nanotube film. This production method includes vapor depositing the metal oxide film, which contains oxygen and a metal element belonging to the group 4, 5 or 6 of the periodic table, on one surface or both surfaces of the carbon nanotube film. The present invention provides a light-transmitting electrode which includes a light-transmitting substrate and a conductive carbon nanotube film that is formed directly or indirectly on the light-transmitting substrate.
US11854743B2
A dielectric composition includes main-phase particles each including a main component having a perovskite crystal structure represented by a general formula of ABO3. At least a part of the main-phase particles has a core-shell structure. The dielectric composition includes RA, RB, M, and Si. Each of A, B, RA, RB, and M is one or more elements selected from a specific element group. SRA/SRB>CRA/CRB is satisfied, where CRA is an RA content (mol %) to the main component in terms of RA2O3, and CRB is an RB content (mol %) to the main component in terms of RB2O3, in the dielectric composition, and SRA is an average RA content (mol %), and SRB is an average RB content (mol %), in a shell part of the core-shell structure.
US11854737B2
A detachable cryostat includes many novel structures. Two radiation shields are installed in the detachable cryostat. One of the radiation shields is cooled by the second-stage cold chamber utilized to contain a cryogen, and the other one is cooled by the first-stage cold head of the cryocooler. These structures are both used for reducing heat loads from an outside. The resilient supporting device, the resilient circular sleeve, the bellows and the conductive blocks are utilized to achieve excellent thermal contact and complete thermal isolation between the cryocooler and the cryogen. A detachable binary current lead device can be introduced in the detachable cryostat, wherein, the detachable binary current lead includes a superconducting current lead and a copper current lead. When the installation adjustment mechanism is tightly pressed and loosened, it can enable the superconducting current lead to contact and separate from the copper current lead.
US11854734B2
A multilayer coil component includes an element body formed by stacking a plurality of insulating layers on top of one another, a coil buried inside the element body, and an outer electrode that is electrically connected to the coil. The dead weight of the multilayer coil component lies in a range from 0.2 mg to 0.35 mg. The element body has a mounting surface and has a coil lead-out surface to which the coil is electrically led out and on which the outer electrode is provided. Looking at a cross section of the element body that is perpendicular to the mounting surface and the coil lead-out surface, a radius of curvature of an edge portion where the mounting surface and the coil lead-out surface intersect lies in a range from 13 μm to 30 μm.
US11854733B2
In a coil component, a double coil is configured of a first coil portion and a second coil portion, and a first through conductor of the first coil portion and a second through conductor of the second coil portion are adjacent to each other. Thus, the first coil portion and the second coil portion have enhanced magnetic coupling at locations (that is, the first through conductor and the second through conductor) at which planar coil patterns of upper and lower surfaces of an insulating substrate are connected, in addition to magnetic coupling in the planar coil patterns wound around a through hole. Therefore, according to the coil component, a high coupling coefficient between the first coil portion and the second coil portion is realized.
US11854732B2
Disclosed herein is an apparatus that includes a substrate having first and second surfaces opposite to each other, a first coil pattern formed on the first surface of the substrate, and a second coil pattern formed on the second surface of the substrate. The first coil pattern includes first and second lines, and the second coil pattern includes third and fourth lines. The first line is greater in a number of turn than the second line, and the third line is greater in a number of turn than the fourth line. The first line is connected to the fourth line, and the third line is connected to the second line.
US11854720B2
A wiring member includes: a connector; a plurality of wire-like transmission members extending from the connector; and a sheet member in which the plurality of wire-like transmission members extending from the connector are disposed and fixed on a main surface in a state where an arrangement of the plurality of wire-like transmission members is changed to be different from an arrangement in an end surface of the connector. At least one intersection position in which the plurality of wire-like transmission members intersect with each other for changing the arrangement of the plurality of wire-like transmission members is located in a backward region of the end surface of the connector.
US11854711B2
The present disclosure generally relates to methods and structures for the production of radioisotopes from the thermal neutron irradiation of selected natural isotopes. The methods, structures and operations are applicable to the production of any radioisotope that may be produced from neutron irradiation.
US11854707B2
An apparatus in one embodiment comprises a distributed data processing system in which multiple processing devices communicate with one another over at least one network. The distributed data processing system is configured to obtain reads of biological samples of respective sample sources, with each of the biological samples containing genomic material from a plurality of distinct microorganisms within an environment of a corresponding one of the sample sources, and to perform distributed data analytics to provide surveillance functionality characterizing at least one of a disease, an infection and a contamination as involving genomic material from multiple ones of the sample source. Performing distributed data analytics illustratively comprises performing local analytics in respective ones of a plurality of data zones, and performing global analytics utilizing results of the local analytics performed in the respective data zones.
US11854695B2
A medical device, such as a neurostimulator, is provided that includes a housing, a power supply, a signal generator and one or more electrodes coupled to the housing. The signal generator is configured to apply one or more electrical impulses to the one or more electrodes for a period of time, the period of time being defined as a single dose. A memory is coupled to the housing and stores a first content corresponding to a time period that has elapsed and a second content corresponding to a number of single doses that have been emitted by the signal generator. The device is configured to switch from an activated mode and a deactivated mode upon a first occurrence of either a specific number of single doses have been emitted by the signal generator or a specific time period has elapsed.
US11854690B2
Systems, methods, and a non-transitory computer readable medium for a universal indexing scheme for indexing data.
US11854685B2
A system for generating a gestational disorder nourishment program comprising a computing device, the computing device configured to obtain a maternal marker, calculate a gestational phase as a function of the maternal marker, wherein calculating the gestational phase further comprises, identifying a gestational goal, and calculating the gestational phase as a function of the maternal marker and the gestational goal as a function of a gestational machine-learning model, determine an edible as a function of the gestational phase, and generate a nourishment program as a function of the edible.
US11854684B2
A system for nourishment refinement using psychiatric markers includes a computing device designed and configured to retrieve a psychiatric marker relating to a user, identify a nutrient variation as a function of the psychiatric marker, establish nourishment possibilities as a function of the nutrient variation, and generate a nourishment program, wherein generating further includes training a machine learning process as a function of a training set relating psychiatric markers and nutrient variations to nourishment programs, and generating the nourishment program as a function of the psychiatric marker, the nourishment possibilities, and the machine-learning process.
US11854683B2
Systems and methods for designing and implementing patient-specific surgical procedures and/or medical devices are disclosed. In some embodiments, a method includes receiving a patient data set of a patient. The patient data set is compared to a plurality of reference patient data sets, wherein each of the plurality of reference patient data sets is associated with a corresponding reference patient. A subset of the plurality of reference patient data sets is selected based, at least partly, on similarity to the patient data set and treatment outcome of the corresponding reference patient. Based on the selected subset, at least one surgical procedure or medical device design for treating the patient is generated.
US11854679B1
A medication inventory system may include a medication tray that includes partitions defining compartments and having a tray identifier associated therewith, and each compartment may store a respective medication. The system may include an imaging apparatus, and a processor and an associated memory cooperating with the imaging apparatus to determine the tray identifier of the medication tray, and maintain in the memory a desired respective medication within each compartment based upon the tray identifier. A respective medication image of the medication within each compartment may be obtained and machine learning may be used to determine a medication within each compartment based upon the respective medication image. A discrepancy may be determined between the determined medication within each compartment and the desired respective medication within each compartment, and when so, a display notification may be generated that includes a visual indicator corresponding to each compartment determined to have the discrepancy.
US11854672B2
A method and apparatus for generating a new chemical structure using a chemical structure generation model are provided. The method includes receiving a first descriptor of a first chemical structure, encoding the first descriptor into a latent variable using an encoder of the chemical structure generation model, generating a second descriptor by decoding the latent variable using a decoder of the chemical structure generation model, generating the second chemical structure corresponding to the second descriptor.
US11854667B2
In one aspect, methods are described herein for enhancing one or more nucleic acid interactions. For example, in some embodiments, methods of enhancing one or more steps of polymerase chain reaction (PCR) are described herein. In some embodiments, the optimal temperature cycling protocol for one or more PCR cycles can be determined according to methods described herein.
US11854662B2
Memory includes at least one memory chip, a command port and a data port. Each memory chip includes at least one channel. Each channel includes multiple banks that are configured to perform read and write operations alternately. The command port is configured to receive command signals at a preset edge of a command clock, and the command signals are configured to control the read and write operations of the banks. The data port is configured to receive data signals to be written into the banks or transmit data signals at preset edges of a data clock. The command port includes a row address port and a column address port. The row address port is configured to receive a row address signal at a position of a target memory cell, and the column address port is configured to receive a column address signal at a position of the target memory cell.
US11854652B2
A sense amplifier is biased to reduce leakage current equalize matched transistor bias during an idle state. A first read select transistor couples a true bit line and a sense amplifier true (SAT) signal line and a second read select transistor couples a complement bit line and a sense amplifier complement (SAC) signal line. The SAT and SAC signal lines are precharged during a precharge state. An equalization circuit shorts the SAT and SAC signal lines during the precharge state. A differential sense amplifier circuit for latching the memory cell value is coupled to the SAT signal line and the SAC signal line. The precharge circuit and the differential sense amplifier circuit are turned off during a sleep state to cause the SAT and SAC signal lines to float. A sleep circuit shorts the SAT and SAC signal lines during the sleep state.
US11854639B2
Apparatuses and methods including a test circuit in a scribe region between chips are described. An example apparatus includes: a first semiconductor chip and a second semiconductor chip, adjacent to one another; a scribe region between the first and second semiconductor chips; test address pads in the scribe region; and an address decoder circuit in the scribe region. The test address pads receive address signals. The address decoder provides first signals responsive to the address signals from the test address pads.
US11854629B2
A scheme for non-parametric optimal read threshold estimation of a memory system. The memory system includes a memory device including pages and a controller including a neural network. The controller performs read operations on a selected page using a read threshold set; obtain the read threshold set, a checksum value and an asymmetric ratio of ones count and zeros count which are associated with decoding of the selected page according to each of the read operations; provide the obtained read threshold set, the checksum value and the asymmetric ratio as input information to the neural network; and estimate, by the neural network, an optimal read threshold voltage based on the input information and weights including a combination of multiple matrices and bias vectors.
US11854626B2
A memory device including a plurality of memory cells, a peripheral circuit, and a control logic. The peripheral circuit performs a first read operation using a plurality of read voltages on selected memory cells. The control logic controls the peripheral circuit to perform a cell counting operation, adjust remaining read voltages among the plurality of read voltages based on a read offset table and a cell count which is a result of the cell counting operation, and perform a first read operation on the selected memory cell with the remaining read voltages, in the first read operation. The control logic performs a read data output operation of a second read operation performed before the first read operation and the cell counting operation corresponding to the first read operation in parallel among a plurality of successively performed read operations.
US11854624B2
A non-volatile memory device and a non-volatile memory erasing operation method is provided. The method includes the following. A first erasing operation is performed, including reducing a threshold voltage of each of a plurality of memory cells of the non-volatile memory through a first erasing pulse. A first verification operation is performed to confirm whether the threshold voltage of each of the memory cells is less than an erasing target voltage level. In response to at least one of the memory cells failing the first verification operation, a second erasing operation is performed. The second erasing operation includes selecting the at least one memory cell failing the first verification operation, and reducing the threshold voltage of the at least one memory cell to be less than the erasing target voltage level through a second erasing pulse.
US11854614B2
An electronic device includes a semiconductor memory comprising column lines, row lines crossing the column lines, memory cells located at intersections between the column lines and the row lines, dummy insulating patterns located adjacent to the memory cells, liner layers formed on sidewalls of the memory cells, and dummy liner layers formed on sidewalls of the dummy insulating patterns.
US11854611B2
A multiphase programming scheme for programming a plurality of memory cells of a data storage system includes a first programming phase in which a first set of voltage distributions of the plurality of memory cells is programmed by applying a first plurality of program pulses to word lines of the plurality of memory cells, and a second programming phase in which a second set of voltage distributions is programmed by applying a second plurality of program pulses to the word lines of the plurality of memory cells. The second programming phase includes maintaining a margin of separation between two adjacent voltage distributions of the second set of voltage distributions after each of the second plurality of program pulses. This scheme achieves better margin using an aggressive quick pass approach, which helps with data recovery in case of power loss events.
US11854610B2
A semiconductor device includes an active area extending in a first direction, a first transistor including a first gate electrode and first source and drain areas disposed on the active area, the first source and drain areas being disposed at opposite sides of the first gate electrode, a second transistor including a second gate electrode and second source and drain areas disposed on the active area, the second source and drain areas being disposed at opposite sides of the second gate electrode, and a third transistor including a third gate electrode and third source and drain areas disposed on the active area, the third source and drain areas being disposed at opposite sides of the third gate electrode, and the first gate electrode, the second gate electrode, and the third gate electrode extending in a second direction different from the first direction. The second transistor is configured to turn on and off, based on an operation mode of the semiconductor device.
US11854609B2
A memory is provided that includes multiple memory banks, each one of the memory banks being associated with a read multiplexer. A first read multiplexer couples a first plurality of bit lines to a first sense node pair, and a second read multiplexer couples a second plurality of bit lines to a second sense node pair. A first sense amplifier is coupled to the first sense node pair. The second sense node pair may be coupled to the same sense amplifier or a different sense amplifier.
US11854589B2
A magnetoresistive element comprises a nonmagnetic sidewall-current-channel (SCC) structure provided on a surface of the SOT material layer that exhibits the Spin Hall Effect, which is opposite to a surface of the SOT material layer where the magnetic recording layer is provided, and comprising an insulating medium in a central region of the SCC structure, and a conductive medium being a sidewall of the SCC structure and surrounding the insulating medium, making an electric current crowding inside the SOT material layer and the magnetic recording layer to achieve a spin-orbit torque and a higher spin-polarization degree for an applied electric current.
US11854585B2
A magnetic recording medium is a magnetic recording medium having a tape shape and includes a substrate, an underlayer provided on the substrate, and a magnetic layer provided on the underlayer. The magnetic layer has a surface having an uneven shape, a height range ΔH obtained from statistical information of a height of the uneven shape is in a range of 4.00 nm≤ΔH≤10.00 nm, and a gradient range ΔA obtained from statistical information of a gradient of the uneven shape is in a range of 2.50 degrees ≤ΔA.
US11854583B2
The disclosure describes a head gimbal assembly including a suspension and a damping layer on a surface of the suspension. The suspension may include a slider mount configured to establish mechanical communication with a slider and the layer may be displaced from the slider mount. The layer may be configured to provide passive damping or active damping.
US11854582B2
A suspension includes a load beam, a flexure and a dimple portion. The flexure includes a tongue. The dimple portion swingably supports the tongue at least over a first position and a second position. In the tongue, first pillow portions supporting a slider and an adhesive portion fixing the slider are provided. In the load beam, a second pillow portion protruding towards the slider is provided. The second pillow portion is in contact with the slider when the tongue is located at the first position, and separates from the slider when the tongue has moved to the second position.
US11854581B2
Embodiments of the present disclosure generally relate to a magnetic media drive employing a magnetic recording device. The magnetic recording device comprises a trailing gap disposed adjacent to a first surface of a main pole, a first side gap disposed adjacent to a second surface of the main pole, a second side gap disposed adjacent to a third surface of the main pole, and a leading gap disposed adjacent to a fourth surface of the main pole. A side shield surrounds the main pole and comprises a heavy metal first layer and a magnetic second layer. The first layer surrounds the first, second, and third surfaces of the main pole, or the second, third, and fourth surfaces of the main pole. The second layer surrounds the second and third surfaces of the main pole, and may further surround the fourth surface of the main pole.
US11854575B1
A microphone acquires audio data of a user's speech. The audio data is processed to determine sentiment data indicative of perceived emotional content of the speech. For example, the sentiment data may include values for one or more of valence that is based on a particular change in pitch over time or activation that is based on speech pace. A simplified user interface provides the user with a graphical representation based on the sentiment data and associated descriptors. For example, a visual indicator such as a dot may be shown at particular coordinates onscreen that correspond to the sentiment data. Text descriptors may also be presented near the dot. As the user continues speaking, and new audio data is processed, the interface is dynamically updated. The user may use this information to assess their state of mind, facilitate interactions with others, and so forth.
US11854551B2
Transcribing portions of a communication session between a user device and an on-premises device of an enterprise includes receiving, by a computer located remotely from the on-premises device, a media stream of the communication session from the on-premises device and receiving, by the computer, at least one event associated with the media stream from the on-premises device. Furthermore, the computer determines a portion of the media stream to transcribe based on the at least one event and transcribes the portion of the media stream.
US11854546B2
A speech-controlled vanity mirror is provided, which includes a vanity mirror body, a first microphone, a second microphone and a speech recognition control device provided on the vanity mirror body. The speech recognition control device includes a music control device and a speech control device. The first microphone is connected to the music control device, and transmits the audio signal acquired from a loudspeaker to the music control device. A filter in the music control device filters the audio signal to eliminate the interference of the audio played by the loudspeaker in speech instructions of the user. The second microphone is connected to the speech control device, and transmits the speech instructions of the user to the speech control device. The speech control device adjusts and controls a multifunctional device on the vanity mirror body according to the speech instructions. It is convenient for users to operate, and the recognition rate and accuracy of the speech instruction are high.
US11854534B1
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.
US11854533B2
Techniques disclosed herein enable training and/or utilizing speaker dependent (SD) speech models which are personalizable to any user of a client device. Various implementations include personalizing a SD speech model for a target user by processing, using the SD speech model, a speaker embedding corresponding to the target user along with an instance of audio data. The SD speech model can be personalized for an additional target user by processing, using the SD speech model, an additional speaker embedding, corresponding to the additional target user, along with another instance of audio data. Additional or alternative implementations include training the SD speech model based on a speaker independent speech model using teacher student learning.
US11854530B1
An electronic audio file is received that comprises spontaneous speech responsive to a prompt in a non-native language of a speaker. Thereafter, the electronic audio file is parsed into a plurality of spoken words. The spoken words are then normalized to remove stop words and disfluencies. At least one trained content scoring model is then used to determine an absence of pre-defined key points associated with the prompt in the normalized spoken words. A list of the determined absent key points can be generated. This list can then be displayed/caused to be displayed in a graphical user interface along with feedback to improve content completeness. Related apparatus, systems, techniques and articles are also described.
US11854524B2
Adjustment of active noise cancellation (ANC) systems can include determining a noise within a vehicle; detecting a movement of a head of a listener; adjusting one or more parameters of the ANC system based at least on the noise and the movement of the head of the listener; determining an anti-noise based at least on the adjusted one or more parameters; and outputting the anti-noise.
US11854519B2
A system is described that permits identified musical phrases or themes to be synchronized and linked into changing real-world events. The achieved synchronization includes a seamless musical transition—achieved using a timing offset, such as relative advancement of an significant musical “onset,” that is inserted to align with a pre-existing but identified music signature, beat or timebase—between potentially disparate pre-identified musical phrases having different emotive themes defined by their respective time signatures, intensities, keys, musical rhythms and/or musical phrasing. The system operates to augment an overall sensory experience of a user in the real world by dynamically changing, re-ordering or repeating and then playing audio themes within the context of what is occurring in the surrounding physical environment, e.g. during different phases of a cardio workout in a step class the music rate and intensity increase during sprint periods and decrease during recovery periods.
US11854514B2
A reduced volume drumhead has a layer of porous material and a ring of compressible material. The ring of compressible material is fixed to the underside of the layer of porous material in a substantially centered or coaxial position with the porous material stretched across a hoop in tension. The ring may be formed of a foam or similar material with compressibility and stretchability under tension and defines an open central area of the drumhead for striking. The ring may be formed of segments and thus include one or more circumferential breaks with spacing. The drumhead provides natural tonal characteristics and has a natural feel when struck.
US11854512B2
A display device is provided, which includes an image buffer, a display module, and a display controller. The display controller is used for receiving an image signal from a host, and storing the image signal in the image buffer. In response to the display controller receiving a trigger signal, the display controller controls the display device to enter an image-rewinding mode. The display controller obtains a retrospective image that corresponds to a retrospective time point according to a user command, and plays the retrospective image on the display module.
US11854506B2
According to one embodiment, a display device includes a first scanning line, a second scanning line, a signal line, a capacitive line and a pixel including a pixel electrode, a first transparent electrode connected to the capacitive line, a second transparent electrode capacitively coupled to the pixel electrode, a first switch, and a second switch. The first transparent electrode is capacitively coupled to the second transparent electrode. The first switch is electrically connected to the signal line, the pixel electrode, and the first scanning line. The second switch is electrically connected to the signal line, the second transparent electrode, and the second scanning line.
US11854504B2
A display device includes: a display panel having a display region in which pixels are arranged; scan lines each coupled to the pixels arranged in a row direction; signal lines each coupled to the pixels arranged in a column direction; a signal line drive circuit; a scan line drive circuit selecting the scan lines; and a signal processing circuit. A second half period of a selection period of a first scan line overlaps a first half period of a selection period of a second scan line. The signal processing circuit adjusts a pixel gradation value of the pixel in an m-th column coupled to the second scan line when a difference value between the pixel gradation value of the pixel in the m-th column coupled to the first scan line and an average gradation value of the pixels arranged in the m-th column is larger than a predetermined value.
US11854500B2
One embodiment provides a method, including: receiving, on an information handling device, an indication that content is loading on the information handling device; determining, using a processor, whether a projected loading period for the content is expected to exceed a predetermined threshold; and lowering, responsive to determining that the projected loading period for the content is expected to exceed the predetermined threshold, a brightness of a display screen associated with the information handling device during a loading period for the content. Other aspects are described and claimed.
US11854499B2
A display device is disclosed that includes a display panel, a controller, and a data driver. The controller is configured to determine first luminances with respect to a reference grayscale in a second frame when the reference grayscale is displayed in the second frame after the reference grayscale is displayed in a first frame. The controller is configured to determine second luminances with respect to the reference grayscale in the second frame when the reference grayscale is displayed in the second frame after a minimum grayscale is displayed in the first frame. The controller is further configured to temporally and spatially arrange first data corresponding to the reference grayscale and second data corresponding to the minimum grayscale to generate a data signal. And, the controller is configured to drive the display panel with a digital driving method in a first grayscale section, and drive the display panel with an analog driving method in a second grayscale section. The data driver is configured to generate a data voltage based on the data signal.
US11854497B2
The present invention relates to a display apparatus that allows a compensated data voltage to be supplied to each pixel by compensating for the data voltage so as to prevent burn-in from occurring in a display panel, a method for compensating a data signal thereof, and a method for generating a deep learning-based compensation model. To implement same, the present invention provides the display apparatus comprising a timing controller having mounted therein the compensation model generated by learning, in a deep learning method, the temperature, time, average brightness, and data voltage for each pixel. Accordingly, the present invention has an effect of preventing burn-in from occurring in each pixel by supplying each pixel with the compensated data voltage generated via the compensation model.
US11854493B2
The present disclosure provides a display substrate and a display device, and belongs to the field of display technology. The display substrate of the present disclosure includes: a base substrate; and a plurality of pixel units arranged in an array, a plurality of signal lines and signal supply modules on the base substrate; wherein the signal supply module includes: a signal supply circuit and a redundant signal supply circuit; each of the signal supply modules is electrically coupled to at least one of the plurality of pixel units through at least one of the plurality of signal lines.
US11854486B2
An organic light emitting diode display with improved aperture ratio includes: a substrate; first and second pixels disposed in a first row of the substrate and third and fourth pixels disposed in a second row adjacent to the first row and respectively disposed in the same columns as the first and second pixels; a scan line and a previous scan line applying a scan signal and a previous scan signal, respectively, to the pixel units; a data line and a driving voltage line applying a data signal and a driving voltage, respectively, to the pixel units; and a common initialization voltage line disposed between the first and second pixels and between the third and fourth pixels, commonly connected to the pixel units, and applying an initialization voltage. One common initialization contact hole connected to all pixels units and one initialization voltage line connected to the common initialization contact hole are surrounded by the pixel units.
US11854485B2
A display panel includes: a transmissive area surrounded by a display area; first and second data lines each including a first part and a second part that are apart from each other with the transmissive area therebetween; first and second bridge lines in the display area and disposed opposite sides of the transmissive area, the first bridge line electrically connecting the first part and the second part of the first data line to each other, the second bridge line electrically connecting the first part and the second part of the second data line to each other; first and second vertical conductive lines in the display area; a first horizontal conductive line electrically connected to the first vertical conductive line; and a second horizontal conductive line electrically connected to the second vertical conductive line.
US11854476B1
The disclosure is directed to a timing controller having a mechanism for frame synchronization, a display panel having the timing controller thereof, and a display system having the timing controller thereof. According to an aspect of the disclosure, the disclosure provides an integrated circuit which includes a timing controller to transmit a first TE signal to an application processor and receive a first image frame from the application processor after the application processor receives the first TE signal, and a control circuit to generate a first sync signal when the timing controller receives the first image frame, wherein when the application processor receives a second TE signal and the application processor is not ready to transmit a second image frame to the timing controller, the control circuit delays a first waiting period to generate a second sync signal.
US11854466B2
The present application discloses a display panel and a display device. The display panel includes a GOA circuit, a source driving chip, a multiplexing circuit, and a plurality of pixels distributed in an array; through improvement of the cascade connection between GOA units and the at least partially overlapping between working cycles of adjacent ones of the GOA units, more working cycles can be provided for the writing of the data signals to meet the writing requirements of the data signals during high-frequency drive display or ultra-high frequency drive display.
US11854460B2
A shift register unit, a driving circuit, a display device, and a driving method are disclosed. The shift register unit includes a first input circuit, a second input circuit, an output circuit, a first control circuit, and a second control circuit. The first input circuit is electrically connected to a first node, and is configured to transmit an input signal to the first node; the second input circuit is electrically connected to the first node and a second node, and is configured to control a level of the second node; the first control circuit is electrically connected to the second node and a third node, and is configured to control a level of the third node; and the output circuit is electrically connected to the third node and an output terminal, and is configured to output an output signal to the output terminal.
US11854449B2
An electronic device includes: a housing; and a flexible display that includes at least some region that is rolled in a substantially circular shape with respect to a first axis in the internal space of the housing. When the flexible display is drawn out of the housing by a specified movement distance, the flexible display may be bent to interfere with the housing so as not to be introduced into the internal space of the housing.
US11854447B2
A display device includes a pixel array including touch blocks; a plurality of test pads in a bezel area outside the pixel array for performing a pixel test and a touch block test; a plurality of pixel test lines and a plurality of touch block test lines connected to the test pads within the pixel array; a switching unit between the test pads and the pixel test lines and the touch block test lines and applying a test signal to any one of the pixel test lines and the touch block test lines; a pixel test switching pad in the bezel area and providing a control signal for testing pixel operation in the pixel array to the switching unit; and a touch block test switching pad in the bezel area and providing a control signal for testing the touch blocks within the pixel array to the switching unit.
US11854430B2
A method and system including an adaptive learning platform having a backend system and a frontend system. The backend system is configured to manage lessons for display on a user device. The backend system includes a creation module for creating new courses, the course module is configured to employ AI processing techniques to search for relevant content stored in a database of the backend component and recommend the relevant content to a user as course content (new course content) for a new course. The frontend system is configured to execute on the user device and includes a user interface for the user to access various modules of the backend system.
US11854413B2
Methods, systems and apparatus, including computer programs encoded on computer storage media for unmanned aerial vehicle visual line of sight flight operations. A UAV computer system may be configured to ensure the UAV is operating in visual line of sight of one or more ground operators. The UAV may confirm that it has a visual line of sight with the one or more user devices, such as a ground control station, or the UAV may ensure that the UAV does not fly behind or below a structure such that the ground operator would not be able to visually spot the UAV. The UAV computer system may be configured in such a way that UAV operation will maintain the UAV in visual line of sight of a base location.
US11854407B2
A method for dynamic airspace planning is performed by one or more processors, and includes identifying, in an airspace model that includes an array of nodes, a set of path elements. Each path element connects a pair of adjacent nodes in the array. The method includes obtaining, for each aircraft in a set of aircraft, a respective current position on a path element. The set of aircraft may include thousands of manned and/or unmanned aircraft. The method includes obtaining, for each aircraft, a respective final position on a path element; and enumerating, for each aircraft, a respective set of flight paths. Each flight path includes one or more path elements, and extends from at least the current position of a respective aircraft to the final position of the respective aircraft. The method includes determining, for each aircraft, a respective optimal flight path based on the respective set of flight paths.
US11854394B1
Systems and methods are disclosed for the development and management of curated navigational routes are disclosed. The curated navigational route can be a particular path of travel that is specifically designed for one or more users. The curated navigational routes are carefully constructed paths of travel that are custom defined by a route manager.
US11854384B2
Systems, devices, and methods are disclosed in which one or more light sources, a detector, a processor and a controller are configured such that light from the one or more light sources improves the ability of a human or automated motor vehicle driver to identify and avoid pedestrians. The one or more light sources may provide spot illumination to moving objects or pedestrians on a road surface, with the spot illumination following the moving object or pedestrians along the portion of the road surface. The one or more light sources may project images on the ground or on other surfaces. The light source may be carried by a pedestrian or on personal transport used by a pedestrian. The light sources may be stationary and provide lighting for a pedestrian street crossing.
US11854381B2
A system including: a foot switch for controlling a medical device; and a receiver for the medical device to be controlled as components. Where the foot switch and the receiver are configured for wirelessly transmitting uniquely assignable control signals after completion of coupling at least from the foot switch to the receiver; one of the components comprises an NFC read module for reading out a transponder in a vicinity and an other component comprises the transponder that can be read out by the NFC read module; and the NFC read module is configured at least to initiate the coupling of the foot switch and the receiver on the basis of items of information read out from the transponder.
US11854379B2
Provided is a method, device, and computer-readable medium for controlling a robot graphic user interface (“RGUI”) on a mobile device. The method can include determining a distance, a position, or both of the mobile device with respect to a first robot; and causing, by a processor, a first RGUI to be displayed on a display of the mobile device based on the determining.
US11854375B1
An emergency medical services (EMS) visual light guidance aiding device is disclosed. The EMS visual light guidance aiding device is configured to aid EMS personnel in guidance to a specific location without maps, apps, or other conventional guidance mechanisms.
US11854372B2
Methods and apparatus for detecting false alarms are disclosed. An indication may be received that a sensor device has changed state. Data indicative of movement of the sensor device may also be received. Based on the received data indicative of movement of the sensor device, it may be determined whether the movement of the sensor device is abnormal. Based on the changed state of the sensor device and based on determining that the movement of the sensor device is abnormal, an indication of a false alarm may be caused to be output.
US11854367B1
Methods, systems, and apparatus, including computer programs encoded on a storage device, for a monitoring system that is configured to monitor a property. The monitoring system may include a sensor that is configured to generate sensor data that reflects an attribute of the property, a microphone that is connected to a pipe and that is configured to detect audio data associated with the pipe, and a monitor control unit. The monitor control unit is configured to receive the sensor data and the audio data, provide the sensor data and the audio data as inputs to a model that is trained to determine that a device connected to the pipe is being used, receive, from the model, data indicating that the device connected to the pipe is being used, and based on determining that the device connected to the pipe is being used, perform a monitoring system action.
US11854366B1
The present disclosure provides a leak monitoring system and associated method which is being configured to detect plumes of volatile organic compounds (VOC) as an alternative solution to the EPA Method 21, which measures VOC concentrations at the surface of each component. The leak monitoring system is a multi-layered system that includes monitoring performed by sensors that are fixed in place and sensors that are mobile. Each monitoring method is a layer and it complements and augments other layers. All the sensors wirelessly communicate with a central control through a gateway. The control unit further includes a software platform, which analyzes the data provided by the sensors in combination with other informetrics such as meteorological conditions and plant info to both identify the presence of a gas leak and to pinpoint a general location of the gas leak. When a significant gas leak is identified, the control unit sends an alert to plant managers via text or email, in addition to activating visual and/or audible alarms.
US11854341B2
A gaming device having a processor to control a display to display a set of prize levels having a bottom level, a variable level associated with a variable prize, and an intermediate level. In each of a plurality of game instances, the processor selects a plurality of symbols, control the display to display the selected symbols, determines whether the symbols displayed include increment symbols, upon the symbols displayed including the increment symbols, increments the variable prize by respective amounts of the increment symbols, evaluates symbols displayed for a winning combination, and the symbols displayed including the winning combination, increments from a current prize level to a different prize level in the set of prize levels provided the different prize level is not a top level. At an end of the plurality of game instances, the processor awards a current prize of the current prize level.
US11854336B2
A GPS-tracked wireless-networked electric convenience vehicle (ECV) includes a body portion adapted for supporting the body of passenger; a GPS system for providing GPS-location services to the GPS-tracked wireless-networked ECV; a transport system with wheels and a drive mechanism, for supporting and transporting the body portion; and a wireless electronic control module being integrated with the transport system, and in wireless communication with a wireless communication infrastructure, for controlling said wheels and/or the drive mechanism. When a web-enabled mobile phone is used to (i) scan a device-level machine-readable code displayed on the GPS-tracked wireless-networked ECV, (ii) complete an ECV rental transaction over the wireless communication infrastructure, and (iii) obtain access control over the rented GPS-tracked wireless-networked ECV, then the wireless electronic control module enables the GPS-tracked wireless-networked ECV to be operated on a ground surface.
US11854335B2
A method of contact-less access control to a device available for rental, access and use in an environment, by scanning multi-level machine-readable codes displayed in the environment using web-enabled mobile phones wirelessly connected to a wireless access control network. To practice a facility-level, site-level access and/or device-level access control method, a web-enabled mobile phone is used to scan facility-level, site-level and/or device-level machine-readable codes in the environment, and in response, rental transaction identifiers are stored within the cache on the web-enabled mobile phone scanning the machine-readable code. Each rental transaction identifier identifies the web-enabled mobile phone that is linked to a specific device rental transaction. After renting the selected device at either a facility-level, site-level or device-level location in the environment, the web-enabled mobile phone is used to scan the device-level machine-readable code on the rented device. The web-enabled mobile phone uses the rental transaction identifier stored within its cache to automatically enable access to the rented device at the selected site for use in the environment. While not required by the access methods, the user may set a passcode for entry into the system using the web-enabled mobile phone, to further constrain access to the rented device.
US11854319B2
The technology involves operation of a self-driving truck or other cargo vehicle when it is being inspected at a weigh station. This may include determining whether a weigh station is open for inspection. Once at the weigh station, the vehicle may follow instructions of an inspection officer or autonomous inspection system. The vehicle may perform predefined actions or operations so that various vehicle systems and safety issues can be evaluated, such as the brakes, lights, tires, connections between the tractor and trailer, exposed fuel tanks, leaks, etc. A visual inspection may be performed to ensure the load is secured, vehicle and cargo documents meet certain criteria, and the carrier's safety record meets any requirements. In addition, the weigh station itself may be operated in a partly or fully autonomous mode when dealing with autonomous and manually driven vehicles.
US11854317B2
A method for standardizing a plurality of motor vehicles may include determining a characteristic value of an individual vehicle (50) based on transmission data for the individual vehicle from a data gathering device (6) associated with the individual vehicle. The transmission data for the individual vehicle may be associated with shifting characteristics of a transmission of the individual vehicle for at least one of an operation interval of the individual vehicle or a mileage of the individual vehicle. Additionally, the method may include assigning the individual vehicle to one of a plurality of profiles (10.1, 10.2, 10.3, 10.4, 10.5) of a classification (10) based at least in part on a magnitude of the characteristic value. The classification may be determined based at least in part on average values and a magnitude and frequency of deviations from the average values of transmission data gathered for a plurality of vehicles (5).
US11854312B2
A portable electronic wireless lock for ensuring the safety of goods, including humanly consumable goods. The lock is controlled by a smartphone, which also acts as a communications hub between the lock and a truckload owner or supervisor. According to the present invention, a truck driver uses a smartphone to interface between a trailer payload supervisor and the payload lock itself, to ensure the safety of the transported goods and comply with regulations such as the Food Safety Modernization Act (“FSMA”). An electronic lock may, according to the present invention, interface electronically to a smartphone, so that while in motion, the smartphone ensures that the lock remains locked and controls its operation. Alternatively, such an electronic lock may be designed to permit only a limited number of locking cycles initiated by a truck driver until a loading supervisor intercedes in compliance with FSMA.
US11854308B1
The technology disclosed also initializes a new hand that enters the field of view of a gesture recognition system using a parallax detection module. The parallax detection module determines candidate regions of interest (ROI) for a given input hand image and computes depth, rotation and position information for the candidate ROI. Then, for each of the candidate ROI, an ImagePatch, which includes the hand, is extracted from the original input hand image to minimize processing of low-information pixels. Further, a hand classifier neural network is used to determine which ImagePatch most resembles a hand. For the qualified, most-hand like ImagePatch, a 3D virtual hand is initialized with depth, rotation and position matching that of the qualified ImagePatch.
US11854305B2
A bi-directional spatial-temporal transformer neural network (BDSTT) is trained to predict original coordinates of a skeletal joint in a specific frame through relative relationships of the skeletal joint to other joints and to the state of the skeletal joint in other frames. Obtain a plurality of frames comprising coordinates of the skeletal joint and coordinates of other joints. Produce a spatially masked frame by masking the original coordinates of the skeletal joint. Provide the specific frame, the spatially masked frame, and at least one more frame to a coordinate prediction head of the BDSTT. Obtain, from the coordinate prediction head, a prediction of coordinates for the skeletal joint. Adjust parameters of the BDSTT until a mean-squared error, between the prediction of coordinates for the skeletal joint and the original coordinates of the skeletal joint, converges.
US11854302B2
A system for calibrating a three-dimensional scanning device includes a structured-light scanner capable of performing a structured-light operation, and a processor that performs calibration on a device under calibration (DUC). The structured-light scanner captures a base image by performing the structured-light operation prior to calibration. The structured-light scanner captures a calibration image with respect to corresponding DUC during calibration, and the calibration image is inputted to the processor, which determines transformation mapping from the calibration image to the base image. The determined transformation is then transferred to the DUC during calibration.
US11854301B1
A person may attempt to gain access to a facility via transaction data, such as images of a hand of the person or other identifying information as acquired by an input device. Possible fraud may be detected by comparing the transaction data with previously stored exclusion data. The exclusion data may include known bad data or synthetic trained data for detecting possible fraud. If the biometric input matches or is similar to the exclusion data, possible fraud is detected and the person is prompted for additional data. The reply data acquired from the person is compared with the exclusion data to determine if possible fraud is still detected. If so, additional prompts are presented to the person until the reply data provides enough confidence of no fraud or until the transaction is terminated.
US11854300B2
A fingerprint module includes: a lens, a crystal, and an optical fingerprint chip, where the crystal is an anisotropic medium, the lens is located on one side of the crystal, the optical fingerprint chip is located on the other side of the crystal, and the optical fingerprint chip is fixed in a substrate of an electronic device. Incident light including fingerprint information is incident to the crystal through the lens and is incident to the optical fingerprint chip after being refracted by the crystal; and the optical fingerprint chip is used for generating a fingerprint image, and the fingerprint image is used for fingerprint recognition.
US11854299B2
A detection device includes a plurality of optical sensors arranged in a detection area, a light source configured to emit light that is emitted to an object to be detected and is detected by the optical sensors, and a processor configured to perform processing based on outputs from the optical sensors. The processor is configured to determine, based on the outputs of the respective optical sensors obtained at a cycle of a predetermined period, an optical sensor an output of which is to be employed from among the optical sensors.
US11854294B2
An electronic device includes a display panel and a biometric sensor. The display panel includes a light emitter. The biometric sensor is stacked with the display panel and is configured to detect light emitted from the display panel and reflected by a recognition target that is external to the electronic device. The biometric sensor includes a silicon substrate and a photoelectric conversion element on the silicon substrate. The photoelectric conversion element includes a photoelectric conversion layer having wavelength selectivity.
US11854292B2
A display device includes a display panel, a sensing layer disposed on the display panel and including a fingerprint sensor, an optical layer disposed on the display panel, and a cover layer disposed on the optical layer, wherein the cover layer is a multilayer structure.
US11854289B2
The technology described in this document can be embodied in a method that includes obtaining, by one or more image acquisition devices, a first image of a portion of a human body under illumination by electromagnetic radiation in a first wavelength range, and obtaining a second image of the portion of the human body under illumination by electromagnetic radiation in a second wavelength range. The method also includes generating, by one or more processing devices, a third image or template that combines information from the first image with information from the second image. The method also includes determining that one or more metrics representing a similarity between the third image and a template satisfy a threshold condition, and responsive to determining that the one or more metrics satisfy a threshold condition, providing access to the secure system.
US11854287B2
A method, a computer program product, and a computer system compare images for content consistency. The method includes receiving a first image including a first document and a second image including a second document. The method includes performing a visual classification analysis on the first image and the second image. The visual classification analysis generates an overlap of the first image with the second image. The method includes determining whether a region of the overlap is indicative of a content inconsistency. As a result of the region of the overlap being indicative of a content inconsistency, the method includes performing a character recognition analysis on a first area of the first image and a second area of the second image corresponding to the region of the overlap to verify the content inconsistency.
US11854281B2
An exemplary system, method, and computer-accessible medium for generating an image(s) of an anatomical structure(s) in a biological sample(s) can include receiving first wide field microscopy imaging information for the biological sample, generating second imaging information by applying a gradient-based distance transform to the first imaging information, and generating the image(s) based on the second imaging information. The second imaging information can be generated by applying an anisotropic diffusion procedure to the first imaging information. The second imaging information can be generated by applying a curvilinear filter and a Hessian-based enhancement filter after the application of the gradient-based distance transform. The second information can be generated by applying (i) a tube enhancement procedure or (ii) a plate enhancement procedure after the application of the gradient-based distance transform.
US11854279B2
A vehicle exterior environment recognition apparatus includes a monocular distance calculator, a relaxation distance calculator, and an updated distance calculator. The monocular distance calculator calculates a monocular distance of a three-dimensional object from a luminance image generated by an imaging unit. The relaxation distance calculator calculates a relaxation distance of the three-dimensional object from two luminance images generated by two imaging units based on a degree of image matching between the two luminance images determined using a threshold more lenient than another threshold used to determine the degree of image matching to generate a stereo distance of the three-dimensional object. The updated distance calculator calculates an updated distance of the three-dimensional object by mixing the monocular distance and the relaxation distance at a predetermined ratio.
US11854268B2
An information processing apparatus according to the present invention includes: a first acquisition unit that acquires biometric information of a person; a second acquisition unit that acquires identification information of the baggage possessed by the person; and a creating unit that creates link information for associating the biometric information with the identification information.
US11854257B2
Methods, apparatus and computer program for identifying canopy structures are provided. In one aspect, a method includes receiving a first calculated offset between a start point of a shadow cast by a building and a proximate first vertex of a building footprint of the building, and receiving a second calculated offset between an end point of the shadow cast by the building and a proximate second vertex of the building footprint, the shadow identified from an overhead image of the building, and wherein the building footprint comprises a shadowed side and a non-shadowed side, each running between the start point and the end point of the shadow on a different respective side of the building. The method also includes comparing the offsets to an offset threshold, and in response to both the first and second received offsets exceeding the offset threshold, determining that the building footprint represents a canopy.
US11854255B2
A human-object scene recognition method includes: acquiring an input RGB image and a depth image corresponding to the RGB image; detecting objects and humans in the RGB image using a segmentation classification algorithm based on a sample database; in response to detection of objects and/or humans, performing a segment detection to each of the detected objects and/or humans based on the ROB image and the depth image, and acquiring a result of the segment detection; calculating 3D hounding boxes for each of the detected objects and/or humans according to the result of the segment detection, and determining a position of each of the detected objects and/or humans according to the 3D bounding boxes.
US11854254B2
This disclosure is directed to initiating adjustment of an operation associated with an underwater drilling system, which may include receiving at least one underwater image; identifying the reference object in the at least one underwater image, wherein a position of the reference object is fixed relative to an underwater borehole or an underwater cloud; determining a first parameter associated with the reference object; identifying the underwater cloud in the at least one underwater image; determining a second parameter associated with the underwater cloud; adjusting the second parameter associated with the underwater cloud based on the first parameter associated with the reference object; and initiating an adjustment of the operation associated with the underwater drilling system based on the adjusted second parameter associated with the underwater cloud.
US11854253B2
Apparatuses, methods, and articles of manufacture are disclosed. An example apparatus includes processor circuitry to assign a location value hyperdimensional vector (HDV) to a location in an image of a first patch of one or more pixels, assign at least a first channel HDV to the first patch, determine at least one pixel intensity value HDV for each of the one or more pixels in the first patch, bind together each of the pixel intensity value HDVs into at least one patch intensity value HDV, bind together the at least first channel HDV and the at least one patch intensity value HDV to produce a patch consensus intensity HDV, and generate a first hyperdimensional representation patch value HDV of the first patch by binding together at least a combination of the patch consensus intensity HDV and the location value HDV.
US11854239B2
An imaging device acquires an input image using a lens unit and an imaging element and detects a subject. The imaging device calculates a reliability of detection of a subject and compares the reliability with a threshold value. When the reliability of detection of a subject is less than the threshold value, the imaging device performs a defocus calculating process and a background area determining process. The imaging device performs a low-pass filtering process on the determined background area, decreases a high-frequency component in the background area, and then detects a subject again.
US11854229B2
Aspects of the disclosure relate to verifying the location of an object of a particular type. For instance, a plurality of images of an environment of the vehicle may be received. Associated objects of the particular type may be identified in ones of the plurality of images. A plurality of estimated locations may be determined for the object using a plurality of different localization techniques. For each image of the ones of the plurality of images, determine a reprojection error for each of the plurality of estimated locations. For each of the plurality of estimated locations, an error score is determined based on the reprojection errors. An estimated location may be selected from the plurality of estimated locations based on the determined error score. This selected location may be used to control a vehicle in an autonomous driving mode.
US11854224B2
A system includes processing hardware and a memory storing software code. When executed, the software code receives first skeleton data including a first location of each of multiple skeletal key-points from the perspective of a first camera, receives second skeleton data including a second location of each of the skeletal key-points from the perspective of a second camera, correlates first and second locations of some or all of the multiple skeletal key-points to produce correlated skeletal key-point location data for each of at least some skeletal key-points. The software code further merges the correlated skeletal key-point location data for each of those at least some skeletal key-points to provide merged location data, and generates, using the merged location data and the locations of the first, second, and third cameras, a mapping of the 3D pose of a skeleton.
US11854221B2
A positioning system and a calibration method of an objection location are provided. The calibration method includes the following. Roadside location information of a roadside unit (RSU) is obtained. Object location information of one or more objects is obtained. The object location information is based on a satellite positioning system. An image identification result of the object or the RSU is determined according to images of one or more image capturing devices. The object location information of the object is calibrated according to the roadside location information and the image identification result. Accordingly, the accuracy of the location estimation may be improved.
US11854218B2
In one aspect, a method for detecting terrain variations within a field includes receiving one or more images depicting an imaged portion of an agricultural field. The method also includes classifying a portion of the plurality of pixels that are associated with soil within the imaged portion of the agricultural field as soil pixels with each soil pixel being associated with a respective pixel height. Additionally, the method includes identifying each soil pixel having a pixel height that exceeds a height threshold as a candidate ridge pixel and each soil pixel having a pixel height that is less than a depth threshold as a candidate valley pixel. The method further includes determining whether a ridge or a valley is present within the imaged portion of the agricultural field based at least in part on the candidate ridge pixels or the candidate valley pixels.
US11854216B2
Apparatus and associated methods relate to a method of non-contact motion detection. A one-dimensional optical sensor detects motion of a target or objects on a conveyor belt through a continuous measurement of targets or objects and a real-time comparison of the pixel images captured by the one-dimensional optical sensor. In an illustrative embodiment, a one-dimensional sensor may be configured to determine motion of objects based on changes to the captured intensities of pixel images over time. The sensor may continually capture photoelectric pixel images and compare a current pixel image with a previous pixel image to determine a frame differential image value. The frame differential image value is evaluated against a predetermined threshold over a predetermined time period. Based on the evaluation, a signal is output indicating whether the objects on the conveyor belt are moving or jammed.
US11854212B2
A method for operating a vehicle includes detecting a traffic light located at a first spatiotemporal location based on a first digital video stream captured by a first camera and a second digital video stream captured by a second camera. It is determined that the vehicle is located at a second spatiotemporal location by validating first location data received from sensors against second location data obtained by filtering the first location data. It is determined that the traffic light is expected at the first spatiotemporal location based on a semantic map referenced by the second spatiotemporal location. Responsive to determining that the traffic light is expected at the first spatiotemporal location, a traffic signal of the traffic light is detected based on the two digital video streams. A trajectory is determined in accordance with the traffic signal. A control circuit operates the vehicle in accordance with the trajectory.
US11854207B2
The implementation of the present disclosure provides a point cloud partitioning method and device, and a computer-readable storage medium, including: when performing stripe division along the longest side, adjusting an initial partitioning position or determining the stripe division length according to the size of a preset block, to obtain a stripe division position, wherein, the length of the first n−1 stripes along the longest side is an integer multiple of the side length of the preset block, n is the number of divided stripes, and n is a positive integer greater than or equal to 2.
US11854205B2
This application relates to a medical image segmentation method, a computer device, and a storage medium. The method includes: obtaining medical image data; obtaining a target object and weakly supervised annotation information of the target object in the medical image data; determining a pseudo segmentation mask for the target object in the medical image data according to the weakly supervised annotation information; and performing mapping on the medical image data by using a preset mapping model based on the pseudo segmentation mask, to obtain a target segmentation result for the target object. Because the medical image data is segmented based on the weakly supervised annotation information, there is no need to annotate information by using much labor during training of the preset mapping model, thereby saving labor costs. The preset mapping model is a model used for mapping the medical image data based on the pseudo segmentation mask.
US11854202B2
Methods and systems for analyzing images are disclosed. An example method may comprise inputting one or more of a first image or a second image into a fully convolutional network, and determining an updated fully convolutional network by optimizing a similarity metric associated with spatially transforming the first image to match the second image. The one or more values of the fully convolutional network may be adjusted to optimize the similarity metric. The method may comprise registering one or more of the first image or the second image based on the updated fully convolutional network.
US11854201B2
A current observation area is determined exploratorily from among a plurality of candidate areas, on the basis of a plurality of observed areas in a biological tissue. A plurality of reference images obtained by means of low-magnification observation of the biological tissue are utilized at this time. A learning image is acquired by means of high-magnification observation of the determined current observation area. A plurality of convolution filters included in an estimator can be utilized to evaluate the plurality of candidate areas.
US11854191B2
An image processing method is provided for displaying cells from a plurality of pathology images or overall images. A respective overall image represents a respective patient tissue sample or a respective patient cell sample. The method includes the steps of: providing the overall images, detecting individual cell images in the overall images by means of a computer-assisted algorithm, determining classification data by means of the computer-assisted algorithm, wherein the classification data indicate a respective unique mapping of a respective detected cell image to one of a plurality of cell classes, and wherein the classification data further have a respective measure of confidence in respect of the respective unique mapping, generating respective class images for the respective cell classes, wherein a class image of a cell class reproduces the cell images mapped to the cell class in a regular arrangement and with a predetermined order, and wherein further the order of the mapped cell images is chosen on the basis of the measures of confidence of the mapped cell images, and further, displaying a portion of at least one class image.
US11854189B2
A method for compiling a dental overview map of the dentition of an examination object on the basis of magnetic resonance (MR) data from a MR measurement of the dentition. Performing an MR measurement for acquiring MR data from the dentition. Performing an analysis of sections of the dentition in order to determine an abnormality on the basis of the MR data, wherein a section of the dentition includes a subset of the number of teeth in the dentition, and determining an abnormality in at least one section. Compiling a dental overview map as a function of the MR data and the abnormality of the at least one section of the dentition. Providing the dental overview map.
US11854187B2
A model generation device (10) includes a specifier (103) that specifies partial moving images and a model generator (104) that generates an abnormality determination model. The partial moving images are included in a moving image acquired by imaging a production facility operable in multiple operation modes and are images for the respective operation modes. The model generator (104) generates, based on a time-series relationship between the partial moving images specified by the specifier (103) for the respective operation modes, the abnormality determination model for determination of whether an abnormality is present at the production facility based on the moving image acquired by imaging the production facility.
US11854176B2
A method and device for generating a composite group image from subgroup images is provided. Subgroup images, each having a common background, are accessed. The boundaries of a subgroup area within each of the subgroup images is determined. At least one horizontal and at least one vertical shift factor is determined using the determined boundaries. An arrangement for the subgroup images based on the at least one horizontal and the at least one vertical shift factor is generated. The composite group image is generated by blending the subgroup images arranged in the arrangement.
US11854175B2
Fluorescence imaging with reduced fixed pattern noise is disclosed. A method includes actuating an emitter to emit a plurality of pulses of electromagnetic radiation and sensing reflected electromagnetic radiation resulting from the plurality of pulses of electromagnetic radiation with a pixel array of an image sensor. The method includes reducing fixed pattern noise in an exposure frame by subtracting a reference frame from the exposure frame. The method is such that at least a portion of the plurality of pulses of electromagnetic radiation emitted by the emitter comprises electromagnetic radiation having a wavelength from about 770 nm to about 790 nm.
US11854172B2
The present invention discloses a color contrast enhanced rendering method, device and system suitable for an optical see-through head-mounted display. The method includes: (1) acquiring a background environment in real time to obtain a background video and performing Gaussian blur and visual field correction on the video; (2) converting an original rendering color and a processed video color from an RGB color space to a CIELAB color space scaled to a unit sphere range; (3) finding an optimal rendering color based on the original rendering color and the processed video color in the scaled CIELAB space according to a set color difference constraint, a chromaticity saturation constraint, a brightness constraint and a just noticeable difference constraint; and (4) after converting the optimal rendering color back to the RGB space, performing real-time rendering by using the optimal rendering color of the RGB space. The method is widely applied and capable of obviously improving the discrimination between a virtual content and a background environment and supporting various virtual scenes and background environments without a pre-preparation process.
US11854168B2
The method includes generating, for each of a plurality of original images, a first artificially degraded image by applying a first image-artifact-generation logic on each of the original images; and generating the program logic by training an untrained version of a first machine-learning logic that encodes a first artifacts-removal logic on the original images and their respectively generated first degraded images; and returning the trained first machine-learning logic as the program logic or as a component thereof. The first image-artifact-generation logic is A) an image-acquisition-system-specific image-artifact-generation logic or B) a tissue-staining-artifact-generation logic.
US11854153B2
Interference-based augmented reality hosting platforms are presented. Hosting platforms can include networking nodes capable of analyzing a digital representation of scene to derive interference among elements of the scene. The hosting platform utilizes the interference to adjust the presence of augmented reality objects within an augmented reality experience. Elements of a scene can constructively interfere, enhancing presence of augmented reality objects; or destructively interfere, suppressing presence of augmented reality objects.
US11854152B2
Wearable systems for privacy preserving expression generation for augmented or virtual reality client applications. An example method includes receiving, by an expression manager configured to communicate expression information to client applications, a request from a client application for access to the expression information. The expression information reflects information derived from one or more sensors of the wearable system, with the client application being configured to present virtual content including an avatar rendered based on the expression information. A user interface is output for presentation which requests user authorization for the client application to access the expression information. In response to receiving user input indicating user authorization, enabling access to the expression information is enabled. The client application obtains periodic updates to the expression information, and the avatar is rendered based on the periodic updates.
US11854148B2
A head-mounted display device, including a display, one or more input devices including one or more image sensors, one or more communication devices, and a processor. The processor may output for display a mixed reality experience including one or more virtual objects. The processor may transmit imaging data to a server computing device. The processor may receive, from the server computing device, an identification of a virtual content item display opportunity, which may include a determination that the mixed reality experience and one or more physical features identified from the imaging data satisfy one or more spatial and/or temporal constraints. The processor may transmit a request for one or more virtual content items to the server computing device based on the identification. The processor may receive the one or more virtual content items from the server computing device and may output the one or more virtual content items for display.
US11854131B2
The present disclosure describes systems, non-transitory computer-readable media, and methods for generating object-specific-preset edits to be later applied to other digital images depicting a same object type or applying a previously generated object-specific-preset edit to an object of the same object type within a target digital image. For example, in some cases, the disclosed systems generate an object-specific-preset edit by determining a region of a particular localized edit in an edited digital image, identifying an edited object corresponding to the localized edit, and storing in a digital-image-editing document an object tag for the edited object and instructions for the localized edit. In certain implementations, the disclosed systems further apply such an object-specific-preset edit to a target object in a target digital image by determining transformed-positioning parameters for a localized edit from the object-specific-preset edit to the target object.
US11854118B2
A method for training generative network, a method for generating near-infrared image and device. The method includes: obtaining a training sample set, in which the set includes near-infrared image samples and visible-light image samples; obtaining an adversarial network to be trained, in which the generative network of the adversarial network is configured to generate each near-infrared image according to an input visible-light image, the discrimination network of the adversarial network is configured to determine whether an input image is real or generated; constructing a first objective function according to a first distance between each generated near-infrared image and the corresponding near-infrared image sample in an image space and a second distance between each generated near-infrared image and the corresponding near-infrared image sample in a feature space; performing an adversarial training on the adversarial network with the set based on optimizing a value of the first objective function.
US11854115B2
A vectorized caricature avatar generator receives a user image from which face parameters are generated. Segments of the user image including certain facial features (e.g., hair, facial hair, eyeglasses) are also identified. Segment parameter values are also determined, the segment parameter values being those parameter values from a set of caricature avatars that correspond to the segments of the user image. The face parameter values and the segment parameter values are used to generate a caricature avatar of the user in the user image.
US11854102B2
Techniques are provided for reinforcement learning-based evaluation of software product usage. One method comprises obtaining key performance indicators indicating software product usage by a user; determining, for a predefined time window: (i) a mean and/or a median of the obtained KPIs; (ii) an amount of time that the software product was active; and (iii) an amount of interactions by the user with a user interface; evaluating possible login states of the software product using at least one reinforcement learning agent, wherein the evaluating comprises (a) observing the plurality of possible login states, including a current state comprising a current login state of the software product, and (b) obtaining an expected utility score for changing from the current login state to a different login state of the software product; and determining whether to change from the current login state to a different login state of the software product based on the expected utility score.
US11854099B2
An exemplary method includes receiving, by a processor, flight information from a computer device associated with an airline identifying a flight and passengers on the flight that purchased flight tickets by utilizing payment cards associated with a card authorizing entity. Passenger food preferences for the flight passengers based at least in part on historical payment card transaction data of the flight passengers is received from a computing device associated with the card authorizing entity based on the flight information. A food inventory available to be serviced on the flight is received. Automatically determining a flight-specific food inventory, to minimize an overall weight of the flight-specific food inventory to be carried by the flight based on the passenger food preferences. Automatically transmitting food packing instructions to a packing-related machine based on the flight-specific food inventory so as to assemble a portion of the flight-specific food inventory.
US11854086B1
Systems and methods provide customizable insurance according to consumer preferences and attributes. An enhanced attributes analysis server may analyze the attributes of a consumer and match these attributes with attributes of current customers of an entity managing the server. The insurance products/plans preferred by the matched customers may then be used to present insurance options to the consumer. In addition, the server may further customize insurance options based on answers to questions that relate to the consumer's specific situation. Further still, the consumer's social network may be used to understand insurance products/plans that may be preferred by the consumer.
US11854079B2
Key features of these methods, apparatus, and designs include (but are not limited to) innovations and implementations of futures securities; the notion of Type I, Type II, and Type III futures contracts custom tailored to specific clienteles; the notion of tickets and coupons as tradable futures contracts; the notion of bifurcation; the notion of redeemable bundles; and notion of realization of the futures market on the Internet; the apparatus of an Internet-based trading interface and engine; the notion of cookie-cutter futures electronic Internet-based futures markets for each security; the feature of maximal reliance on the Internet; and the business concept of “profitability without the need for high trading volume.”
US11854078B2
Geographical mapping and linking of security and risk indicator data. Cross-references are created between location indicators and geo-spatial areas based on a statistical algorithm, in accordance with geo-spatial data. The cross-references are stored in a first data table. A credit risk indicator (CRI) is generated for each geo-spatial area based on other data, forming CRI data that is stored in second data table. A security associated with one of the location indicators is identified among security data. A first link is created between the security and a geo-spatial area based on the cross-references in the first data table. Based on the first link, a second link is created between an indicator among the CRI data in the second data table and the security. The second link is used to form instrument-level data for the security that includes the indicator. The instrument-level data is stored in a third data table.
US11854076B2
A specialized mortgage constant calculator may include at least four different modes, each mode associated with a graphical user interface tailored to the mode and displayed on an electronic display. In addition, the mortgage constant calculator may include an adjustable table with a persistent, adjustable frame of reference and other navigational tools that facilitate use of a table that may be far larger than a display area of the electronic display.
US11854073B2
An indication that a ride associated with an electric vehicle has ended is received. An availability state of the electric vehicle is determined based at least on a current battery charge level of the electric vehicle and a dynamic charge threshold. Information reflecting the availability state of the electric vehicle in a set of geographic location and availability state information of vehicles comprising a fleet of electric vehicles available to be displayed is included via a user interface based at least in part on the respective availability state of the respective electric vehicles comprising the fleet of electric vehicles.
US11854072B2
Techniques are described for applying virtual makeup products. Virtual makeup products, in this context, may include a visual effect and a configuration for the effect, and the visual effect includes one or more layered visual filters. In an example, a system may acquire a base image of a face, acquire a defined region of the face over which to apply a selected virtual makeup product, and generate a makeup image including one or more layered and masked filters based on the selected virtual makeup product and the defined region of the face. After generating the makeup image, a composite image including the makeup image overlaid on the base image can be displayed to simulate the application of a real-world makeup product.
US11854069B2
Methods and systems are disclosed for performing operations comprising: accessing content received from a first client device associated with a first user; processing the content to identify a first image that depicts the first user wearing a first fashion item; determining a first pose of the first user depicted in the first image; searching a plurality of products to identify a first product that corresponds to the first pose of the first user depicted in the first image and that includes one or more attributes associated with the first fashion item; modifying the first image to generate an advertisement that depicts the first user wearing the first product; and during a content browsing session being accessed by the first client device, causing the advertisement that depicts the first user wearing the first product to be displayed automatically on the first client device.
US11854067B2
A system for automatically determining the location of a user-specified item within a plurality of possible independent inventory systems is described where each inventory system is located in a different unique geographic location. The system comprises a user profile database comprising a plurality of user records associated with a plurality of different users; at least one of the user records comprising a list of items that are required by a corresponding user; an availability database for providing information relating to the availability of specific items at each of the plurality of inventory systems, a central server for interacting with a mobile telecommunications device. The server comprises: an updating engine for regularly updating the availability database with supply or usage information received from the plurality of inventory systems; the supply or usage information regarding the number of items currently available at the location of each inventory system; and a processing engine for receiving a request from the mobile device from the location associated with one of the inventory systems, the request comprising a current location identifier and a user identifier. The processing engine is arranged to: search the user profile database for a matching user record corresponding to the user identifier; retrieve from the matching user record the list of items for that user; search the availability database using a unique identifier of each item of the list and the current location identifier to determine whether the inventory system at the current location of the mobile device has any of the items on the list; and transmit a reply to the request, the reply comprising information about which items on the user's list are present at the current location of the mobile device.
US11854055B2
This application relates to apparatus and methods for identifying anomalies within a time series. In some examples, a computing device receives sales data identifying a sale of at least one item, and aggregates the received data in a database. The computing device may generate a plurality of time series based on the aggregated sales data. The computing device may extract features from the plurality of time series, and generate an alerting algorithm that is based on clusters of the extracted features. The computing device may apply the alerting algorithm to a time series generated from received sales data to determine whether the time series is an anomaly. Based on the determination, the computing device may generate and transmit anomaly data identifying whether the time series is an anomaly, such as to another computing device.
US11854048B1
A method and system for controlling real-time bidding for online advertisements is disclosed. According to one embodiment, a computer-implemented method comprises communicating with a bidder and an impression server and an event tracking server. The bidder receives a real-time bidding (RTB) request containing an available impression from an exchange and places a bid corresponding to the RTB request. The impression server receives impression requests from a browser and responds to the impression requests from the browser. The event tracking server receives event requests from the browser and responds to event requests from the browser. Campaign performance data is retrieved from one or more of the impression server and the event tracking server and compared to the campaign target. The bidder is notified whether to bid for online advertisement impressions based on the campaign performance data.
US11854045B2
A system and method for targeted delivery of promotional messages from a sender to a receiver are disclosed. The system includes a website providing access to a plurality of promotional messages, and comprises a web-based user interface enabling the sender to create a set of promotional targeting records. A promotional targeting record comprises the sender's communication identifier, a targeted destination's communication identifier, and a selected promotional message. The created promotional targeting records are stored in a database. After a communication transmission from the sender to the receiver, system application software is used to: obtain the communication identifiers of the sender and the receiver; search the database to identify a promotional targeting record with matching sender and receiver communication identifiers; and after identifying such a promotional targeting record, retrieve from the database and deliver to the receiver the promotional message associated with the identified promotional targeting record.
US11854041B2
An example apparatus includes processor circuitry to access demographics from a database proprietor corresponding to impression requests from computing devices indicative of media impressions, determine a first media impression count corresponding to a sum of first media impressions that occurred on first computing devices satisfying a device type criterion and that are attributable to a demographic group corresponding to a) the demographics from the database proprietor, b) panel-based demographics corresponding to a market segment, determine a second media impression count corresponding to second media impressions that occurred on second computing devices not satisfying the device type criterion and that are attributable to the demographic group corresponding to a) the demographics from the database proprietor, b) the panel-based demographics corresponding to the market segment, and determine a total media impression count by adding the first media impression count to the second media impression count that are attributable to the demographic group.
US11854036B2
Methods and systems of managing or reconciling location-based transactions are disclosed. At least a location attribute related to a virtual coupon is derived from a digital representation of a real-world scene captured at least in part by a mobile device. At least one virtual coupon is generated based on at least the location attribute, wherein the virtual coupon is related to a purchasable item associated with the real-world scene. A reconciliation matrix related to the purchasable item based on at least the location attribute is identified. A transaction for the purchasable item is reconciled among at least one vendor account and at least one consumer account according to the at least one virtual coupon and the at least one reconciliation matrix.
US11854035B2
A method, system, and non-transitory computer-readable record medium for providing a reward through a reward account connected to a player. A reward providing method includes connecting, by processing circuitry, a plurality of reward accounts registered by a user on a player, the player being installed on an electronic device, determining, by the processing circuitry, an analysis result based on content playback information, the content playback information corresponding to content output through the player, and providing, by the processing circuitry, a reward through a first reward account among the plurality of reward accounts based on the analysis result, the reward corresponding to the content output through the player.
US11854032B1
A method for obtaining credit card pricing for a merchant includes obtaining a merchant category classification (MCC) code. A sales volume, a number of credit card transactions, an average dollar amount of the credit card transactions and a percentage of credit card transactions that are keyed are obtained. The MCC code, the average dollar amount of the of credit card transactions processed and the percentage of credit card transactions that are keyed are compared with corresponding data from a database of merchant credit card transactions. A matched merchant is identified whose transaction profile closely matches a combination of the MCC code, the average dollar amount of the credit card transactions processed and the percentage of credit card transactions that are keyed. Credit card processing pricing information for the matched merchant is obtained from the database. The credit card processing pricing information is used to calculate credit card processing pricing for the matched merchant.
US11854028B2
Systems and methods are directed to optimizing survey parameters using machine learning. A network system monitors user activity of a plurality of users with respect to an application and provides a notification to users of the plurality of users that satisfy a trigger condition for providing the notification. The network system obtains feedback corresponding to the notification, whereby the feedback indicates whether each of the users accepted, rejected, or ignored the notification. A machine learning model is then trained using input data obtained from the feedback to optimize on one or more parameters used by the network system in providing a future notification. Based on the machine learning model, the future notification is presented to a further set of users using the one or more optimized parameters.
US11854012B2
Systems and methods are provided for use in processing transactions based on biometric data used in connection with authenticating consumers to payment accounts to which the transactions are directed. One exemplary method includes prompting a consumer to provide a biometric in connection with a transaction by the consumer, and receiving a payment account credential specific to a payment account for use in the transaction. The method also includes appending a biometric score and an indication of a biometric technology used to capture the biometric to an authorization request associated with the transaction, and transmitting, by the computing device, the authorization request to an issuer.
US11853999B2
A card reader structured to perform processing on a card includes a main body part, an insertion port which is opened in the main body part and into which the card is inserted, a conveyance passage which is provided in an inside of the main body part and in which the card having been inserted is conveyed, a drive mechanism structured to convey the card in the conveyance passage, a plurality of sensors which detect insertion of the card into the insertion port and a state of conveyance of the card in the conveyance passage, and a control part which monitors state transitions of detected results of the plurality of the sensors for the card and determines that a foreign matter has been inserted into the card reader when the control part detects that a state transition is generated in a mode which is different from a predetermined state transition.
US11853998B2
Disclosed herein are system, method, and computer program product embodiments for creating a personalized barcode for an account holder at an Automated Teller Machine (ATM). An embodiment operates by storing account holder unique data and a first rule for generating a personalized barcode unique to the account holder based on the account holder unique data. After receiving a request for completion of a transaction from the first account holder, placing the account holder unique data and the first rule in a pairing service. Thereafter, the ATM is configured to retrieve the account holder unique data and the first rule from the pairing service, generate the first personalized barcode based on the first rule and the account holder unique data, and present the first personalized barcode to the first account holder.
US11853996B2
A card dispenser for dispensing a rewritable card is disclosed herein. The card dispenser may include a card feeder for receiving or dispensing a rewritable card. In addition, the card dispenser includes a roller assembly for moving the card from the card feeder to components within the card dispenser; a processor for receiving card data via a short-range wireless connection with a mobile device of a user, the card data including (i) a card identifier of a plurality of card identifiers associated with an account of the user and (ii) a unique derivation key for encrypting the card identifier; and a card writer for powering an electrophoretic display of the card, causing at least a portion of the card data to be rendered on the display, and stopping the powering of the display.
US11853994B2
A computer-implemented method for partitioning mobile device transactions may include generating a machine-readable indicia encoded with transaction data for a transaction between a merchant and at least one user; receiving a transaction request message including the transaction value and a split payment identifier; initiating a programmatic timer for a time interval in response to receiving the transaction request message from the first mobile device; receiving at least one additional transaction request message prior to expiration of the time interval; partitioning the transaction value between each of the first user account and the at least one other user account based at least partially on the transaction request message; and generating a separate authorization request message for each of the first user account and the at least one other user account, each authorization request message including a partial transaction value representing a portion of the transaction value.
US11853987B2
This disclosure provides various embodiments of systems and methods for secure communications. In one aspect, the system includes a secure payment module (SPM) in a fuel dispenser and a point-of-state (POS) system. The POS system stores a public key certificate uniquely identifying the SPM and is configured to dynamically generate a first session key. The POS system encrypts the first session key with a public key associated with the public key certificate, and transmits the encrypted first session key to the SPM. The SPM, which stores a private key associated with the public key certificate, is configured to receive and decrypt the first session key. The SPM is further configured to receive a set of magnetic card data from a card reader, encrypt the set of magnetic card data with the first session key, and transmit the encrypted set of magnetic card data to the POS system.
US11853979B1
Systems, methods, and computer-readable storage media utilized in remote math based currency (MBC) transactions. One method includes receiving, from a customer computer system, a token generation request associated with a remote MBC transaction including an amount of MBC funds to transfer, wherein the token generation request includes an identifier of a recipient computer system, and generating and transmitting, to the customer computer system, a token embedded with at least an MBC account number of the customer computer system. The method further includes receiving, from the recipient computer system, the token, wherein the recipient computer system is associated with a recipient MBC account, and creating a first and second public and private key pair. The method further includes transmitting the first public and private key pair to a recipient account destination of the recipient MBC account, and updating a pooled MBC account database with the second public and private key pair.
US11853977B2
The ELECTRONIC RECEIPT MANAGER APPARATUSES, METHODS AND SYSTEMS (“ERM”) transforms transaction initiation requests and receipt requests via ERM components into receipt formatting, organization, storage and linkage with transactions. The ERM may be configured to receive a receipt through an interface of a portable device and determine a set of fields for formatting data from the receipt. The ERM may format the data from the receipt to include the set of fields and store the formatted data in a memory element of the portable device.
US11853976B2
A system to manage records in a healthcare practice includes a server and a memory that stores patient data records and inventory equipment records. A check-in client computing device and first and second HCP client computing devices run apps that program respective devices to check-in patients for appointments, retrieve, and store patient healthcare data at the server. Display screens show approved appointments and the apps sort appointments as selected. The patient check-in app verifies that patients meet check-in requirements and locks the appointments of patients who do not. Apps retrieve patient data for the approved appointments and sort them. The server stores examination, treatment, and prescription data. Equipment inventory delivery data and returns data are stored. The server is programmed to communicate with all apps in their form and format of data and to translate all disparate data types into that form and format.
US11853971B2
A method and system for victim notification functions by receiving a report from an accuser regarding conduct of an accused that is believed to constitute harassment, bullying and/or discrimination, the reporting being composed of structured data. The severity of conduct in the report is scored and ranked and the pervasiveness of conduct in the report is scored and ranked by comparing the reported conduct against prior reports regarding the accused. Other reports by the accuser are also analyzed.
US11853967B2
Rental property management technology, in which electronic entry data for rental properties, energy related data for the rental properties, reservation data for the rental properties, and settings for energy management of the rental properties is accessed. Integrated data that includes the accessed electronic entry data, the accessed energy related data, and the accessed reservation data integrated with the accessed settings for energy management of the rental properties is stored in electronic storage. The integrated data is analyzed to determine whether energy management of the rental properties aligns with the accessed settings and accords with one or more efficiency rules. Based on the analysis, an energy management operation is performed for at least one of the rental properties.
US11853963B2
Examples provide a system for cold-chain compliant item selection. A set of perishable items are selected for retrieval by a user based on item data, cold-chain compliance score(s), and/or cold-chain compliance restrictions associated with each user. The selected set of items are assigned to the user for retrieval in accordance with a set of cold-chain compliance parameters, including a per-item maximum dwell-time specifying a maximum time interval between removal of a perishable item from a temperature-controlled display area and receipt of the perishable item at an intake area. A dwell-time is calculated for an item received at an intake area. The item is accepted if the per-item maximum dwell-time exceeds the calculated dwell-time and the item is rejected if the calculated dwell-time exceeds the per-item maximum dwell-time. An incentive is provided to the identified user based on a cold-chain compliance score for the user.
US11853956B2
In an aspect, a system for assembling a transport is presented. A system includes a computing device. A computing device is configured to receive a transport request. A transport request comprises a recipient identifier. A computing device is configured to arrange a plurality of components into a transport assembly as a function of a recipient identifier. A computing device is configured to generate a transport label. A computing device is configured to input a transport label into a carrier optimization model. A computing device is configured to provide a recommendation of a carrier from a plurality of carriers as a function of a transport assembly and carrier optimization model.
US11853951B1
An interactive digital logistics system is disclosed that receives real-time, on-demand data with immediate and same-day availability information from businesses, then displays the information for consumers to view, select, connect, and reserve the available services or products within a specified radius of their current geographical location. Businesses can accept or decline each consumer request and the interactive digital logistics system tracks the consumer's progress to the business's location. The interactive digital logistics system also tracks the progress of each request until completion and prompts both the consumer and business to rate their experience with the other party. The interactive digital logistics system then calculates an average rating for each party which is displayed in their respective profiles.
US11853947B2
A vehicle dispatching method is provided for managing a dispatch to a user of a first vehicle reserved by a user as a dispatch vehicle or a second vehicle that can be dispatched to a scheduled boarding point in which the user boards the dispatch vehicle, using a controller for communicating with communication devices in the first vehicle and the second vehicle. The method includes: acquiring, before the user arrives at the plan boarding point, position information of the first vehicle and position information of the second vehicle; calculating a first scheduled arrival period until the first vehicle arrives at the scheduled boarding point based on the acquired position information of the first vehicle; calculating a first waiting period difference between a user scheduled arrival period until the user arrives at the scheduled boarding point and the first scheduled arrival period; calculating a second scheduled arrival period until the second vehicle arrives at the scheduled boarding point for the user based on the acquired position information of the second vehicle; calculating a second waiting period difference between the user scheduled arrival period and the second scheduled arrival period; determining whether or not the second waiting period is shorter than the first waiting period; and when determining that the second waiting period is shorter than the first waiting period, designating the second vehicle as the dispatch vehicle.
US11853945B2
A method, apparatus, system, and computer program code for forecasting a data anomaly to a supply chain. A plurality of data records is identified for a plurality of entities. The data records include import records and export records. The data fields in the data records are categorized into generic field types. The generic field types include numeric fields, categorical fields, and date fields. For each of the plurality of entities, an entity-specific model is constructed for forecasting imports and exports based on the generic field types. The entity-specific model for each of the plurality of entities is combined into a global supply chain model. Based on the global supply chain model, a data anomaly is forecast to a supply chain that is associated with a particular entity.
US11853940B1
A system and method are disclosed including a supply chain network including one or more entities, one or more items and a plan explainer. The plan explainer generates an optimum inventory level based on a root cause of a goal violation by modeling the supply chain network and one or more business objectives as a hierarchy of objective functions. The plan explainer also solves the hierarchy of objective functions, stores plan explanation data and retrieves the plan explanation data. The plan explainer further generates the root cause of the goal violation by parsing the retrieved plan explanation data and calculates the optimum inventory level based on the root cause of the goal violation. In response to the calculated optimum inventory level, at least one of the one or more entities adjusts inventory levels of the one or more items according to the optimum inventory level. Other embodiments are also disclosed.
US11853939B2
A system and method for preparing structural analyses for solar installation projects, designing photovoltaic solar electrical systems and thermal solar systems processing solar installation plans, including the processing and interpretation of user input and jobsite information, supplementation of user input with data queried from relevant databases, processing and analyses of jobsite information according to requisite analyses, automated generation of forms and reports for review by a reviewing entity, delivery of signed and sealed documents for process by appropriate regulatory bodies, and addition of third-party verified eSignature and/or file encryption to sign and/or seal reports and plan documents.
US11853929B2
In a system of automatically analyzing infrastructure operation data, the system includes: an infrastructure operation determination unit configured to determine whether or not to execute an automatic analysis on infrastructure operation data; a data reception unit configured to receive operation data of a previous operation period and operation data of a succeeding operation period according to the automatic analysis execution; a statistics calculation unit configured to calculate statistics for the operation data of the previous operation period and the operation data of the succeeding operation period; and a significant difference analysis unit configured to analyze a significant difference between the operation data of the previous operation period and the operation data of the succeeding operation period based on the statistics.
US11853921B2
In some examples, a system may receive transaction data indicating payments into a first account over time and payments out of the first account over time, the first account associated with a user. In addition, the system may access a data structure including historical account data that indicates variations in a balance of the first account over time. The system may determine an indicated minimum balance for the first account based on inputting the transaction data and the historical account data into a first predictive model configured to predict a minimum balance for enabling predicted payments out of a user account. The system may determine, based on a difference between a current balance of the first account and the predicted minimum balance for the first account, that the first account has a surplus of funds. Based at least on the surplus, the system may send an instruction.
US11853914B2
A computer system develops models and generates decision logic based on the developed models. The decision logic is distributed to end user devices, and the end user devices are able to implement the decision logic to detect events, determine event sequences, and correlate the determined event sequences to predicted outcomes.
US11853913B1
Disclosed herein are embodiments of systems, methods, and products comprises an analytic server, which evaluates user data for premium financing status and dynamically renders graphical user interfaces. The server trains an artificial intelligence model based on historical user data. The artificial intelligence model comprises one or more data points with each data point representing one of a plurality of attributes and applies a logistic regression algorithm to identify a weight factor for each attribute. The server uses a dynamic algorithm to generate a score by combining the plurality of attributes based on the weight factors. The server receives responses regarding the scores that indicate the premium financing status of each case. The server retrains the artificial intelligence model to identify new weight factors based on negative responses data. The server automatically displays new scores calculated based on the new weight factors.
US11853910B2
Provided are a computer program product, system, and method for ranking action sets comprised of actions for an event to optimize action set selection. Information is maintained on actions for a plurality of events. Each action indicates an action value of the action to the user and event weights of the action with respect to a plurality of the events. A determination is made of actions sets having at least one action to perform for the event. For each determined action set, a rank of the action set is calculated as a function of the action value for each action in the action set and an event weight of the action with respect to the event. At least one action set is presented to the user for consideration. In response to receiving user feedback, an adjusted rank is set for at least one of the presented action sets.
US11853905B2
Systems and methods to identify document transitions between adjacent documents within document bundles are disclosed. Exemplary implementations may train a model: obtain training information including a first training bundle and corresponding document separation markers; determine page-specific feature information pertaining to individual pages of the first training bundle; determine, based on the obtained page-specific feature information, page-specific feature values for individual features of the individual pages of the first training bundle; generate, for the individual pages of the first training bundle, a page-specific feature vector; train the model, using the training document bundles, to determine whether the first page and the second page are part of different document. Systems and methods may utilize the trained model to identify document transitions between adjacent documents within document bundles.
US11853900B1
Techniques are provided for determining compatibility of first and second candidate code based on functionality. When the first candidate code and the second candidate code are compatible, third candidate code based is determined based on the first candidate code and the second candidate code. The third candidate that was determined based on the first candidate code and the second candidate code is then provided.
US11853896B2
The present disclosure belongs to the technical field of machine learning. Specifically provided is a neural network model, including at least one intermediate layer including different types of neurons which correspond to different types of neural networks. The neural network model is obtained based on an initial neural network and a multi-valued mask during a training process, and the multi-valued mask is obtained by means of performing multi-value processing on a continuous mask. Further provided are a method for training neural network model, a time sequence data processing method, an electronic device, and a readable medium.
US11853886B2
In a computer system that includes a trained recurrent neural network (RNN), a computer-based method includes: producing a copy of the trained RNN; producing a version of the RNN prior to any training; trying to solve a control task for the RNN with the copy of the trained RNN and with the untrained version of the RNN; and in response to the copy of the trained RNN or the untrained version of the RNN solving the task sufficiently well: retraining the trained RNN with one or more traces (sequences of inputs and outputs) from the solution; and retraining the trained RNN based on one or more traces associated with other prior control task solutions, as well as retraining the RNN based on previously observed traces to predict environmental inputs and other data (which maybe consequences of executed control actions).
US11853884B2
A classification training system comprises a neural network configured to perform classification of input data, a training dataset including pre-segmented, labeled training samples, and a classification training module configured to train the neural network using the training dataset. The classification training module includes a forward pass processing module, and a backward pass processing module. The backward pass processing module is configured to determine whether a current frame is in a region of target (ROT), determine ROT information such as beginning and length of the ROT and update weights and biases using a cross-entropy cost function and a tunable many-or-one detection (MOOD) cost function, that comprises a tunable hyperparameter for tuning the classifier for a particular task. The backward pass module further computes a soft target value using ROT information and computes a signal output error using the soft target value and network output value.
US11853882B2
The present disclosure describes methods, apparatus, and storage medium for node classification and training a node classification model. The method includes obtaining a target node subset and a neighbor node subset corresponding to the target node subset from a sample node set labeled with a target node class, a neighbor node in the neighbor node subset being associated with a target node in the target node subset; extracting a feature subset of the target node subset based on the neighbor node subset by using a node classification model, the feature subset comprising a feature vector of the target node; performing class prediction for the target node subset according to the feature subset, to obtain a predicted class probability subset; and training the node classification model with a target model parameter according to the predicted class probability subset and a target node class subset of the target node subset.
US11853881B2
Techniques are described to detect and classify, with high accuracy, events associated with objects using image data analysis and computer vision. In an embodiment, an image capturing device captures an image of an area, which includes objects such as fixed objects. The process determines that an event associated with an object occurred by providing the captured image as input data to an ML model. The ML model is trained to identify such objects and events associated with the objects. The process determines image coordinate information of the event identified within the image and, based at least on mapping data of the area to the image coordinate information, determines that a fixed object of the area is associated with the event. Metrics may be calculated for the fixed object and detected events.
US11853865B2
A circuit for performing neural network computations for a neural network, the circuit comprising: a systolic array comprising a plurality of cells; a weight fetcher unit configured to, for each of the plurality of neural network layers: send, for the neural network layer, a plurality of weight inputs to cells along a first dimension of the systolic array; and a plurality of weight sequencer units, each weight sequencer unit coupled to a distinct cell along the first dimension of the systolic array, the plurality of weight sequencer units configured to, for each of the plurality of neural network layers: shift, for the neural network layer, the plurality of weight inputs to cells along the second dimension of the systolic array over a plurality of clock cycles and where each cell is configured to compute a product of an activation input and a respective weight input using multiplication circuitry.
US11853864B2
A data processing apparatus for executing data processing using a neural network including a plurality of hierarchal levels includes an extraction unit configured to extract intermediate feature data from input feature data, a calculation unit configured to calculate output feature data by reducing the number of channels of the intermediate feature data, a storage unit configured to store the output feature data calculated by the calculation unit and provide the input feature data to the extraction unit, and a control unit configured to control the number of channels of the intermediate feature data to be extracted by the extraction unit and the number of channels of the output feature data to be calculated by the calculation unit.
US11853861B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating output examples using neural networks. One of the methods includes receiving a request to generate an output example of a particular type, accessing dependency data, and generating the output example by, at each of a plurality of generation time steps: identifying one or more current blocks for the generation time step, wherein each current block is a block for which the values of the bits in all of the other blocks identified in the dependency for the block have already been generated; and generating the values of the bits in the current blocks for the generation time step conditioned on, for each current block, the already generated values of the bits in the other blocks identified in the dependency for the current block.
US11853857B2
A convolutional neural network (CNN)-based signal processing includes receiving of an encrypted output from a first layer of a multi-layer CNN data. The received encrypted output is subsequently decrypted to form a decrypted input to a second layer of the multi-layer CNN data. A convolution of the decrypted input with a corresponding decrypted weight may generate a second layer output, which may be encrypted and used as an encrypted input to a third layer of the multi-layer CNN data.
US11853847B2
Quantum information processing involves entangling large numbers of qubits, which can be realized as defect centers in a solid-state host. The qubits can be implemented as individual unit cells, each with its own control electronics, that are arrayed in a cryostat. Free-space control and pump beams address the qubit unit cells through a cryostat window. The qubit unit cells emit light in response to these control and pump beams and microwave pulses applied by the control electronics. The emitted light propagates through free space to a mode mixer, which interferes the optical modes from adjacent qubit unit cells for heralded Bell measurements. The qubit unit cells are small (e.g., 10 μm square), so they can be tiled in arrays of up to millions, addressed by free-space optics with micron-scale spot sizes. The processing overhead for this architecture remains relatively constant, even with large numbers of qubits, enabling scalable large-scale quantum information processing.
US11853841B2
A portable tracking device including a substantially rectangular base unit. A display screen, a video camera, a keypad, a pair of lights, an activation control, a video control, a bar code scanner, and a camera control are disposed on the base unit. The pair of lights includes a first light and a second light. The bar code scanner is configured to scan the barcode of each of a plurality of tags. The first light of the pair of lights is configured to activate when a user scans the barcode of one of the plurality of tags a first time. The first light of the pair of lights is configured to deactivate and the second light of the pair of lights is configured to simultaneously activate when the user scans the barcode of one of the plurality of tags a second time.
US11853831B2
The present invention is in the field of ultra-high frequency (“UHF”) radio frequency identification (“RFID”) tags. More particularly, the present invention relates generally to systems and methods for providing a passive UHF RFID tag having a small footprint that is optimized for high performance applications in emerging markets for RFID technology.
US11853830B2
The present invention contemplates a method of activating a wearable device, the method comprising the step of detecting an electromagnetic field generated by a Near Field Communication (“NFC”) transmitter within a detection range of an electromagnetic field detection circuit of the wearable device. In response to detecting the electromagnetic signal, the method further contemplates emitting a trigger signal to trigger a flip-flop, wherein triggering the flip-flop causes a switching transistor to switch between at least one of an activated state and a deactivated state, and wherein causing the switching transistor to switch between at least one of the activated state and the deactivated state, switches a connection between an electronic circuit and a power supply between at least one of a on state and an off state.
US11853828B2
A radio frequency identification (RFID) switch tag is disclosed. This RFID switch tag includes a base component having an ultra-high frequency (UHF) booster, and a detachable component having at least one UHF RFID module and a high frequency (HF) RFID module. In some embodiments, the detachable component is positioned in close proximity to the base component in a first configuration of the RFID switch tag such that the at least one UHF RFID module is sufficiently coupled to the UHF booster in the base component to form an UHF RFID system having a desired performance. The detachable component can also be separated from the base component to obtain a second configuration of the RFID switch tag, and the HF RFID module remains functional within the detached detachable component so that the detachable component can be used as a standalone HF RFID tag.
US11853816B2
Systems and methods for extending a container orchestration engine API in-process are disclosed. The method includes compiling each of one or more custom resource definition (CRD) controllers that are created in a cluster at run-time into a respective isolation module to generate one or more isolation modules, wherein the one or more isolation modules are all hosted in a service. The method also includes, in response to detecting an API event serviced by a CRD controller of the one or more CRD controllers, executing a respective isolation module of the CRD controller.
US11853808B2
A method includes receiving a request to set up a computing cluster comprising at least one node, the request comprising a selection of a node graphical user interface element that represents at least one virtual machine associated with at least one of at least one cloud service provider and at least one on-premise computing device, dynamically generating a configuration file comprising configuration language to set up the computing cluster comprising the at least one node, parsing the configuration file to convert the configuration file into at least one application programming interface (API) request and sending the at least one API request to the least one of the at least one cloud service provider and the at least one on-premise computing device to set up the computing cluster, and receiving real-time deployment information.
US11853797B2
The present disclosure relates to a method, a device, and a program product for deploying a visual resource. In one method, a resource requirement of a vision application for the visual resource in a network system is acquired. Based on the resource requirement, the visual resource which will be called by the vision application is predicted. Based on processing capabilities of various edge devices and the visual resource in the network system, an edge device located near a terminal device in the network system is identified, wherein the terminal device is configured to run the vision application. Based on a time requirement in the resource requirement, the visual resource is deployed to the edge device. Further, a corresponding device and a corresponding program product are provided.
US11853793B2
An electronic device includes at least one transceiver, at least one memory, and at least one processor coupled to the at least one transceiver and the at least one memory. The at least one processor is configured to receive, via the at least one transceiver, an AI model in a trusted execution environment (TEE). The at least one processor is also configured to receive an inference request and input data from a source outside the TEE. The at least one processor is further configured to partition a calculation of an inference result between an internal calculation performed by processor resources within the TEE and an external calculation performed by processor resources outside the TEE. In addition, the at least one processor is configured to produce the inference result based on results of the internal calculation and the external calculation.
US11853792B2
The present disclosure relates to a baseline monitoring method, apparatus, readable medium, and electronic device. The method includes: determining a plurality of tasks to be monitored in the baseline; determining whether there is a first task to be monitored that has cyclic dependency according to dependencies among the plurality of tasks to be monitored; and determining a task instance to be checked for each of the tasks to be monitored, and for the first task to be monitored that is not a guaranteed task, determining the task instance to be checked for the first task to be monitored according to the cyclic dependency and dependency between the first task to be monitored and its downstream task to be monitored.
US11853788B2
Disclosed are various embodiments for creating and managing virtual appliances. A command to create a virtual machine image for a hosted instance of an application image is received. The virtual machine image is created in response to receiving the command. The virtual machine image can include an operating system; a container orchestration service configured to host the instance of the application image; and a configuration service. The configuration service can be configured to at least install a management agent in response to a first boot of the virtual machine and configure the management agent to download and install the application image.
US11853784B2
An example electronic apparatus is for accelerating a para-virtualization network interface. The electronic apparatus includes a descriptor hub performing bi-directionally communication with a guest memory accessible by a guest and with a host memory accessible by a host. The guest includes a plurality of virtual machines. The host includes a plurality of virtual function devices. The virtual machines are communicatively coupled to the electronic apparatus through a central processing unit. The communication is based upon para-virtualization packet descriptors and network interface controller virtual function-specific descriptors. The electronic apparatus also includes a device association table communicatively coupled to the descriptor hub and to store associations between the virtual machines and the virtual function devices. The electronic apparatus further includes an input-output memory map unit (IOMMU) to perform direct memory access (DMA) remapping and interrupt remapping.
US11853782B2
A device for managing composition of composed information handling includes persistent storage and a computer processor that obtains a composition request for a composed information handling system; makes a determination that the composition request is an intent based request; in response to the determination: matches an application specified by the composition request to computing resource requirements for the application; identifies, based on the computing resource requirements, at least one compute resource set having resources meeting the computing resources requirement; identifies, based on the computing resource requirements, at least one hardware resource set having resources meeting the computing resource requirements; sets up management services for the at least one hardware resource set using at least one control resource set to obtain logical hardware resources; and presents the logical hardware resources to the at least one compute resource set as bare metal resources.
US11853780B2
Disclosed is an improved approach to implement I/O and storage device management in a virtualization environment. According to some approaches, a Service VM is employed to control and manage any type of storage device, including directly attached storage in addition to networked and cloud storage. The Service VM implements the Storage Controller logic in the user space, and can be migrated as needed from one node to another. IP-based requests are used to send I/O request to the Service VMs. The Service VM can directly implement storage and I/O optimizations within the direct data access path, without the need for add-on products.
US11853770B2
Embodiments are provided for imaging an operating system (OS) by creating a new OS image from an installer OS image copy maintained in durable storage. During the OS imaging, only a subset of OS files from the installer image are fully copied into the new OS image. Placeholder files are created for other files not included in the initial subset of OS files which were determined to be critical for booting of the OS and/or a minimum set of OS functionality. The placeholder files are distinguished from sparse files and are inaccurately presented by the file system as being full copies of the underlying installer OS image. The data for the placeholder files is only copied when requested, on demand, and/or when there is available/unused processing bandwidth that is subsequently identified after rebooting the computing system with the new OS image.
US11853769B2
An SSD includes a controller having a first non-volatile memory in which a power-off timestamp is stored, and a hardware register accessible by a host. The SSD also includes a second non-volatile memory coupled to the controller, the second non-volatile memory storing instructions for at least one boot-up mode of the SSD. Upon power up of the controller and prior to the controller executing the instructions for at least one boot-up mode of the SSD, the controller receives, in the hardware register, a power-on timestamp from the host and determines, based on the power-on timestamp and the stored power-off timestamp, a boot-up mode of the SSD.
US11853766B2
An example system includes memory; a central processing unit (CPU) to execute first operations; in-memory execution circuitry in the memory; and detector software to cause offloading of second operations to the in-memory execution circuitry, the in-memory execution circuitry to execute the second operations in parallel with the CPU executing the first operations.
US11853765B2
The disclosure includes a method of authenticating a processor that includes an arithmetic and logic unit. At least one decoded operand of at least a portion of a to-be-executed opcode is received on a first terminal of the arithmetic and logic unit. A signed instruction is received on a second terminal of the arithmetic and logic unit. The signed instruction combines a decoded instruction of the to-be-executed opcode and a previous calculation result of the arithmetic and logic unit.
US11853760B2
A model conversion method is disclosed. The model conversion method includes obtaining model attribute information of an initial offline model and hardware attribute information of a computer equipment, determining whether the model attribute information of the initial offline model matches the hardware attribute information of the computer equipment according to the initial offline model and the hardware attribute information of the computer equipment and in the case when the model attribute information of the initial offline model does not match the hardware attribute information of the computer equipment, converting the initial offline model to a target offline model that matches the hardware attribute information of the computer equipment according to the hardware attribute information of the computer equipment and a preset model conversion rule.
US11853757B2
Systems, apparatuses and methods may provide for technology that identifies that an iterative loop includes a first code portion that executes in response to a condition being satisfied, generates a first vector mask that is to represent one or more instances of the condition being satisfied for one or more values of a first vector of values, and one or more instances of the condition being unsatisfied for the first vector of values, where the first vector of values is to correspond to one or more first iterations of the iterative loop, and conducts a vectorization process of the iterative loop based on the first vector mask.
US11853755B2
Apparatuses, methods of data processing, complementary instructions and programs related to atomic range-compare-and-modify operations are disclosed. Data processing operations are performed in response to received instructions, wherein the data processing operations comprise an atomic range-compare-and-modify operation, which receives indications of a data value storage location, a range start, and a range size and, as an atomic set of steps, reads a base value stored at the data value storage location, determines an in-range condition to be true when the base value is within a request range having a lower bound being the range start and an upper bound being the range start plus the range size, and when the in-range condition is true, modify the base value to an updated base value. Reduced contention between processes accessing the same data value storage location and range of locations is thus supported.
US11853740B2
Provided is a method for patching an operating system 100 on a secure element 103 embedded in a terminal. The method comprises transmitting from a platform 101 to a SM-SR 102 an order to create on the secure element 103 an ISD-P 104, establishing between the platform 101 and the ISD-P or the secure element 103 a secure channel, transmitting from the SM-SR 102 to the secure element 103 a patch of the operating system, executing in the ISD-P 104 the patch of the operating system, and sending from the secure element 103 to the platform 101 a message informing the platform 101 of the result of the execution of the patch.
US11853739B2
A method of automated software management includes importing update metadata consumed from an update list describing cybersecurity vulnerabilities and product updates. Based on the update metadata, the method includes generating an initial update list including outstanding product updates for endpoints included in a managed network. The method includes discovering products of an endpoint of the managed network. Based on discovered products, the method includes generating an endpoint-specific inventory including product metadata of the products loaded on the endpoint. The method includes identifying an unnecessary product update of the outstanding product updates not related to the discovered products. The method includes filtering the unnecessary product update from the initial update list to generate a modified update list including a subset of outstanding product updates and omitting the unnecessary product update. The method includes distributing only the subset of outstanding product updates of the modified update list to the managed endpoint.
US11853727B2
In a method of group control and management among electronic devices, wherein the electronic devices is in communication with a control device, a projectable space instance is provided for the control device to create a workspace, wherein a control and management tool and a plurality of unified tools for driving respective electronic devices are selectively added to the projectable space instance. The projectable space instance is then parsed with a projector by the control device to automatically generate a projected workspace corresponding to the workspace to be created via the projectable space instance. The control and management tool realizes at least one status information of at least a first one of the electronic devices by way of the unified tools, and controls at least a second one of the electronic devices to execute at least one task corresponding to the at least one status information.
US11853718B2
In an aspect, a processor includes circuitry for iterative refinement approaches, e.g., Newton-Raphson, to evaluating functions, such as square root, reciprocal, and for division. The circuitry includes circuitry for producing an initial approximation; which can include a LookUp Table (LUT). LUT may produce an output that (with implementation-dependent processing) forms an initial approximation of a value, with a number of bits of precision. A limited-precision multiplier multiplies that initial approximation with another value; an output of the limited precision multiplier goes to a full precision multiplier circuit that performs remaining multiplications required for iteration(s) in the particular refinement process being implemented. For example, in division, the output being calculated is for a reciprocal of the divisor. The full-precision multiplier circuit requires a first number of clock cycles to complete, and both the small multiplier and the initial approximation circuitry complete within the first number of clock cycles.
US11853715B2
A system comprises a floating-point computation unit configured to perform a dot-product operation in accordance with a first floating-point value and a second floating-point value, and detection logic operatively coupled to the floating-point computation unit. The detection logic is configured to compute a difference between fixed-point summations of exponent parts of the first floating-point value and the second floating-point value and, based on the computed difference, detect the presence of a condition prior to completion of the dot-product operation by the floating-point computation unit. In response to detection of the presence of the condition, the detection logic is further configured to cause the floating-point computation unit to avoid performing a subset of computations otherwise performed as part of the dot-product operation. Such techniques serve as a predictor that the avoided subset of computations would have resulted in a dot product of the two floating-point values being below a threshold value.
US11853703B2
Disclosed are systems and methods for receiving a plurality of comments at a particular phase of a transaction with a member of a networked system, classifying one or more of the plurality of comments into one of a set of predetermined sentiment classifications, applying a trained machine learning system to select a category from a set of predefined categories for each of the one or more comments, applying a natural language processing module to generate a sub-category for each of the one or more comments, associating the generated sub-categories with their respective categories for the one or more comments, and generating a display of the determined categories for the particular transaction with the generated sub-categories, each generated sub-category being graphically connected to their respective categories.
US11853696B2
Aspects of the present disclosure provide techniques for automated text amendment. Embodiments include identifying a first plurality of n-grams in first text associated with a domain. Embodiments include identifying a second plurality of n-grams in second text associated with the domain. Embodiments include identifying a third plurality of n-grams in third text that is not associated with the domain. Embodiments include determining candidate n-grams that are overexpressed in the second plurality of n-grams compared to the third plurality of n-grams. Embodiments include determining a match between a candidate n-gram of the candidate n-grams and a given n-gram of the first plurality of n-grams based on one or more matching factors. Embodiments include amending the first text based on the match between the candidate n-gram and the given n-gram.
US11853694B2
In non-limiting examples of the present disclosure, systems, methods and devices for resolving temporal ambiguities are presented. A natural language input may be received. A temporal component of the input may be identified. A determination may be made that the temporal component includes a conjunction that separates temporal meeting block alternatives. A temporal ambiguity may be identified in one of the meeting block alternatives. A plurality of syntax tree permutations may be generated for the meeting block alternative where the ambiguity was identified. A machine learning model that has been trained to identify a most relevant permutation for a given natural language input may be applied to each of the plurality of permutations. A temporal meeting block alternative corresponding to the most relevant permutation may be surfaced.
US11853689B1
In an embodiment, the disclosed technologies are capable of identifying a target word within a text sequence; displaying a subset of candidate synonyms for the target word, determining a synonym selected from the subset of candidate synonyms, and replacing the target word with the selected synonym, where the subset of candidate synonyms has been created using syntactic dependency data for the target word.
US11853687B2
In an embodiment, a programmed computer system implemented via client-server Software as a Service (SaaS) techniques provides an interactive user interface for identifying specific portions of a digital document susceptible for review and improvement. A server computer may receive a representation of a digital document, such as an email, comprising words arranged into sentences arranged into paragraphs. An embodiment may tokenize a set of all sentences comprising the sequence of sentences into a document-specific vocabulary, then compute a corresponding first and second score for each sentence of the sequence of sentences. The first score may represent a calculated probability of semantic importance of the corresponding sentence to an overall meaning of the digital document. The second score may represent a calculated likelihood that the corresponding sentence will be read by a future reader of the digital document. An embodiment may identify key sentences using the first scores and second scores.
US11853673B2
The present disclosure provides a standard cell template and a semiconductor structure. The standard cell template includes a first well region and a second well region, arranged along a first direction; a first gate pattern, located in the first well region and extending along the first direction, for defining a first gate; a second gate pattern, located in the second well region and extending along the first direction, for defining a second gate; and a gate electrical connection pattern, located between the first gate pattern and the second gate pattern, for defining a gate electrical connection structure; where the gate electrical connection structure is arranged on the same layer as the first gate and the second gate to electrically connect the first gate and/or the second gate.
US11853662B2
A method includes storing a base model generated using base data and receiving training data generated by compiling circuit designs. The method also includes generating, using the training data, a tuned model and generating, using the training data and the base data, a hybrid model. The method further includes receiving a selected cost function and biasing the base model, the tuned model, and the hybrid model using the selected cost function.
US11853660B2
A system for modeling a semiconductor fabrication process includes at least one first processor and at least one second processor. The at least one first processor is configured to provide at least one machine learning (ML) model, which is trained by using a plurality of pairs of images of a design pattern sample and a physical pattern sample. The physical pattern sample is formed from the design pattern sample by using the semiconductor fabrication process. The at least one second processor is configured to provide an input image representing a shape of a design pattern and/or a physical pattern to the at least one first processor and to generate output data defining the physical pattern and/or the design pattern based on an output image received from the at least one first processor.
US11853651B2
Systems and methods are described for recognizing and responding to commands in a virtual or physical environment. A system may receive voice data and determine an intended command. The system may then determine a position and viewpoint orientation of the user to be able to determine one or more digital assets associated with the user. The system may then determine a current state associated with each digital asset of the one or more digital assets to be able to determine at least one digital asset that is configured to process the command. The system can then apply the command to at least a first digital asset of the at least one digital asset that is configured to process the command.