US11856715B2

The embodiment of the application discloses a splicing assembly and a splicing display screen. The splicing assembly includes a first connecting member, a second connecting member, and a locking member. The first connecting member has a plug-in portion. The second connecting member has a coupling portion for mating with the plug-in portion. The locking member is used for locking the first connecting member and the second connecting member together.
US11856708B2

Disclosed herein are devices comprising stretchable 3D circuits and methods for fabricating the circuits. The fabrication process includes providing in the elastomeric polymer as a substrate and providing conductive interconnects within the substrate encased in an insulating polymer, such as polyimide, to provide a stiffness gradient between the conductive interconnects and the flexible elastomeric substrate. The circuit may be fabricated as a multilayer construction using three-dimensional pillars as vias and as external interconnects to the circuit.
US11856703B2

Systems, apparatus, methods, and techniques of assembly of discrete modules of a control panel are disclosed. The modules can be independently wired, tested, and installed into a control panel. Module definitions are defined specifying components to perform the electrical function, a mechanical arrangement of the components, electrical connections, and logical interactions of the module. A bill of materials can be generated based on a designation of a set of modules for a control panel and the module definitions. Modularly assembled control panels are disclosed. An assembly frame is described herein for temporarily mounting components of a module for independent assembly of a control module and for eventual removal and installation into a control panel frame. The assembly frame may include a faceplate frame and side frames and temporary mounting features.
US11856690B2

The present invention relates to substrates comprising a network comprising core shell liquid metal encapsulates comprising multi-functional ligands and processes of making and using such substrates. The core shell liquid metal particles are linked via ligands to form such network. Such networks volumetric conductivity increases under strain which maintains a substrate's resistance under strain. The constant resistance results in consistent thermal heating via resistive heating. Thus allowing a substrate that comprises such network to serve as an effective heat provider.
US11856689B2

Disclosed herein are power electronics assemblies which include a printed circuit board (PCB) having a plurality of conductive layers and a cold plate contacting the PCB. The cold plate includes a manifold constructed from an electrically insulating material and including a first cavity and a second cavity. The cold plate further includes a first heat sink positioned in the first cavity and thermally coupled to the plurality of conductive layers. The cold plate further includes a second heat sink positioned in the second cavity and thermally coupled to the plurality of conductive layers.
US11856683B2

A chamber cross-sectional multi-stage plasma arrangement characterized by escalating charge movement towards chamber center axis through one or more escalation stages contributing to the heating of the plasma, the centering of the plasma on the chamber axis, and creating rotation of the plasma therein. Rotation of the plasma around its axis induces a self-generated magnetic field, which in turn increases plasma stability and confinement. Some of the said stages of the multi-stage arrangement may be created by physical elements and components while others may be induced or generated by externally applying magnetic and/or electric fields or their combinations and/or by injection of electrons, ions or other plasma.
US11856680B2

A substrate processing system capable of setting a stable reference ground level for electrical components while handling electrostatic discharge (ESD) is provided. The substrate processing system includes a first ground bar connected to a building ground; and a second ground bar connected to the building ground and physically separated from the first ground bar, wherein the first ground bar is connected to a first electrical component to set a ground level of the first electrical component, wherein the second ground bar is dedicated to a charged component, and the second ground bar is connected to the first charged component to set a path of the electrostatic discharge current generated by the first charged component.
US11856679B2

An induction oven device includes a heating unit including an induction coil having an electrical conductor, a substrate unit having a through-flow opening, and a fastening unit configured to fasten the induction coil to the substrate unit. The fastening unit includes a fastening element which is guided through the through-flow opening.
US11856676B2

An induction heating type cooktop includes: a case, a cover plate that is coupled to an upper end of the case and that includes an upper plate arranged to receive a target object, a working coil that is disposed in the case and that is configured to heat the target object, a thermal insulation material disposed on the working coil, and a heating thin film coating that is disposed on a surface of the upper plate of the cover plate or a surface of the thermal insulation material and that has a stacked structure in which an adhesive layer and a heating layer are consecutively stacked.
US11856669B1

A driving method, for a controller in a display apparatus, is disclosed. The display apparatus includes LED strings, scan transistors, current regulators and a power converter. The driving method includes following steps. LED cathode voltages are detected on nodes between the LED strings and the current regulators. When a first LED cathode voltage is equal to a minimal operable voltage of the current regulators and a second LED cathode voltage exceeds the minimal operable voltage of the current regulators, a driving current flowing through the second data channel is adjusted by increasing a pulse current level of the driving current and reducing a duty cycle ratio of the driving current flowing through the second data channel.
US11856668B1

A driving method, for a controller in a display apparatus, is disclosed. The display apparatus includes LED strings, scan transistors, current regulators and a power converter. The driving method includes following steps. LED cathode voltages are detected on nodes between the LED strings and the current regulators. When a first LED cathode voltage corresponding to a first scanning channel is equal to a minimal operable voltage of the current regulators and a second LED cathode voltage corresponding to a second scanning channel exceeds the minimal operable voltage of the current regulators, a voltage drop over one corresponding scan transistor is increased on the second scanning channel.
US11856660B2

A heating system for a drive train or a component thereof and to a method for producing it. In order to produce an apparatus of the above-mentioned type, which can be inexpensively integrated into an existing system, it is proposed for at least one heating element, which is for active electrical heating of a drive train or component thereof, to be provided in combination with or in an already existing component for thermal and/or acoustic shielding.
US11856650B2

The present disclosure provides a method for implementing communication continuity at a computer device acting as an application function (AF) device corresponding to user equipment (UE), the UE establishing a wireless connection to a source application server (AS) using allocated UE source network address information. The method includes: determining a data service migration from the source AS to a target AS; transmitting a network address translation (NAT) parameter to a session management function (SMF), so that the SMF determines a target user plane function (UPF)/protocol data unit (PDU) session anchor (PSA) for performing NAT translation on a received data packet according to the NAT parameter; and configuring a third NAT parameter for the target AS according to the NAT parameter, and migrating the data service from the source AS to the target AS, so that the target AS performs NAT translation on the data packet according to the third NAT parameter.
US11856649B2

The application relates to an addressing system for a wireless communication network. The system comprises a first communication device and a second communication device. The first and second communication devices belong to a group of plurality of communication devices of the network. Each communication device is configured to provide a bi-directional radio communication with at least one of the plurality of communication devices. Each communication device has a long node identifier (L-ID) for addressing said communication device and for being used in at least one security procedure of communication in the network. Each communication device is configured to generate a short node identifier (S-ID) for identifying said communication device in a dedicated communication between it and other communication device belonging to the plurality of communication devices.
US11856647B2

A method for managing partly and/or incompletely loaded subscription data is provided for a mobile device and/or another device. A communication connection is established between the mobile device and the other device. Then, it is ascertained whether the partly and/or incompletely loaded subscription data is available on the other device, and a managing action is carried out on the partly and/or incompletely loaded subscription data.
US11856639B2

Current wireless networks do not allow machine type communication (MTC) devices to have long discontinuous reception (DRX) cycles or sleep lengths. A long DRX cycle may allow MTC systems and devices to operate with much longer DRX/Sleep cycles/periods. This may facilitate the MTC operations for infrequent system access or infrequent system reaching (e.g. paged once in a week) with no or low mobility and may allow MTC devices to sleep for a long time with low power consumption.
US11856638B2

Example implementations include a method, apparatus and computer-readable medium of wireless communication over a sidelink between a first user equipment (UE) and a second UE. The first UE may receive, from a base station, a first sidelink grant for a transmission between the first UE and the second UE. The first UE may communicate the transmission according to the sidelink grant. The first UE may monitor a configured duration of a sidelink round trip time timer from the transmission. The first UE may monitor a configured duration of a sidelink retransmission timer from an end of the sidelink round trip time timer. The first UE may allow start of a discontinuous reception (DRX) mode after the duration of the sidelink retransmission time if a second grant is not received during the sidelink retransmission timer.
US11856636B2

A base station receives, from a wireless device, at least one first radio resource control (RRC) parameter comprising one or more identifiers of one or more closed access groups (CAGs). The base station transmits, to the wireless device, at least one second RRC parameter indicating that the wireless device is allowed to access a CAG of the one or more CAGs, wherein the at least one second RRC parameter comprises an identifier of the CAG. The base station receives a random access preamble via a cell associated with the CAG that the wireless device is allowed to access.
US11856634B2

A method for controlling mobility of a terminal includes: after receiving configuration of a Signal Radio Bearer (SRB) 1, the terminal enters a Radio Resource Control (RRC) connected state; in response to that the terminal in the RRC connected state does not receive configuration of a Data Radio Bearer (DRB) and/or configuration of an SRB2, the terminal reports, based on measurement configuration of the network side, a measurement result to the network side, wherein the measurement result is used by the network side to determine a target cell; and the terminal receives an RRC release message from the network side, wherein the RRC release message carries reference information of the target cell.
US11856626B2

One or more devices, systems, and/or methods for facilitating use of a radio bearer using a secondary path are provided. For example, a configuration message may be used to determine whether a secondary path is present. The secondary path may be configured based upon the configuration message.
US11856616B2

A UE (200) performs a random access procedure with a gNB (100). The UE (200) transmits to a network via a radio base station at least one of a synchronization signal block used for performing the random access procedure, a reception quality in the synchronization signal block, a group of random access preambles, and number of times for which power ramping was performed in the random access procedure.
US11856614B2

Methods and apparatuses for accessing a wireless network are described herein. A method according to at least one embodiment may include receiving a transmission including information associated with a plurality of random access channel (RACH) configurations. The information may indicate a plurality of RACH occasions in which a preamble transmission may be sent. One or more reference signals may be received. Methods may further include sending, using one of the plurality of RACH configurations, the preamble transmission in one of the plurality of RACH occasions along with one or more protocol data units (PDUs). The one of the plurality of RACH configurations may be selected based on a measurement of at least one of the one or more received reference signals. The method may further include sending, in response to the preamble transmission and the one or more PDUs, a random access response.
US11856612B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention relates to a method and an apparatus for performing random access in a wireless communication system. More specifically, proposed is a method of, when a terminal intends to perform random access through multiple PRACH preamble transmission in an unlicensed band, determining whether to change or reset a CP length of a channel access procedure gap or a PRACH preamble according to the number of multiple PRACH preamble transmissions.
US11856608B2

Various embodiments provide a random access method and apparatus. In those embodiments, available random access resources can be grouped, by a network device, into a plurality of random access resource groups. The network device can send information about the plurality of random access resource groups to a terminal device, and receives a random access request sent by the terminal device based on the information about the plurality of random access resources groups. The network device can determine a target random access resource group to which a random access resource used for the random access request belongs. The network device can determine an uplink transmission capability of the terminal device based on the target random access resource group.
US11856603B2

Wireless communications systems and methods related to sharing channel occupancy time (COT) for a channel in an unlicensed 5G spectrum in an integrated access backhaul (IAB) network are provided. In some aspects, an IAB node of the IAB network may perform a channel access procedure to acquire the COT and share the COT with a parent IAB node and/or a child IAB node for the parent IAB node and/or child IAB node to share, or use the COT for communication, with a third IAB node different from the COT-initiating IAB node.
US11856599B2

Embodiments disclosed herein relate to techniques for measuring and/or detecting a signal-to-interference ratio (SIR) of a received signal at a user equipment (UE). The received signal may include a desired signal, co-channel interference, adjacent channel interference, and an in-band blocker. The UE may filter (e.g., remove) the various interferences and in-band blocker. The UE may determine or measure a power (or Received Signal Strength Indicator (RSSI)) of the desired signal and a power (or RSSI) of the co-channel interference separately because the desired signal and the co-channel interference overlap in frequency. To do so, the UE may determine a total power of the received signal including the desired signal and co-channel interference. The UE may receive the desired signal again while an uplink transmission is deactivated (and thus without the interference). The UE may then calculate the SIR based on the total power and the power of the desired signal.
US11856584B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive downlink control information (DCI) that schedules a communication, wherein the DCI indicates information for one or more parameters of the communication using differential information associated with information included in an anchor DCI. The UE may transmit or receive the communication based at least in part on receiving the DCI. Numerous other aspects are described.
US11856583B2

To provide a wireless communication device which enables reliable detection of a downlink without using a CRS. There is provided a wireless communication device including a communication unit (220) configured to perform wireless communication using an unlicensed band, and a detecting unit (241) configured to detect a downlink on the basis of a second downlink signal different from a first downlink signal which is periodically transmitted, in which the detecting unit starts PDCCH monitoring after detecting a downlink.
US11856582B2

This application discloses a data transmission method which includes: receiving DCI, wherein two TBs or one TB can be scheduled in the DCI, the DCI comprises a third bit, the third bit indicates that a quantity of the TB(s) scheduled in the DCI is 1 or 2, and the DCI further comprises a first bit and/or a second bit; and when the quantity of the TB(s) is 1, performing, based on the third bit, and the first bit or second bit, uplink or downlink data transmission, wherein the first or second bit indicates a NDI associated with the TB scheduled in the DCI; or when the quantity of the TB(s) is 2, performing, based on the third, first bit, and second bit, uplink or downlink data transmission, wherein the first and the second bit respectively indicate two NDIs associated with the two TBs.
US11856581B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a physical downlink shared channel (PDSCH) grant scheduling a set of PDSCH transmissions, wherein one or more PDSCH transmissions, of the set of PDSCH transmissions, are associated with a size and length indicator value (SLIV), and wherein at least one orthogonal frequency division multiplexing (OFDM) symbol overlaps with a semi-static uplink symbol. The UE may monitor for at least one PDSCH transmission, of the set of PDSCH transmissions, in accordance with the PDSCH grant. Numerous other aspects are described.
US11856578B2

The present invention relates to a method and an apparatus for transmitting control and training symbols to improve transmission efficiency in a multi-user wireless communication system. The method for transmitting the control and training symbols in the multi-user wireless communication system according to one embodiment of the present invention comprises the steps of: determining whether a required transmission rate of each data can be satisfied through channel estimation in each of terminals when different data are simultaneously transmitted to each of the terminals; and transmitting a data frame to each of the terminals, the data frame being composed to discriminate the control and training symbols in each of the terminals using a combination of time, frequency, and code area when the required transmission rate of each data is not satisfied according to the determined result.
US11856574B2

A method and a device for transmitting and receiving a signal in a wireless communication system, according to one embodiment of the present invention, comprise: receiving downlink control information (DCI) for scheduling a physical uplink shared channel (PUSCH); and transmitting the PUSCH on the basis of the DCI. The PUSCH is transmitted in a certain number of resource blocks (RB), and the certain number of RBs may be (i) at most the number of RBs allocated by the DCI, and (ii) the greatest number that is a multiple of 2, 3, and/or 5.
US11856570B2

Methods, systems, and devices for wireless communications are described. A first device may indicate a dynamic beam correspondence operation for communications with a second device. For example, the dynamic beam correspondence operation may be declared in a time-dependent manner, for certain transmission configuration indication (TCI) states or time-dependent TCI states. Further, the first device may declare no beam correspondence and associated power savings and thermal reductions that result from the lack of beam correspondence. Subsequently, based on the dynamic beam correspondence operation, the second device may identify parameters (e.g., which TCI states, subarrays) for the first device to use for different modes or procedures (e.g., at a corresponding time) based on parameters that correspond to a full beam correspondence or no beam correspondence. For example, the parameters may be used for initial access, beam failure recovery, low power modes, or high temperature modes.
US11856562B2

A terminal is disclosed including a receiver that receives configuration information; and a processor that controls receiving processes for Physical Downlink Shared Channel (PDSCH), wherein the processor controls the receiving processes for the PDSCH under an assumption that the PDSCH is not allocated in a first reserved resource corresponding to the first configuration information, when the receiver receives first configuration information about a Bandwidth part (BWP)-specific reserved resource as the configuration information, and controls the receiving processes for the PDSCH under an assumption that the PDSCH is not allocated in a second reserved resource corresponding to the second configuration information, when the receiver receives second configuration information about a cell-specific reserved resource as the configuration information. In other aspects, an apparatus and a system are also disclosed.
US11856557B2

Apparatus, methods, and computer-readable media for on-demand sensing based on sidelink resource reevaluation are disclosed herein. An example method of wireless communication at a first user equipment (UE) includes selecting first sidelink resources for one or more transmissions based on partial sensing or resource selection independent of a sensing operation. The example method also includes receiving, over a sidelink channel, a resource reservation from a second UE, the resource reservation indicating reservation of resources overlapping with at least a portion of the first sidelink resources of the first UE. The example method also includes performing a resource reevaluation for one or more slots when the resource reservation indicates the reservation of resources overlapping with the at least a portion of the first sidelink resources of the first UE. The example method also includes selecting second sidelink resources for the one or more transmissions based on the resource reevaluation.
US11856552B2

A device, in a training phase, obtains Channel State Information (CSI) for one or more links between another device and at least one Access Point (AP), and in the training phase, estimates location information of the other device based on at least one geometric localization technique; and generates a database comprising CSI of the one or more links, each CSI being associated with an estimated location information. Further, a device, in a testing phase, obtains a database from another device, wherein the database comprises CSI of one or more links, each CSI being associated with an estimated location information, and in the testing phase, the device estimates CSI for one or more links between the device and at least one AP, and determine location information based on the estimated CSI of the one or more links and the database.
US11856547B2

A method of registering a service in a telecommunication network having a Service Based Architecture, SBA. The telecommunication network has a Service Collection Function, SCF, including a plurality of distinct SBA services and including a Collection Controller, CoC, for registering and discovering the plurality of distinct SBA services within the SCF. The telecommunication network further includes a Network Repository Function, NRF, for registering and discovering services within the telecommunication network. The method includes the steps of receiving, by the CoC, from an of the distinct SBA services, a registration message for registering a service, determining, by the CoC, that the service is to be provided within the SCF, refraining, by the CoC, from forwarding the registration message to said NRF based on the determination, registering, by the CoC, the service in the CoC for discovering the service by any of the plurality of distinct SBA services within the SCF.
US11856541B2

The present invention relates to a method for receiving a synchronisation reference signal for device-to-device (D2D) communication by a first terminal in a wireless communication system and an apparatus therefor. More specifically, the present invention comprises a step of receiving a plurality of synchronisation reference signals including a first synchronisation reference signal and a second synchronisation reference signal over a D2D synchronisation reference signal transmission cycle, wherein the first synchronisation reference signal is transmitted by a cluster head for D2D communication and the second synchronisation reference signal is transmitted by a second terminal that belongs to a cluster for the D2D communication.
US11856540B2

Embodiments of the present disclosure relate to methods and an apparatuses for synchronization signal (SS) transmission. In example embodiments, a method implemented in a network device is provided. According to the method, information on a plurality of SS blocks to be transmitted by the network device is determined based on at least one of a frequency range and a value of subcarrier spacing. The information at least in part indicates timing for transmitting the plurality of SS blocks The plurality of SS blocks are transmitted to at least one terminal device based on the determined information.
US11856527B2

Methods and apparatuses are disclosed for power headroom report (PHR) reporting determination for dual-connectivity. In one embodiment, a method in a wireless device is provided including operating in dual-connectivity with at least two different radio access technologies, RATs, the at least two different RATs including at least a first RAT and a second RAT; determining a first power headroom report, PHR, for the first RAT based at least in part on a WD transmission using the first RAT; determining a second PHR for the second RAT based at least in part on both the WD transmission using the first RAT and the WD transmission using the second RAT; and transmitting based on a received allocation information, the allocation information based at least in part on at least one of the determined first PHR and the determined second PHR.
US11856520B2

Methods are provided for enabling network operators to play a key role in allowing Cellular Unmanned Aerial Vehicles (UAVs) to recharge batteries based on RF parameters and/or a class of service the UAVs provide to users/customers. For example, a particular mobile network operator (MNO) has a UAV charging station deployed in it leased towers where it has base stations (eNB/gNB) deployed. The MNO can provide charging as a service to the UAVs. When more than one drone is requesting a charge, the MNO can prioritize which UAV has the highest priority. In some aspects, the MNO can prioritize the UAVs for charging based on a Quality of Service identifier. Additionally or alternatively, the MNO can prioritize the UAVs for charging based on a Network Slice Selection Assistance Information indicator.
US11856514B2

A radio resource configuration adjustment method includes detecting, by user equipment, an overheating problem or that the overheating problem is alleviated, and sending, by the user equipment, a first message to a network device, where the first message is used to notify the network device that the overheating problem occurs in the user equipment or the overheating problem is alleviated; receiving, by the user equipment, a response message sent by the network device, where the response message is used to instruct the user equipment to perform one of the following operations, and the operations include deactivating a secondary serving cell, activating a secondary serving cell, releasing a secondary serving cell, and adding a secondary serving cell; and deactivating, by the user equipment, a secondary serving cell, or activating a secondary serving cell, or releasing a secondary serving cell, or adding a secondary serving cell according to the response message.
US11856506B2

A user equipment that communicates with a base station in a mobile communication system includes: a receiving unit that receives a change message of system information from the base station; and a control unit that requests the base station to transmit the system information when the receiving unit has received the change message and then has not received the system information.
US11856501B2

Systems and methods for performing User Plane (UP) path selection or reselection over a communications network with a 3rd party entity, and for notifying network entities of UP changes in a communications network, are disclosed. The method includes: receiving an application program interface based request for UP path selection from the 3rd party entity; performing a validation and authorization procedure with the request; transmitting a UP path selection configuration request to a Control Plane Function that maintains configuration data; obtaining a reference number confirming the UP path selection configuration request; and installing the UP path selection according to the reference number.
US11856490B2

A method and apparatus for creation and storage of online community groups is provided. In various implementations, digital communication data is stored representing interactions between users as part of an online community platform. In various implementations, a user of the online community platform indicates the desire to create a group comprising digital accounts which have interacted with the user as indicated by the digital communication data. In various implementations, a digital communication group is created comprising digital accounts specifically chosen by a user of an online community platform.
US11856489B2

Methods, devices, and systems for processing uplink broadcast or multicast (“broadcast/multicast”) packets from a user equipment (UE) and distributing the broadcast/multicast packets to other UEs in a network. In some aspects, a UE may receive, from a base station, a downlink packet comprising broadcast or multicast (broadcast/multicast) Ethernet data for a protocol data unit (PDU) session of the UE with a data network (DN) associated with the base station, determining whether the downlink packet corresponds to an uplink packet previously transmitted to the base station by the UE, discarding the downlink packet for the PDU session based on determining that the UE previously transmitted the corresponding uplink packet comprising the broadcast/multicast Ethernet data for the PDU session to the base station, and processing the downlink packet for the PDU session based on determining that the UE did not previously transmit the corresponding uplink packet.
US11856487B2

An electronic device includes an ultra-wide band (UWB) communication module; a memory; and a processor operably connected to the UWB communication module and the memory, wherein the processor is configured to receive, through the UWB communication module, a first message from a first external electronic device at a first time slot; store, in the memory, the first message and a receiving time of the first message; receive, through the UWB communication module, a second message from a second external electronic device at a second time slot; store, in the memory, the second message and a receiving time of the second message; identify a time schedule information for transmitting a third message to the first external electronic device and the second external electronic device, the time schedule information including a transmitting time of the third message; obtain first time information regarding a period of time between the receiving time of the first message and the transmitting time of the third message and second time information regarding a period of time between the receiving time of the second message and the transmitting time of the third message; and transmit, through the UWB communication module, the third message including the first time information and the second time information to the first external electronic device and the second external electronic device at a third time slot.
US11856482B2

A mobile apparatus according to the disclosure includes: a sensor unit to calculate a moving distance and a moving direction; a positioning unit to calculate a first current position by using positioning information for positioning provided in a calibration area that is among areas in which the positioning information is provided, the calibration area being the area in which first reliability representing accuracy of the positioning information is equal to or higher than a first threshold; a current position calculation unit to estimate a second current position by using the moving distance and the moving direction calculated by the sensor unit; and a calibration unit to calibrate a parameter to be used to estimate the second current position in the current position calculation unit, by using the first current position.
US11856471B2

An example method of providing, by a source edge data network, a service to a terminal in a wireless communication system includes: identifying a target edge data network, to which the terminal is expected to perform a handover, based on position information of the terminal; determining whether transmission of expected data, which the target edge data network is expected to transmit to the terminal in relation to the service after the handover is performed, will be delayed; transmitting a message requesting the expected data to the target edge data network, based on the determination that the transmission of the expected data will be delayed; receiving data related to the service corresponding to the expected data from the target edge data network; and transmitting the data related to the service to the terminal.
US11856469B2

A communication method includes a first network element receiving identity information of a terminal from a second network element, where the identity information includes an identity of the terminal or an identity of a group of the terminal; the first network element obtaining, based on the identity information, type information of a serving network corresponding to the identity information; and the first network element sending API information of the first network element based on the type information. Based on this communication method, the second network element can select an available API based on the API information or the type information of the serving network and invoke the available API.
US11856464B2

Various arrangement of compound cellular networks that accommodate multiple cellular communication protocols are presented. A compound cellular network may connect user equipment (UE) with a data network using a first anchor point. The compound cellular network may transition the UE from the first anchor point to a second anchor point. Following the transitioning, the compound cellular network may connect the UE with the data network using the second anchor point. The UE may then be transitioned from the second anchor point to a converged anchor point of the compound cellular network. The UE may be locked to the converged anchor point while the UE is communicating with a second cellular network that communicates using the second cellular communication protocol.
US11856463B2

Wireless communications systems and methods related to a sidelink user equipment (UE) reserving resources for multiple sidelinks are provided. A first wireless communication device communicates, with a second wireless communication device, a reservation indicating a plurality of reserved resources for a plurality of sidelink communications. The first wireless communication device communicates, with a third wireless communication device, a first sidelink communication of the plurality of sidelink communications using a first resource of the plurality of reserved resources.
US11856457B2

Briefly, in accordance with one or more embodiments, virtualized network function resources may be managed in a network. Performance measurements may be received for at least one mobility management entity (MME) in an MME pool, or for other network elements. If at least one of the performance measurements exceeds at least one predetermined threshold, instantiation of a new mobility management entity virtual network function (MME VNF) may be requested, and the MME VNF may be instantiated in response to the request. One or more user equipment (UE) devices managed by the MME pool may be connected to the added MME VNF.
US11856456B2

A wireless device includes first and second transceivers for wireless communication and is operable to switch between first and second states, with the second state at least partly prohibiting communication by the first transceiver. The wireless device is configured to perform a control method which involves sharing of state data among wireless devices. According to the method, the wireless device receives, by the second transceiver, a state indicator and confidence data from one or more other wireless devices. The state indicator indicates a current state of the respective other wireless device, and the confidence data is indicative of a confidence of the current state. The control method sets the wireless device in the first or second state based on the state indicator and the confidence data.
US11856454B2

Inter-radio access technology (inter-RAT) load balancing under multi-carrier dynamic spectrum sharing (SS) context is provided. One method may include splitting shared radio-frequency resources into orthogonal resource pool shares. The method may include receiving a load metric for each of a plurality of radio access technologies. The method may include assigning, based on the load metric, one of the resource pool shares to each of the plurality of radio access technologies. In addition, the method may include dynamically adjusting a proportion of the assigned resource pool shares based on the load metric of each of the plurality of radio access technologies at corresponding carriers. The method may include assigning a primary carrier to a user equipment based on the load metric, the resource pool share, a coverage of the carriers' physical channels, and a type of multi-carrier operation for each of the plurality of radio access technologies.
US11856452B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. An embodiment of the present invention relates to a method and a device for processing a ciphered UDC header in a next-generation mobile communication system.
US11856451B2

Methods, systems, and devices for wireless communications are described. The method includes receiving control signaling that configures the UE with a retransmission request time duration for requesting packet retransmission relative to when a packet in a sequence of packets is determined to be unsuccessfully received, monitoring for one or more transmissions including at least a subset of packets in the sequence of packets, and transmitting, prior to expiration of the retransmission request time duration, a first retransmission request to request retransmission of at least one packet in the sequence of packets based on a first retransmission trigger being satisfied.
US11856446B2

A wireless device receives indications of: a first scheduling request (SR) resource corresponding to first logical channel(s) having a first logical channel prioritization (LCP) mapping to first radio resources; and a second SR resource corresponding to second logical channel(s) having a second LCP mapping to second radio resources. A buffer status report (BSR) is triggered in response to data becoming available for the second logical channel(s). First uplink grant(s) indicating a first radio resource of the first radio resources is received. An SR for transmission of the BSR is triggered in response to the first radio resource not meeting the second LCP mapping configured for the second logical channel(s) that triggered the BSR. The SR is transmitted via the second SR resource selected based on the second logical channel(s) triggering the BSR. The BSR is transmitted via a second radio resource of the second radio resources.
US11856442B2

It is possible to facilitate setting of a request condition in a wireless communication system. A capacity calculating unit calculates a wireless communication capacity in a wireless network including a plurality of wireless communication devices on the basis of information regarding a frequency bandwidth used in the wireless network. A wireless communication request condition acquiring unit acquires a request condition of a service provided in wireless communication between predetermined wireless communication devices among the plurality of wireless communication devices. A determination unit determines whether all wireless communication bearers established between the predetermined wireless communication devices satisfy the request condition of the service on the basis of the wireless communication capacity.
US11856438B2

A user equipment (UE) is configured to establish a network connection including a new radio (NR)-NR dual connectivity band combination wherein a primary cell (PCell) of a primary cell group (PCG) and a primary secondary cell (PSCell) of a secondary cell group (SCG) both operate on frequency range 1 (FR1) and wherein at least one cell of either the PCG or the SCG operates on frequency range 2 (FR2). The UE receives a measurement gap timing advance parameter, selects one subframe from multiple serving cell subframes and determines a starting point for a configured per-frequency range (FR) measurement gap based on the measurement gap timing advance parameter and the selected subframe.
US11856428B2

Examples described herein relate to an investigator device and a method for determining a condition of an antenna of an access point (AP). At least one investigator device may receive one or more antenna condition test frames transmitted via a plurality of antennas of the AP Further, the at least one investigator device may determine an average received signal strength indicator (RSSI) value corresponding to each of the plurality of antennas based on the one or more antenna condition test frames. A condition of the plurality of antennas of the AP may be determined based on a relative comparison between the average RSSI value corresponding to each of the plurality of antennas of the AP. Moreover, in some examples, the at least one investigator device may send a notification to an administrator of the AP based on the condition of the plurality of antennas.
US11856426B2

An apparatus, method and computer program is described, comprising: obtaining analytics data from one or more network data analytics functions of a mobile communication system using a probe network function which subscribes to the network data analytics functions; obtaining control plane data from one or more control plane probes, wherein the control plane data comprises signaling between one or more user devices and a network of the mobile communication system; obtaining user plane data from one or more user plane probes; processing the analytics data, control plane data and user plane data, including correlating at least some of said analytics, user plane and control plane data and identifying at least one anomaly in said data; and triggering an active mode to acquire a subset of analytics data related to said at least one anomaly.
US11856422B2

A beam failure recovery request sending method includes: after a beam failure event occurs in a terminal, searching for a candidate beam; and after at least one candidate beam is found, using a physical uplink control channel (PUCCH) resource to send a beam failure recovery request (BFRQ) to a base station, the PUCCH resource comprising a PUCCH resource pre-allocated to the terminal by the base station or a PUCCH resource in a preset format. The present disclosure achieves the purpose of transmitting a BFRQ using a PUCCH resource, making the time delay of transmitting a BFRQ small.
US11856421B2

Method performed by a first node (101) for managing a movement of a radio antenna (120). The first node (101) operates in a wireless communications network (100). The first node (101) determines (302) whether the movement of the radio antenna (120) is above a threshold over a time period. The radio antenna (120) is connected to a second node (102) operating in the wireless communications network (100). The movement is with respect to at least one wireless device (140) operating in the wireless communications network (100). The determining (302) is based on an analysis of one or more properties of radio transmissions to or from the radio antenna (120) over the time period. The first node (101) initiates (304) providing a message to one of: the second node (102) and a third node (103) operating in the wireless communications network (100). The initiation is based on a result of the determination.
US11856419B2

Methods and systems to commission building environmental sensors are disclosed. The system include a device that will move about the environment of a building (inside and/or outside) and detect building environmental sensor devices that are installed in the environment. For each of the sensor devices, in response to detecting the sensor device, the system will retrieve an identifier for the sensor device, and it will determine whether the sensor device is registered with a control system. If the sensor device is registered with the control system, the system will not automatically implement a commissioning process with the sensor device. If the sensor device is not registered with the control system, the system will automatically implement the commissioning process with the sensor device.
US11856414B1

A wireless networking system is disclosed. The wireless networking system includes an application layer associated with one or more applications having a wireless bandwidth requirement. A first wireless transceiver resource associated with an actual MAC layer and PHY layer is employed. The first wireless transceiver resource has a first bandwidth availability up to a first actual bandwidth. A second wireless transceiver resource associated with the actual MAC layer and the PHY layer is employed. The second wireless transceiver resource has a second bandwidth availability up to a second actual bandwidth. A processing layer evaluates the wireless bandwidth requirement and the first and second bandwidth availabilities of the wireless transceiver resources. The processing layer includes a bandwidth allocator to allocate at least a portion of each of the first and second actual bandwidths to virtual MAC and virtual PHY layers, and to satisfy the application layer wireless bandwidth requirement.
US11856409B2

In accordance with some embodiments, an apparatus that enables trusted location tracking includes a housing arranged to hold a user equipment, one or more devices, a local communication device, and a controller at least partially supported by the housing. The apparatus obtains, via the one or more devices, a first set of data characterizing a location of the user equipment. The apparatus further establishes, via the location communication device, a local communication channel with the user equipment. The apparatus also obtains through the local communication channel a second set of data characterizing the location of the user equipment. The apparatus also determines a trust score characterizing the second set of data based on the first set of data. The apparatus additionally triggers an alert in accordance with a determination that the trust score is below a threshold.
US11856404B2

Systems and methods are provided for augmenting the services of SM-DP and SM-DP+ based mobile network systems. These systems and methods enable securing, in advance of arrival at the mobile network system, connectivity services (e.g., limited, short or one-time) or long-term subscription for eSIM/iSIM capable devices/machines. Such connectivity services may be purchased or booked in advance from a local or foreign network operator with service to be activated immediately or at a point in the future. For example, a traveler to a foreign country can pre-purchase (at the travel booking stage) mobile connectivity for use during upcoming travel to a foreign network. The corresponding service can be activated at the time/date of arrival for the selected period.
US11856402B2

Techniques for identity-based message integrity protection and verification between a user equipment (UE) and a wireless network entity, include use of signatures derived from identity-based keys. To protect against attacks from rogue network entities before activation of a security context with a network entity, the UE verifies integrity of messages by checking a signature using an identity-based public key PKID derived by the UE based on (i) an identity value (ID) of the network entity and (ii) a separate public key PKPKG of a private key generator (PKG) server. The network entity generates signatures for messages using an identity-based private key SKID obtained from the PKG server, which generates the identity-based private key SKID using (i) the ID value of the network entity and (ii) a private key SKPKG that is known only by the PKG server and corresponds to the public key PKPKG.
US11856393B2

A power control method and a power control apparatus, the method including determining a path loss estimate between a first terminal device and the second terminal device, determining a transmit power of a signal based on the path loss estimate between the first terminal device and the second terminal device and further based on a path loss estimate between a network device and the second terminal device, and sending, by the second terminal device, the signal to the first terminal device based on the transmit power of the signal. The signal is a physical sidelink shared channel (PSSCH), and the transmit power of the PSSCH is determined according to at least a maximum transmit power of the PSSCH, a target receive power of the PSSCH, the path loss estimate between the first terminal device and the second terminal device, and a target receive power of the PSSCH.
US11856392B2

Methods, systems, and devices are described for concurrently performing handoff-related measurements for neighbor cells using multiple input multiple output (MIMO) antenna resources. In one example, a mobile device is in communication with a serving cell. Handoff-related measurements of first wireless signals from a first neighbor cell are performed. The first wireless signals are received at first MIMO antenna resources of a device. Handoff-related measurements of second wireless signals from a second neighbor cell are performed, as well. The second wireless signals are received at second MIMO antenna resources concurrently with the first wireless signals received at the first MIMO antenna resources. The first handoff-related measurements and the second handoff-related measurements may be performed during a scan interval. A type of handoff-related measurement to perform may be determined based on a determined length of the scan interval.
US11856391B2

The present disclosure provides for a configuration that enables an apparatus to determine beam pairs for full duplex communication based on a cross-link interference procedure. The apparatus determines a subset of receive beams based on a beam measurement process, where each receive beam is associated with a different antenna array panel. In some aspects, the apparatus performs a channel measurement process based on the subset of receive beams. The apparatus sweeps through transmitted sounding reference signals from a same transmit beam corresponding to each receive beam of an antenna array panel and receives the transmitted sounding reference signals incrementally through other receive beams associated with other antenna array panels. The apparatus measures a self-interference for at least one beam pair of the subset of receive beams based on a received sounding reference signal. The apparatus selects one or more beam pairs based on a self-interference measurement or a signal-to-interference-plus-noise ratio.
US11856388B2

A method for processing an audio signal in accordance with a room impulse response is described. The audio signal is separately processed with an early part and a late reverberation of the room impulse response, and the processed early part of the audio signal and the reverberated signal are combined. A transition from the early part to the late reverberation in the room impulse response is reached when a correlation measure reaches a threshold, the threshold being set dependent on the correlation measure for a selected one of the early reflections in the early part of the room impulse response.
US11856387B2

A video conferencing system is provided, which includes at least one camera device, a microphone array device, a sound output device, and a processor. The processor is configured to: receive multiple image signals converted by an image shot by the at least one camera device, and receive multiple voice signals converted from multiple voices captured from the microphone array device; and select at least one sound source signal corresponding to multiple personnel positions from the multiple sound signals according to the image signal and the multiple voice signals, so as to transmit at least one sound source signal corresponding to the multiple personnel positions to the sound output device, where the sound output device converts at least one sound source signal into sound for play. In addition, a video conferencing method is also disclosed herein.
US11856383B2

A loudspeaker system comprising: a loudspeaker assembly including a diaphragm, a magnet assembly, and a voice coil assembly, wherein the magnet assembly and voice coil assembly are drivably coupled to the diaphragm to displace the diaphragm to transmit pressure waves as audible sound, an enclosure arranged to enclose the loudspeaker assembly and including a back face and a front face, wherein said back face extends over the magnet assembly, and the magnet assembly is mechanically coupled to the back face and/or side face of the enclosure and the diaphragm is coupled to a front face of the enclosure, wherein the magnet assembly and diaphragm are directly connected to each other by a collapsible basket or said loud speaker assembly does not comprise a basket coupling the magnet assembly and diaphragm.
US11856380B2

A sound control system comprises a sound generating device disposed at a vehicle ceiling corresponding to a seat region of the vehicle and disposed at a sound space formed within the vehicle to correspond to the seat region, and a sound processing circuit for providing a vibration driving signal to the sound generating device, the sound generating device vibrates based on the vibration driving signal to vibrate a vibration region of the vehicle ceiling corresponding to the sound space to provide a sound to the sound space.
US11856377B2

A method and system directed to controlling Active Noise Reduction (ANR) audio devices with active noise reduction. The system sets one or more ANR parameters of a first and a second wearable audio device to a first ANR state; detects that the first wearable audio device is removed from a first ear of a user; and automatically adjusts the one or more ANR parameters of the second wearable audio device to a second ANR state when the first wearable audio device is removed from the ear of the user, wherein the second ANR state comprises a reduction in a level of ANR compared to the first ANR state.
US11856375B2

An earpiece (100) and acoustic management module (300) for in-ear canal echo suppression control suitable is provided. The earpiece can include an Ambient Sound Microphone (111) to capture ambient sound, an Ear Canal Receiver (125) to deliver audio content to an ear canal, an Ear Canal Microphone (123) configured to capture internal sound, and a processor (121) to generate a voice activity level (622) and suppress an echo of spoken voice in the electronic internal signal, and mix an electronic ambient signal with an electronic internal signal in a ratio dependent on the voice activity level and a background noise level to produce a mixed signal (323) that is delivered to the ear canal (131).
US11856372B2

A hearing device system has a photoplethysmography sensor to be worn in the auditory canal in an intended worn state and an earpiece which at least partly covers the photoplethysmography sensor toward the auditory canal in the intended worn state. Moreover, the hearing device system has a controller which is configured to use light captured by the photoplethysmography sensor to derive a comparison quantity of the earpiece characteristic for a transmission of the earpiece, for a wavelength range of the photoplethysmography sensor, to compare the comparison quantity with a specified first limit and to output an alert if the limit is traversed by the comparison quantity.
US11856346B2

An integrated audio-visual system is disclosed for delivering an event to one or more spectators. The integrated audio-visual system includes one or more loudspeakers that are positioned behind one or more visual displays to be effectively behind the one or more visual displays to be shielded from the field of view of the one or more spectators. The one or more visual displays are specially designed and manufactured to allow sound associated with the event to propagate from the one or more loudspeakers with minimal acoustical distortion and/or minimum acoustical vibration while presenting a visual representation of the event to the one or more spectators. Moreover, the one or more loudspeakers and the one or more visual displays are situated to be a predetermined displacement from each other to further minimize acoustical distortion.
US11856341B2

To enable routing control to be easily performed in a video system. Signal output equipment generates and outputs a digital signal for transmission in which the digital signal includes a video signal and a predetermined number of identification information groups related to the video signal. A routing unit outputs an inputted digital signal for transmission to a predetermined signal output unit on the basis of at least any identification information included in the predetermined number of identification information groups.
US11856336B2

A marking and display system includes a scanning apparatus, comprising a processor in data communication with a networking device, at least one input/output device, and computer memory, the computer memory comprising a program having machine readable instructions that, when effected by processor, perform the following steps: (a) scan an area of interest for a first scan; (b) determine the presence of at least one abnormality at the area of interest; and (c) provide a marking at an area substantially adjacent the at least one abnormality.
US11856334B2

A display control method performed using a system including an information processing server includes: (a) obtaining, using a sensor, a user state indicating whether a user is currently cooking using a cooker, when an image of a delivery person delivering an item to a building in which the user is present is captured by a camera provided at an entrance door of the building; (b) obtaining content information of the item; (c) obtaining at least one suggestion associated with the user state and the content information of the item; and (d) causing a display terminal provided in the building to display the image of the delivery person, the content information of the item, and the at least one suggestion. Here, (a) to (d) are performed by the information processing server.
US11856331B1

A system comprising a capture device and a database. The capture device may be configured to (i) capture video, (ii) perform video analysis to extract metadata corresponding to the captured video and (iii) communicate with a wireless communication device. The database may be configured to (i) communicate with the wireless communication device, (ii) store the metadata received from the wireless communication device, (iii) generate search results for a user based on the metadata and (iv) provide the user at least one of (a) the metadata and (b) the captured video based on the search results. The metadata may be used to determine license plates present in the captured video. The capture device may transmit the captured video to the database via the wireless communication device based on a request by the user.
US11856323B2

Provided is a video display device wearable on the head of a user, wherein the video display device includes a video display unit capable of switching two or more display methods, a control unit for indicating a display method to the video display unit, a first detection unit for detecting the motion of the head of a user, a second detection unit for detecting the motion of the point of view of the user, and a motion determination unit for determining the motion state of the device user by using the output from the first detection unit and the output from the second detection unit. The control unit indicates a change of display methods to the video display unit in accordance with the determination result of the motion determination unit.
US11856318B2

Systems and methods are described for detecting a triggering event in a gaming environment and recording a segment of video. In some aspects, the method may include obtaining a camera projection matrix associated with the gaming environment that correlates points in the gaming environment between a two-dimensional pixel space and a three-dimensional physical representation. An input video may be obtained from the gaming environment. Pose coordinates, including two-dimensional pixel space location, of a body part of a person in the input video may be estimated, and converted to three-dimensional pose coordinates using the camera projection matrix. A person of interest having a body part located within a region of interest in the gaming environment may be identified to determine if a triggering event has occurred. Storage of an input video segment that includes the trigger movement may be initiated on a storage device in communication with the user device.
US11856313B2

A method includes recording a first video stream characterized by a first value of a first quality characteristic. The method includes determining that the first video stream satisfies a trigger criterion. The trigger criterion characterizes a threshold amount of video content change information. The method includes, in response to determining that the first video stream satisfies the trigger criterion, obtaining a second video stream characterized by a second value of a second quality characteristic. The second video stream includes scene information also included in the first video stream. The second value of the second quality characteristic is indicative of a higher quality video stream than the first value of the first quality characteristic. The method includes generating a third video stream by adding information from the second video stream to the first video stream. The third video stream corresponds to a higher quality version of the first video stream.
US11856302B2

A stereo imaging system includes an optical assembly and a computational pixel imager (CPI) having a plurality of pixels. Each pixel includes a light sensor and counters that convert a photocurrent from the light sensor to a digital signal. The optical assembly, which directs light from a light field to the CPI, includes an optical field combiner and first and second primary lens assemblies, which are configured to receive first and second portions of the light from the lightfield, respectively, and to direct the first and second portions of the light to the optical field combiner. The optical field combiner includes a modulator configured to modulate the first and second portions of the light and to direct modulated first and second portions of the light onto the CPI. The counters are configured to perform digital signal processing on the digital signal.
US11856297B1

A panoramic video camera comprises a plurality of image sensors which are configured to capture a plurality of frames at a time; an image processing circuitry configured to generate a frame read signal to read the plurality of frames generated by the plurality of camera sensors, apply a cylindrical mapping function to map the plurality of frames to a cylindrical image plane and stitch the cylindrically mapped plurality of frames together in the cylindrical image plane based on a plurality of projection parameters.
US11856290B2

For processing a signal from an event-based sensor having an array of sensing elements facing a scene, the method comprises: receiving the signal including, for each sensing element, successive events originating from said sensing element depending on variations of incident light from the scene; analyzing the signal to detect a frequency pattern in a light profile sensed by at least one sensing element; and extracting information from the scene in response to detection of the frequency pattern.
US11856288B2

Aspects of the present disclosure involve a system comprising a computer-readable storage medium storing at least one program, method, and user interface to facilitate a camera sharing session between two or more users. A camera sharing session is initiated based on session configuration information comprising a user identifier of a user permitted to control image capturing at a camera communicatively coupled to a first device. A trigger request is received from the second device and in response, an image capture, which results in at least one image, is triggered at the camera and the image is transmitted to the second device.
US11856285B2

The present disclosure relates to systems and methods for adjusting a monitoring device. The system may obtain one or more first monitoring images. The system may obtain, for each of one or more regions, a statistical value of at least one object in the region based on the one or more first monitoring images. The system may determine an adjustment instruction based on statistical values of the at least one object in the one or more regions. The system may adjust at least one monitoring setting of at least one monitoring device based on the adjustment instruction. The at least one monitoring device may be used to capture one or more second monitoring images.
US11856279B2

The present technology relates to an imaging apparatus, a manufacturing apparatus, a manufacturing method, and an electronic appliance that contribute to miniaturization and thinning of an imaging apparatus. Provided is an imaging apparatus including a first circuit board in which an imaging element is mounted on a center portion, a component that is mounted on an outer circumference portion of the center portion of the first circuit board and a member that incorporates the component and is provided in the outer circumference portion and is formed by a mold method. The imaging apparatus further includes a lens barrel that holds a lens, in which a frame that supports a portion including the lens barrel is located on the member. Further, the frame includes an infra red cut filter (IRCF). The present technology can be applied to an imaging apparatus.
US11856270B2

Systems and methods for providing an authenticated groupcast stream of content to destination receivers are disclosed. A method may include receiving information indicating that a media capturing source(s) located at a premises and destination receivers are included in a group. Content captured from a media capturing source(s) may be received. The content may include an image(s)/video(s) and a destination network address associated with the destination receivers. The content may be copied. The number of copies of content may correspond to a number of the destination receivers. A respective copy of the content may be sent to the destination receivers.
US11856267B2

The present disclosure provides a method for determining a recommended video, a data processing computer server and a system. The computer server determines candidate virtual scenes, users currently participating in the candidate virtual scenes, and a user corresponding to a virtual role in the candidate virtual scenes. After selecting a target virtual scene from the candidate virtual scenes, the computer server determines representation data of virtual roles of the target virtual scene, selects a target virtual role from the virtual roles of the target virtual scene according to the representation data of the virtual roles of the target virtual scene, and generates a recommended video at a viewing angle of the target virtual role in the target virtual scene.
US11856262B2

An example method can comprise receiving content for presentation at a user device. The content can comprise a plurality of sections, and each section can comprise a video portion and an audio portion. The user device can also receive content metadata regarding one or more features of the content, where the features of the content comprise one or more candidate sections of the content for modification. The user device can apply one or more rules to the received content based on the content metadata to modify one or more of the audio portion and the video portion of at least one section of the content, creating modified content, and can cause presentation of the modified content on a display device.
US11856257B2

Systems and methods are provided for responding to a sleep-state event. One example method includes receiving and generating, at a computing device, media content for output and receiving a sleep-state event. A type of the content being generated for output is identified and, based on the type of content, an action to perform in response to receiving the sleep-state event is identified. The action to perform is generated.
US11856254B2

Metadata for media content items is received. The media content items are displayed in an overview area in an electronic program guide (EPG) of a user interface. The overview area includes cells aligned in one or more rows. Input of a selection of one of the media content items displayed at the EPG in the user interface is received. Responsive to receiving the input of the selected media content item, the selected media content item is displayed in a focus area in the EPG of the user interface. The focus area includes expanded metadata that includes a sample of the selected media content item that is played as an underlay of a display of at least some of the subset of the metadata of the selected media content item.
US11856243B2

Provided in the example embodiments are a method, electronic device, and computer storage medium for managing virtual streaming. The method for managing virtual streaming includes: providing a configuration interface for configuring a virtual streaming room with configuration settings, the configuration settings including at least an audience group setting, and a host setting related to a virtual host; receiving, via the configuration interface, configuration input corresponding to the audience group setting, and/or the host setting; and based on the configuration input, generating a host assignment rule, the host assignment rule for assigning at least one virtual host to at least one audience group. The example embodiments solve the problems in which the form of an existing virtual host is fixed, audience adhesion is poor, and use thereof is inflexible.
US11856236B2

A device may be configured to signal sequence parameter information according to one or more of the techniques described herein. The sequence parameter set information may include in its second byte a syntax element specifying a chroma sampling relative to a luma sampling and a syntax element specifies a luma coding tree block size of each coding tree unit.
US11856231B2

A device may be configured to signal hypothetical reference decoder parameters according to one or more of the techniques described herein.
US11856228B2

A deblocking method is provided for deblocking a sub-partition boundary within a coding block during image encoding and/or image decoding process. The coding block is coded in an intra prediction mode and the coding block is partitioned into sub-partitions comprising a first sub-partition and a second sub-partition that is adjacent to the first sub-partition. The method comprises: determining a maximum filter length to be 1 for a first/second sub-partition when a width of the first or second sub-partition is 4 samples, or when a height of the first or second sub-partition is 4 samples; modifying a value of up to one sample of the first or second sub-partition, wherein the value of the up to one sample is obtained from a row or a column of the first or second sub-partition that is perpendicular to and adjacent to the sub-partitions boundary between the first sub-partition and the second sub-partition.
US11856224B2

An image decoding method according to the present specification comprises the steps of: deriving transform coefficients through inverse quantization on the basis of quantized transform coefficient for a target block; deriving modified transform coefficients on the basis of inverse reduced secondary transform (RST) of the transform coefficients; and generating a reconstructed picture on the basis of residual samples for the target block on the basis of an inverse primary transform of the modified transform coefficients, wherein the step of deriving the modified transform coefficients is characterized in deriving 16 modified transform coefficients by applying a transform kernel matrix to 8 transform coefficients in a 4×4 region of the target block.
US11856221B2

Disclosed is a method of decoding an image and a method of encoding an image. The method of decoding an image includes: obtaining motion-constrained tile set information; determining, on the basis of the motion-constrained tile set information, a first boundary region of a collocated tile set within a reference picture, which corresponds to a motion-constrained tile set; padding a second boundary region corresponding to the first boundary region; and performing inter prediction on the motion-constrained tile set by using a collocated tile set that includes the padded second boundary region.
US11856211B2

Usage for History-based affine parameters is described. In an exemplary aspect, a method for video processing includes deriving, for a conversion between a current block of video and a bitstream representation of the current block, affine related information associated with affine model for the current block based on affine parameters stored in a buffer for storing affine related information of blocks coded prior the current block; and performing the conversion by using the affine related information.
US11856208B1

A method for decoding an image signal according to the present invention may comprise the steps of: determining whether there is a brightness change between a current image including a current block and a reference image of the current image; if it is determined that there is a brightness change between the current image and the reference image, determining weight prediction parameter candidates for the current block; determining a weight prediction parameter for the current block on the basis of index information which specifies any one of the weight prediction parameter candidates; and performing a prediction on the current block on the basis of the weight prediction parameter.
US11856206B2

A method for decoding an image based on an intra prediction, comprising: obtaining a first prediction pixel of a first region in a current block by using a neighboring pixel adjacent to the current block; obtaining a second prediction pixel of a second region in the current block by using the first prediction pixel of the first region; and decoding the current block based on the first and the second prediction pixels.
US11856200B2

A data output apparatus includes: a video decoder that decodes a video stream to generate a first video signal; an external metadata acquisition unit that acquires one or more pieces of metadata corresponding to one or more first conversion modes; an HDR metadata interpreter that interprets one of the one or more pieces of metadata to acquire characteristic data and conversion auxiliary data; a DR converter that supports one or more second conversion modes and performs conversion processing of a luminance range of the first video signal based on the conversion auxiliary data to generate a second video signal; and an HDMI output unit that outputs the second video signal to a display apparatus.
US11856190B2

In order to provide efficient coding technology with a low load, a picture decoding device includes a spatial motion information candidate derivation unit configured to derive a spatial motion information candidate from motion information of a block neighboring a decoding target block in a space domain, a temporal motion information candidate derivation unit configured to derive a temporal motion information candidate from motion information of a block neighboring a decoding target block in a time domain, and a history-based motion information candidate derivation unit configured to derive a history-based motion information candidate from a memory for retaining motion information of a decoded block, wherein the temporal motion information candidate is compared with neither the spatial motion information candidate nor the history-based motion information candidate with respect to the motion information.
US11856182B2

A method for determining the magnitude of leakage in a subscriber's premises CATV installation; a frequency multiplexer for coupling between an antenna and a receiver for the multiplexed frequencies; and, a method for a technician to certify a CATV subscriber's premises for the provision of CATV services are disclosed.
US11856176B2

In a three-dimensional image display method, a processor acquires first three-dimensional data and second three-dimensional data of a subject from a recording medium. The processor converts a first three-dimensional coordinate system of the first three-dimensional data and a second three-dimensional coordinate system of the second three-dimensional data into a three-dimensional common coordinate system on the basis of structure information related to a geometric structure of the subject. The processor displays an image of the first three-dimensional data in the common coordinate system and an image of the second three-dimensional data in the common coordinate system on a display.
US11856172B2

A multi-function device (MFD) is disclosed. For example, the MFD includes a communication interface to establish a communication path with a remote server, a user interface to receive a request to create an electronic file based on a scan of a document, a processor, and a non-transitory computer-readable medium storing a plurality of instructions. The instructions when executed by the processor cause the processor to scan the document to create the electronic file of the document, generate an encryption code associated with the electronic file of the document that is scanned, and transmit the electronic file to the remote server.
US11856171B2

An image capture device continuously generates time-lapse video frames to be included within a time-lapse video using a dynamic time-lapse video frame rate, with the value of the dynamic time-lapse video frame rate changing based on activation of a trigger to change the dynamic time-lapse video frame rate. The dynamic time-lapse video frame rate alternates between different values.
US11856166B2

A conveyance path for a document (D) has a first conveyance path (R1) that turns back midway and a second conveyance path (R2) that extends rectilinearly. When the document (D) is of a particular type, if a setting to use the first conveyance path (R1) has been made, a control section (4) has a warning message (MS1) displayed.
US11856162B2

A display control apparatus includes a controller configured to control a display to display a standby screen including one or more display target tabs among a plurality of tabs displayable on the standby screen, the plurality of tabs including one or more shared tabs associated with a shared attribute and one or more personal tabs associated with a personal attribute, switch a user mode of the apparatus between a public mode and a personal mode, when the user mode is set to the public mode, display the one or more display target tabs including the one or more shared tabs, and when accepting user authentication information of a particular registered user, set the user mode to the personal mode for the particular registered user, and display the one or more display target tabs including the one or more shared tabs and a personal tab associated with the particular registered user.
US11856159B2

An information processing apparatus configured to communicate with a terminal and including a hardware key includes a memory and at least one processor in communication with the memory. The at least one processor of the information processing apparatus is configured to perform transmitting, to the terminal, information about a screen corresponding to a screen displayed on a display unit included in the information processing apparatus, receiving, from the terminal, operation information including coordinate information, the operation information corresponding to a user operation received on the screen displayed on the terminal based on the transmitted information about the screen, converting the operation information into operation information corresponding to the hardware key based on the coordinate information included in the received operation information, and executing processing based on the converted operation information.
US11856158B2

An electronic apparatus includes a storage that stores a personal address book; and a processor, wherein the personal address book includes a first personal address book associated with a first user, and a second personal address book associated with a second user, in a case where the first user updates and inputs first address information included in the first personal address book, the processor determines whether or not corresponding address information corresponding to the first address information is included in the second personal address book, and in a case where the corresponding address information is included in the second personal address book, the processor performs a notification process for asking the second user whether or not update of the corresponding address information is permitted, and in a case where a permission response is made to the notification process, the corresponding address information included in the second personal address book is updated.
US11856154B2

A three-dimensional data storage method includes: acquiring one or more units in which an encoded stream generated by encoding point cloud data is stored; and storing the one or more units into a file. The storing includes storing, in control information for the file, information indicating that data stored in the file is data generated by encoding the point cloud data.
US11856145B2

Systems and methods for creating, monitoring, and managing a breakout conference for a conference call are disclosed. The methods determine topics for breakout rooms and their complexity scores. A breakout room is created for the topics, including separate breakout rooms for complex topics. An expertise score based on a plurality of factors for each device associated with a participant is also calculated. Devices are assigned to separate breakout rooms based on either just the expertise score or if the expertise score meets the threshold of the complexity score. Performance within the breakout rooms is displayed in real-time, such as in a graph. A moderator schedule is generated based the performance within the breakout rooms, where priority is given to a breakout room that has a negative performance over a breakout room with a positive performance.
US11856139B2

Generating a personalized automated voice response in a telecommunications network is provided. An incoming call from a caller for user equipment of an operator in the telecommunications network is identified. In response to identifying the incoming call, it is determined whether to provide an automated response to the incoming call. In response to determining to provide the automated response to the incoming call, a personalized response message from the operator of the user equipment to the caller is generated based on characteristics of communications between the caller and the operator of the user equipment. The personalized automated voice response comprising the personalized response message in a synthesized voice of the operator of the user equipment is generated. The personalized automated voice response is sent to the caller.
US11856137B2

A user device may output an indication of an incoming call from a calling device. The user device may receive a request to screen the incoming call. The user device may analyze a transcription of voice input, received from the calling device, for one or more keywords related to a request for funds. The user device may output one or more input options, which permit a user of the user device to respond to the request for funds, including an input option to transfer funds from a first account associated with the user device to a second account associated with the calling device. The user device may detect a user interaction with the input option to transfer funds from the first account to the second account. The user device may transmit a request that causes funds to be transferred from the first account to the second account.
US11856128B2

A method includes receiving a first incoming call request, displaying a first incoming call display interface on the screen based on the first incoming call request, playing a first video in the first incoming call display interface, receiving a second incoming call request, displaying a second incoming call display interface on the screen based on the second incoming call request, and playing a second video in the second incoming call display interface, where the first incoming call request and the second incoming call request are two call requests consecutively received by the electronic device, and the first video is different from the second video.
US11856120B2

A mobile terminal comprises: a case; a display unit disposed on the front surface of the case and including a hole; a camera mounted in the case; an image output unit disposed at one side of the camera; a switching device for selectively placing the image output unit and the camera inward from the hole; and a control unit for controlling the camera, the image output unit, and the switching device. The mobile terminal outputs an image even to the hole of the display unit when the camera is not used through the hole, and thus can substantially implement full vision.
US11856116B2

Disclosed is a device and method to secure software update information for authorized entities. In one embodiment, a device for receiving secured software update information from a server, the device includes: a physical unclonable function (PUF) information generator, comprising a PUF cell array, configured to generate PUF information, wherein the PUF information comprises at least one PUF response output, wherein the at least one PUF response output is used to encrypt the software update information on the server so as to generate encrypted software update information; a first encrypter, configured to encrypt the PUF information from the PUF information generator using one of at least one public key from the server so as to generate encrypted PUF information; and a second encrypter, configured to decrypt the encrypted software update information using one of the at least one PUF response output so as to obtain the software update information.
US11856114B2

The present disclosure describes embodiments of a device with memory and a processor. The memory is configured to store integrated circuit (IC) trim and redundancy information. The processor is configured to extract bits from the IC trim and redundancy information, perform a hashing function on the extracted bits to generate hashed bits, and in response to statistical properties of the hashed bits meeting one or more criteria, output the hashed bits. In some embodiments, the memory that stores the IC trim and redundancy information can be different from other memory used by the device for other operations (e.g., accessing user data and program data that have been written into system memory).
US11856113B2

A method of multi-factor authentication includes receiving, by a first electronic device, a partial digital certificate including partial certificate information omitting at least one authentication factor from complete certificate information, and a signature encrypting a first hash of the complete certificate information with a certificate authority private key. The method also includes obtaining the first hash by decrypting, by the first electronic device, the signature with a certificate authority public key corresponding to the certificate authority private key; generating, by the first electronic device, a second hash based on the partial certificate information in the partial digital certificate and the at least one authentication factor; and comparing, by the first electronic device, the second hash to the first hash.
US11856096B2

An integrated circuit includes, in part, a key management unit configured to generate a seeding key during a start-up phase, an encryption module configured to encrypt data using the seeding key and deliver the encrypted data to a second integrated circuit, and an encoder configured to encode the seeding key and deliver the encoded seeding key to the second IC. The second integrated circuit includes, in part, a decoder configured to decode the seeding key. Each of the integrated circuits further includes, in part, a linear-feedback shift register that receives the same clock signals and loads the seeding key.
US11856095B2

An apparatus for validating user data includes a resource data storage system that stores data identifiers, data entries, and authorization sets. Resource data storage system may use an immutable sequential listing to store data. Resource data system may be used to evaluate and fulfill an authorization transfer request, in which, a user may request to transfer an authorization set with a lost identifier to a known identifier. User may be requested to commit to a user secret to validate user identity.
US11856094B2

A method for a quantum key distribution from a first target node to a second target node across a network via an entanglement-based protocol, including the following steps: transferring entangled particles from a load node to the first target node and to at least one intermediate node; generating a quantum key with the entangled particles transferred to the first target node and the at least one intermediate node; transmitting the quantum key to the second target node on a first path located on the network with a stage of secure quantum key transmission agreement starting from the at least one intermediate node by encrypting intervals of binary nodes with pre-shared quantum keys; and providing a secure communication with the quantum keys between the first target node and the second target node on a second path located on the network.
US11856089B2

A communication device may send a public key externally; receive a specific signal from a first external device; determine whether a radio field intensity of the received specific signal is equal to or greater than a threshold value; receive an authentication request from the first external device; in a case where it is determined that the radio field intensity is equal to or greater than the threshold value and the authentication request is received from the first external device, send an authentication response to the first external device; after the authentication response has been sent to the first external device, receive connection information from the first external device; and establish, by using the connection information, a wireless connection between the communication device and a second external device.
US11856084B2

Embodiments facilitate interoperability and secure determination of healthcare costs. An entity may receive a first Electronic Health Record (EHR) sub-block with patient medical coverage information and first treatments and may transmit a first Device Drug Information (DIR) sub-block comprising first treatment classes corresponding to each first treatment, first treatment class members corresponding to each first treatment class, and corresponding first treatment class member cost information. In response, the entity may receive a second EHR sub-block comprising second treatments each: associated with a corresponding first treatment, and selected from corresponding first treatment class members. Upon receipt of a transaction confirmation, the entity may augment a multi-dimensional blockchain with a multi-dimensional block formed by linking: a DIR block including second treatment information, an EHR block including information based on the second EHR sub-block and a transaction block. Payment assistance information determined from the second EHR block may be transmitted to a patient.
US11856083B2

In response to identifying that a Single Instruction, Multiple Data (SIMD) operation has been instructed to be performed or has been performed by a Fully-Homomorphic Encryption (FHE) software on one or more original ciphertexts, performing the following steps: Performing the same operation on one or more original plaintexts, respectively, that are each a decrypted version of one of the one or more original ciphertexts. Decrypting a ciphertext resulting from the operation performed on the one or more original ciphertexts. Comparing the decrypted ciphertext with a plaintext resulting from the same operation performed on the one or more original plaintexts. Based on said comparison, performing at least one of: (a) determining an amount of noise caused by the operation, (b) determining whether unencrypted data underlying the one or more original ciphertexts has become corrupt by the operation, and (c) determining correctness of an algorithm which includes the operation.
US11856079B2

Apparatuses and methods are disclosed for optimizing an L2-L1 interface. In some embodiments, a method for a network node includes grouping, at an open systems interconnection, OSI, layer 2, L2, codeblocks, CBs, based at least in part on a hardware property associated with an OSI layer 1, L1, processing engine; and sending the grouped CBs to the OSI L1 processing engine. In some embodiments, a method for a network node includes receiving, by an open systems interconnection, OSI, layer 1, L1, processing engine, a group of codeblocks, CBs, the CBs being grouped together based at least in part on a hardware property associated with the OSI L1 processing engine; and performing CB group-level encoding on at least the received group of CBs.
US11856078B2

A custom transport jumper utilizing local Common Object Request Broker Architecture protocols to intercept message data before the data is marshalled into a CDR package. The custom transport jumper may then utilize the Common Object Request Broker Architecture standard to allow communication between systems on different operating systems, in different programming languages, and/or on different computing hardware while allowing messages to be sent in a more efficient, more portable, and more easily policed manner.
US11856071B2

The present disclosure relates to a method and apparatus for pushing subscription data in Internet of things. The method includes: parsing a subscription condition set into a first attribute set in response to receiving the subscription condition set; acquiring device data; parsing the device data into a second attribute set; performing Bloom filtering on attribute elements in the second attribute set one by one in a predetermined order by taking an attribute element set in the first attribute set as a filter condition; stopping the Bloom filtering on the other attribute elements in the second attribute set in the case that a Bloom filtering result of one attribute element indicates an occurrence of mismatch; and returning to the step of acquiring the device data.
US11856069B2

A method for deleting user equipment devices UEs in batches, where the method includes: A control device sends a delete instruction to a virtual broadband remote access server (vBRAS)-control plane (CP), where the delete instruction includes a target attribute, and where the vBRAS-CP instructs vBRAS-user plane (UP) devices to delete all user equipment devices meeting the target attribute according to the delete instruction.
US11856068B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of things (IoT). A method, by a network data analytics function (NWDAF), for a user equipment (UE) data collection is provided. The method includes the steps of receiving, from a service consumer network function (NF), a request for requiring the UE data collection via an application function (AF) for analytics; discovering the AF that provides the UE data collection based on AF profiles of the AF; transmitting, to the AF, a request for a subscription to the AF for the UE data collection for the analytics including at least one event identifier (ID), at least one event filter related to the at least one event ID, and a target of event reporting; and receiving, from the AF, a notification on a processed data collected according to the subscription.
US11856064B1

Techniques for a Predictive Connection Manager Service (PCMS) to predict when client applications will send service requests to backend services, and proactively establishes connections, caches data, or takes other actions, to reduce latencies between receipt of and response to these service requests. The PCMS analyzes historical usage data for the client applications to identify usage patterns, and uses those usage patterns to proactively scale resources to handle service requests. The PCMS can be implemented as a pass-through proxy for client applications to reduce frictions for managing how users interact with backend services. For instance, the PCMS can install client-side drivers such that updates or patches for the drivers need only be installed on the PCMS rather than on each client device. Further, the PCMS provides interfaces through which users can develop custom drivers for backend services, and also manages software drivers for different service provider networks, thus offering multi-provider connectors.
US11856058B2

An apparatus with a solid state drive (SSD) having firmware to perform peer to peer transfer of proof of space plots. The SSD has a host interface configured to receive at least read commands and write commands from an external host system. The SSD has memory cells formed on at least one integrated circuit die, and a processing device configured to control executions of the read commands to retrieve data from the memory cells and executions the write commands to store data into the memory cells. The firmware is executable in the SSD according to configuration data to: identify an opportunity for a transfer of a proof of space plot; establish a peer to peer connection to a device that is separate from the solid state drive; and transfer, over the peer to peer connection, the proof of space plot between the solid state drive and the device.
US11856057B2

An example operation includes one or more of generating, by a channel peer, a random value to be associated with a channel name, mapping, by the channel peer, the random value to a block range, receiving, by the channel peer, a channel-MAC from a second peer, and validating the channel-MAC based on the channel name and the random value.
US11856056B2

Systems, methods, and devices for decentralized notification services are disclosed. In some aspects, the techniques described herein relate to: providing a distributed notification service configured to execute on each node of a plurality of nodes of a decentralized peer-to-peer platform; determining, by the distributed notification service of a first node, a notification definition, where the notification definition is from a catalog of notification definitions and included in a distributed application executing on the first node; sending, by the distributed notification service of a second node, a notification message, where the notification message is associated with the notification definition; receiving, by the distributed notification service of the first node, the notification message; and delivering, by the distributed notification service of the first node, the notification message in the distributed application executing on the first node.
US11856054B2

A system, method, and machine-readable storage medium for providing a quality of service (QoS) recommendation to a client to modify a QoS setting are provided. In some embodiments, a set of volumes of a plurality of volumes may be determined. Each volume of the set of volumes may satisfy a first QoS setting assigned to the volume and a second QoS setting assigned to the volume. The plurality of volumes may reside in a common cluster and may be accessed by the client. Additionally, a subset of the set of volumes may be determined. Each volume of the subset may satisfy an upper bound of a range based on a minimum IOPS setting of the volume. A QoS recommendation to the client to modify the first QoS setting may be transmitted for one or more volumes of the subset.
US11856051B2

A control device configuration system may receive, store, process, and/or display control device configuration information. The control device configuration system may filter the control device configuration information based on user selections of configuration options for configuration parameters. The control device configuration system may identify compatible and incompatible configuration options for various configuration parameters. The control device configuration system may allow selections of the incompatible configuration options. The control device configuration system may adjust how it filters the control device configuration information based on the selections of the incompatible configuration options. The control device configuration system may implement a configuration model that includes configuration parameter groups for efficient evaluation of user selections.
US11856042B2

Techniques are disclosed relating to encoding recorded content for distribution to other computing devices. In various embodiments, a first computing device records content of a physical environment in which the first computing device is located, the content being deliverable to a second computing device configured to present a corresponding environment based on the recorded content and content recorded by one or more additional computing devices. The first computing device determines a pose of the first computing device within the physical environment and encodes the pose in a manifest usable to stream the content recorded by the first computing device to the second computing device. The encoded pose is usable by the second computing device to determine whether to stream the content recorded by the first computing device.
US11856036B2

A process and a computer establish a data transfer from a provider (1, 2) that provides data to a consumer (9) that uses the data. A consumer (9) transmits a request message (probe) for requested data to a communications agent (5), in response, the communications agent (5) adds an entry for the request message (probe) to a requests list (AL). Subsequently, a provider (1, 2) transmits a registration message (Hello) to the communications agent (5). The communications agent (5) searches the requests list (AL) for an entry for a request message (probe) that matches the received registration message (Hello). If a matching entry is found in the requests list (AL), the communications agent (5) initiates a data transfer from the provider (1, 2) to the consumer (9).
US11856035B2

A method performed by a network node in a communications network, for handling of discovery of entrance points of a User Equipment (UE) to an IP Multimedia Subsystem (IMS) network, during an IMS Protocol Data Unit (PDU) session setup. The network node obtains a list of IMS entrance point instances, wherein the list of IMS entrance point instances comprises an address of each IMS entrance point instance and one or more transport protocols supported by each IMS entrance point instance. The network node generates, based on the obtained list of IMS entrance point instances, a configuration message for IMS entrance point discovery, comprising the address of the IMS entrance point instance and the one or more transport protocols supported by each IMS entrance point instance. The network node further provides to the UE the generated configuration message.
US11856031B2

A method for processing network communications, the method including receiving a network packet at a network device and performing at least one lookup for the packet in one or more first lookup tables in which the one or more first lookup tables are programmed to include at least one of an exact match or longest prefix match (LPM) table entry. The method includes obtaining a security source segment and a security destination segment based upon the result of the at least one lookup for the packet in the one or more first lookup tables. The method further includes performing a lookup in a second lookup table based upon the security source segment and security destination segment in which the second lookup table is programmed in a content addressable memory. Based upon the result of the lookup in the second lookup table, processing a forwarding decision for the packet according to the security source segment and security destination segment.
US11856030B2

A system, method, and apparatus for implementing workflows across multiple differing systems and devices is provided herein. During operation, a graphical-user interface provides a user with a list of triggers and a list of actions. A user creates a workflow by dragging a trigger and at least one action to an area of a screen (workspace) and then connecting them with a line or arc. If a security ecosystem is unable to execute the created workflow, the necessary components needed to execute the workflow will be provided in a small area on the screen (workspace).
US11856026B2

The technology disclosed relates to reducing error in security enforcement by a network security system (abbreviated NSS). The NSS classifies incoming connection access requests as loss prevention inspectable or connection preserving by determining their conformance or non-conformance with semantic and content requirements of HTTP and HTTPs protocols. The NSS forwards the loss prevention inspectable connection access requests to a data inspection and loss prevention appliance (abbreviated DILPA) for deep inspection. The NSS directly sends the connection preserving connection access requests to the destination servers, preventing connection termination and error generation.
US11856024B2

In an approach for prohibiting voice attacks, a processor, in response to receiving a voice input from a source, determines, using a predetermined filter including an allowlist, that the voice input does not match any corresponding entry of the predetermined filter. A processor routes the voice input to an adversarial pipeline for processing. A processor identifies an adversarial example of the voice input using a predetermined connectionist temporal classification method. A processor generates a configurable distorted adversarial example using the adversarial example identified. In response to a user reply, a processor injects the configurable distorted adversarial example as noise into a voice stream of the user reply in real-time to alter the voice stream. A processor routes the altered voice stream to the source.
US11856023B2

Systems and techniques for detecting advertising fraudulent traffic, or invalid traffic, by correlating advertising traffic with cyber network defense events are described. For example, described techniques include querying cyber network traffic events, querying the metadata returned by the tag script placed in the displayed advertisement, and correlating times, internet protocol (IP) addresses, publisher domains, and referrer domains with domains and IP addresses flagged by network cyber security events.
US11856014B2

Methods and systems are described herein for detecting anomalous access to system resources. An anomaly detection system may access system events from one or more computing devices and may generate entries from the system events. Each entry may include a corresponding timestamp indicating a time when a corresponding system event occurred, a corresponding user identifier indicating a user account within a computing environment associated with the corresponding system event, a corresponding location identifier indicating a location within the computing environment, and a corresponding action identifier indicating an action that the user account performed with respect to the location or an object within the computing environment. The generated entries may be aggregated and input into an anomaly detection model to obtain anomalous activity identified by the model.
US11856006B2

There is provided an abnormal communication detection apparatus capable of reducing over-detection. The abnormal communication detection apparatus includes: a receiving part receiving communication data for learning that includes an identifier and communication data for detection that includes the identifier; a knowledge information acquiring part acquiring knowledge information that is information about at least either temporal characteristics or payload characteristics of the communication data for learning; an allocation rule generating part generating allocation rules that are rules for specifying which communication data having which identifier is to be allocated to which detector among a plurality of detectors, based on the knowledge information; an allocating part allocating the communication data to any of the detectors based on the allocation rules; and the plurality of detectors each of which learns, when the communication data for learning is allocated, a model for detecting whether the communication data allocated to the detector is normal or abnormal, and detects, when the communication data for detection is allocated, whether the communication data for detection is normal or abnormal based on the learned model.
US11855998B1

Embodiments are directed towards a system and method for a cloud-based front end that may abstract and enable access to the underlying cloud-hosted elements and objects that may be part of a multi-tenant application, such as a search application. Search objects may be employed to access indexed objects. An amount of indexed data accessible to a user may be based on an index storage limit selected by the user, such that data that exceeds the index storage limit may continue to be indexed. Also, one or more projects can be elastically scaled for a user to provide resources that may meet the specific needs of each project.
US11855994B2

The invention relates to a method and system that aggregates client data and cyber indicators to authenticate a client. The system comprises: a computer server comprising at least one computer processor and coupled to the memory, programmed to: receive, via an electronic input, an authorization request from a requester for access to an account; identify a client identifier associated with the authorization request; using the client identifier, retrieve, from the memory, a client profile, wherein the client profile is based on an aggregation of client data, client device data, claims data and cyber data; generate a risk score based on the aggregated combination of the client data, client device data, claims data and cyber data to determine whether the requester is authenticated to access the account; and automatically apply an authentication determination to the authorization request.
US11855991B1

Methods, systems, and devices for property manager are described. A device may transmit a request to access information from a control panel of a property associated with a smart home automation community. The request may include credentials specific to a property management personnel. In response to the transmitted request, the device may retrieve the information from the control panel of the property based in part on an authentication of the credentials. The authentication of the credentials may include receiving, from an additional device of an occupant of the property, an acknowledgement message to the request. Once the information is retrieved from the control panel, the device may generate an account associated with the control panel of the property based in part on the information, where the account grants a level of access to the property management personnel.
US11855988B2

Synchronization of access controls between computing devices is provided. The system receives a request from a first device. The system performs a session handover to a second device responsive to determining an incompatibility. The system modifies a parameter in an access control database. The system receives a request from a third device. The system provides the digital component to the third device.
US11855982B2

A system and method are disclosed that leverage multi-factor authentication features of a service provider and intelligent call routing to increase security and efficiency at a customer call center. Pre-authentication of customer support requests reduces the potential for misappropriation of sensitive customer data during call handling. A contactless card uniquely associated with a client may provide a second factor of authentication to reduce the potential for malicious third-party impersonation of the client. Pre-authorized customer support calls are intelligently and efficiently routed in a manner that reduces the opportunity for malicious call interference and information theft.
US11855978B2

A system for providing an application includes an interface and a processor. The interface is configured to receive an indication to provide an application to a device. The processor is configured to provide the application to the device. The application is configured to receive a request for credentialed information associated with a user from a requesting server; determine whether a stored credential satisfies the request for the credentialed information; and in response to a determination that the stored credential satisfies the request for the credentialed information: determine a response credential for responding to the request; determine that the user approves sharing the credentialed information indicated by the response credential; and provide the response credential to the requesting server.
US11855977B2

A device may determine that a network function of a network is to use a secure communication protocol. The network function may be configured to facilitate communication via the network. The device may identify a component of a resource configuration that is to instantiate the network function. The device may instantiate, using the component, a proxy for the network function. The device may configure the proxy to obtain a certificate that is associated with the secure communication protocol. The device may cause the proxy to use the certificate to communicate with another proxy that is associated with the network function to perform an operation associated with the network function.
US11855976B2

A system for utilizing behavioral features to authenticate a user entering login credentials. The system includes an electronic processor configured to receive a request to access a user account and compare behavioral features included in the request to behavioral features included in a user behavior profile associated with the user account. The electronic processor is also configured to, based on the comparison, generate one or more scores. The electronic processor is further configured to, for each of the one or more scores, compare the score to a predetermined threshold and, based on the comparison of the score to the predetermined threshold, adjust a match value. The electronic processor is also configured to compare the match value to one or more predetermined thresholds to determine whether the behavioral features included in the request to access the user account authenticates the user, does not authenticate the user, or is inconclusive.
US11855975B2

Aspects of subject technology provide systems and methods for generation and distribution of a stable identifier associated with multiple aliases of a user account. The stable identifier may be provided to various electronic devices by a server, responsive to requests associated with communications to those devices from one of the associated aliases. In this way, messaging applications can utilize the stable identifier to merge conversations from a single user having multiple aliases, and secure access to a secure device can be provided to an authorized user, even if the authorized user attempts access from an unauthorized account alias.
US11855973B2

Systems and methods are provided for use in responding to attribute queries related to identifying information for a user. One exemplary method includes receiving a request for an identity code for a user associated with identifying information, where the identifying information includes multiple attributes of the user, and generating the identity code and transmitting it to a computing device associated with the user. The method then includes receiving an identity request for the user from a requesting party including the identity code and at least one query related to at least one of the multiple attributes of the user, identifying the user based on the identity code, compiling a response to the at least one query based on the identifying information of the multiple attributes of the user, and transmitting the response to the requesting party.
US11855967B2

A first correspondence table in a terminal device stores a first correspondence between an identifier of a process running on the terminal device and an identifier of a data stream created by the process. A second correspondence table stores a second correspondence between an identifier of an application and an identifier of a process created by the application. The terminal device receives an identifier of a first data stream from a network security device, finds, in the first correspondence table, a first record where the identifier of the first data stream is stored to obtain an identifier of a process in the first record, finds, in the second correspondence table, a second record where the identifier of the process in the first record is stored to obtain an identifier of an application from the second record, and sends the identifier of the application to the network security device.
US11855966B2

A packet-filtering system described herein may be configured to filter packets with encrypted hostnames in accordance with one or packet-filtering rules. The packet-filtering system may resolve a plaintext hostname from ciphertext comprising an encrypted Server Name Indication (eSNI) value. The packet-filtering system may resolve the plaintext hostname using a plurality of techniques. Once the plaintext hostname is resolved, the packet-filtering system may then use the plaintext hostname to determine whether the packets are associated with one or more threat indicators. If the packet-filtering system determines that the packets are associated with one or more threat indicators, the packet-filtering system may apply a packet filtering operation associated with the packet-filtering rules to the packets.
US11855961B2

Techniques are provided that rotate a device address used to identify a wireless client device on a wireless network. The wireless client device and at least one network infrastructure component identify a plurality of device addresses associated with the wireless client device. In some embodiments, the plurality of device addresses are generated via a corresponding plurality of invocations of a stateful random number generator, such as a cryptographically secure pseudorandom number generator.
US11855956B2

A method for supporting configurable producer network function (NF) Internet protocol (IP) address mappings includes, at an NF repository function (NRF), receiving, from a requesting node, a request message for network address and/or service information of a producer NF. The method further includes determining, from the request message, at least one consumer NF parameter. The method further includes using the at least one consumer NF parameter, a producer NF IP address mapping rule. The method further includes, in response to locating the producer NF IP address mapping rule, determining, using the producer NF IP address mapping rule, an IP address to return to the requesting node. The method further includes generating a response message including the IP address and transmitting the response message to the requesting node.
US11855951B2

A method includes providing a user terminal with page data for rendering a message posting assistance page that includes a first window and a proceed button. The present method also includes accepting text data via the first window. The present method further includes accepting, via the first window, a video URL for identifying video data. The present method further includes proceeding with automatic processing in response to a single press of the proceed button. The automatic processing includes: (a) moving or copying the text data from the first window to a clipboard of the user terminal; and (b) downloading the thumbnail image data from the video sharing service based on the video URL and storing the thumbnail image data in an image folder of the user terminal.
US11855950B2

A method of providing information on a social networking service (SNS) activity to a chatroom, performed by a user terminal, includes: transmitting, to a server, an SNS request for each of a plurality of anonymous profiles created to be interlinked with an account of a user for an instant messaging service (IMS); displaying information on an SNS activity performed through a first anonymous profile selected by the user in correspondence with a chatroom in which the user participates in the IMS, from among the plurality of anonymous profiles, in the chatroom; receiving an input of changing a profile of the user, selected corresponding to the to chatroom, from the first anonymous profile to a second anonymous profile; and displaying information on an SNS activity performed through the second anonymous profile in the chatroom.
US11855947B1

A server maintains a gallery of ephemeral messages. Each ephemeral message is posted to the gallery by a user for viewing by recipients via recipient devices. In response to a gallery view request from any of the recipient devices, the ephemeral messages in the gallery are displayed on the requesting device in automated sequence, each message being displayed for a respective display duration before display of the next message in the gallery. Each ephemeral message has an associated message availability parameter. Each ephemeral message is removed from the gallery, thus being unavailable for viewing upon request, at expiry of the corresponding message availability parameter.
US11855946B2

A first device is logged in with a first user account. The first device displays an avatar of a second user account in a first user interface of the first device. In response to an interaction instruction triggered on the avatar of the second user account, the first device generates an interaction message according to a first field corresponding to the first user account, an action description field used for indicating an action performed by the first user account on the second user account, and a second field corresponding to the second user account. The first device transmits the interaction message to a second device that is logged in with the second user account.
US11855943B2

Systems and methods are provided for generating for presentation information about an event on a device that is in a mode of operation that prevents presentation of information about events. This may be accomplished by a media guidance application that receives a command, on a user device associated with a first user, to place the user device in a do not disturb mode. The media guidance application receives, while the user device is in the do not disturb mode, information about an event and determines whether the event is relevant to the user. The media guidance application then determines whether the event is trending among a plurality of users associated with the user and, if trending, displays, while the user device is in the do not disturb mode, a notification about the event to the user on the user device.
US11855932B2

A system and method for adjusting a device behavior with respect to a privacy class. The method includes collecting sensory inputs from a plurality of sensors; analyzing the sensory inputs using at least the sensory inputs and at least a privacy class of a plurality of privacy classes; determining a privacy rule based on the analysis of the sensory inputs; and, initiating an engagement of the user based on the determined privacy rule.
US11855928B2

Embodiments of the application disclose a reference signal management method, an apparatus, and a system, to resolve a problem of relatively large system overheads in an existing high frequency beam management process. A terminal device receives first information sent by a network device. The first information is used to indicate a first reference signal group that is on a first carrier, there is a correspondence between the first reference signal group that is on the first carrier and a first reference signal that is on a second carrier, and the first reference signal group that is on the first carrier includes at least two reference signals. The terminal device receives the first reference signal group that is on the first carrier and that is sent by the network device.
US11855919B2

In an example method of present application, a terminal device obtains resource indication information. The resource indication information indicates frequency domain resources of a data channel of a terminal device. The resource indication information comprises S bits, where S is a positive integer. The terminal device determines the frequency domain resources of the data channel of the terminal device based on the resource indication information.
US11855918B2

Current radio frame structures in Long-Term Evolution (LTE) and New Radio (NR) have some restrictions. A frame structure is disclosed herein that aims to provide more flexibility. Embodiments of the flexible frame structure include different parameters that are flexible, i.e. that are configurable. A non-exhaustive list of parameters that may be configurable include: length of the frame; length of a subframe (if a subframe is even defined); length of a slot and/or number of symbol blocks in a slot (if a slot is even defined); length of the CP and/or data portion in a symbol block, or ratio of CP to data portion, which may vary between symbol blocks; downlink/uplink switching gap length, etc.
US11855916B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
US11855905B2

Techniques are provided for a high availability solution (e.g., a network attached storage (NAS) solution) with address preservation during switchover. A first virtual machine is deployed into a first domain and a second virtual machine is deployed into a second domain of a computing environment. The first and second virtual machines are configured as a node pair for providing clients with access to data stored within an aggregate comprising one or more storage structures within shared storage of the computing environment. A load balancer is utilized to manage logical interfaces used by clients to access the virtual machines. During switchover, the load balancer preserves an IP address used to mount and access a data share of the aggregate used by a client.
US11855902B2

Embodiments of a device and a method for providing data are disclosed. In an embodiment, a device includes a processing system configured to split data of a request into messages by splitting the data based on a node of the data, where the messages fit a supported size, and provide the messages that include the data of the request to a communications interface.
US11855896B1

A computerized method for directing transmission of a data packet within a distributed cloud computing system is disclosed that includes receiving the data packet by a receiving gateway instance deployed within the distributed cloud computing system, when a session corresponding to the data packet is found via a session lookup, forwarding the data packet to a destination in accordance with the session lookup, when the session is not found via the session lookup, determining whether one least one peer firewall instance is available, and when a first peer firewall instance is available and the data packet is a synchronize packet, forwarding the data packet to the first peer firewall instance. In some instances, the data packet is a TCP packet and in others, the data packet is received from either of a spoke gateway or a transit gateway that is deployed within the distributed cloud computing system.
US11855894B2

A cloud server includes an equipment information storage that stores equipment table information; an equipment controller that generates control information; an encapsulator that generates control notification information by encapsulating the control information and adding header information for specifying a control device as a sending destination; and a notification information sender that sends the control notification information to the control device based on the header information. Upon acquiring the control notification information from the server, the control device removes the header information from the control notification information and decapsulates to extract the control information, and sends the extracted control information to a controlled equipment.
US11855893B2

Systems and methods are provided for management of network segments that cross geographic regions and/or other types of network divisions in a cloud-based network environment. A cloud-based network provider's geographically-dispersed network infrastructure may serve as the core of a client's private wide area network, and the client may define isolated segments to which other networks (virtual private clouds, virtual private networks, etc.) may be attached. The various segments may remain logically isolated from each other even when implemented across some or all of the same regions—and using the same physical and/or virtual routing components—as other segments of the same client and/or other clients.
US11855892B2

A system and apparatus for addressing the different types of mobility of a wireless transmit/receive unit (WTRU) in a network. A radio access network (RAN) may send a request for configuration information to a gateway device including a device ID of a WTRU, a service ID, and a RAN address. Once the RAN receives configuration information from the gateway device including a forwarding table, the RAN may be prepared to receive non-IP data from a WTRU including a routing tag. The routing tag may be based on the device ID of a WTRU and service ID. The RAN may transmit the non-IP data received from the WTRU to the gateway device over a routing path based on the routing tag and a forwarding table where the non-IP data is forwarded on to its detention, such as another WTRU or an Application Server.
US11855890B2

A virtual network system for a computer network is provided. The system includes a first host executing a virtual network function manager. The system also includes a second host executing a management virtual machine. The management virtual machine is in communication with the virtual network function manager and with one or more virtual network function component instantiations. The management virtual machine is programmed to route messages between the one or more virtual network function component instantiations and the virtual network function manager.
US11855887B2

A data flow redirection method to overcome a disadvantage that a quantity of adjustable data flows is relatively small due to limited space of a flow specification forwarding table. The method includes receiving, by a network device, a control message sent by a control device, where the control message carries redirection routing information of a data flow and a redirection routing indication, the redirection routing indication instructing to convert the redirection routing information of the data flow into a forwarding entry in a target forwarding table, and tablespace of the target forwarding table is greater than tablespace of a flow specification forwarding table of the network device, and converting, by the network device, the redirection routing information of the data flow into the forwarding entry in the target forwarding table according to the redirection routing indication.
US11855866B1

Described herein are systems and methods for assessing a computing network's physical robustness to node and/or link failure during operation of the computing network. In one or more examples, the systems and methods can incorporate graph modeling and analysis techniques to assess the impact of node removal from a computing network and determine the impact that such removal has on the overall physical connectivity of the network. In one or more examples, a user or other entity can provide the system with a graph representation of a computing network, as well as specify the number of nodes to be removed (i.e., to simulate failure) to test the connectivity of the network. The system using these inputs can determine a worst-case scenario operating condition based on the inputs provided by the user, and can also assess the “network merit” which can represent a user-programmable definition that can represent a plurality desired types of connectivity.
US11855861B2

Novel tools and techniques are provided for implementing data packet processing, data packet capture, data packet storage, data packet retrieval, and data packet distribution. In various embodiments, a method might include detecting, with a computer, network traffic comprising one or more data packets within a network. Based on a detection of the network traffic comprising the one or more data packets within the network, the method might include capturing the one or more data packets to move the one or more data packets from the network to a storage of the computer. Next, the method might include determining one or more attributes associated with each captured data packet. Based on a determination of the one or more attributes, the method might additionally include storing each captured data packet according to the one or more first attributes in the storage of the computer.
US11855844B2

Technologies are disclosed for improving the deployment of a cloud-hosted service. Before being deployed to a particular environment, a cloud-hosted service must be configured for that environment. Configuring a deployment includes determining which components to deploy, determining how to connect with external components, identifying onboarding procedures, etc. A dependency data model defines a hierarchy of components utilized by the cloud-hosted service. For each component in the hierarchy, configuration parameters define how to deploy that component. A list of configuration parameters that do not yet have values for a target environment may be generated and provided to a user. Values for these parameters may then be received. A configuration for the target environment is then generated based on the dependency data model and the received values. The dependency data model may inherit dependencies and configuration properties from ancestors in a hierarchy of dependency data models.
US11855841B2

Certain embodiments disclose systems and methods for creating a user private network (UPN) based on 11ay technology. Methods of the present disclosure include creating a personal basic service set (PBSS) having a service device and one or more 11ay devices, the service device configured to wirelessly communicate with the one or more 11ay devices in the PBSS, creating a UPN having an access point located in communicative proximity with the service device, and associating at least one 11ay device of the one or more 11ay devices with the UPN, wherein the at least one 11ay device is configured to establish a wireless connection with the one or more 11ay devices using the service device when within a coverage area of the PBSS, and to establish a wireless connection with the one or more 11ay devices using the access point when outside the coverage area of the PBSS.
US11855840B2

Systems and methods are provided for configuring a plurality of network devices to connect to a cloud-based provisioning system via a single web socket connection. The connection may be established between the provisioning system and a first gateway that serves as the entry point to the Internet from a branch office. Other network devices may connect to this first gateway, including such as routers, switches, access points, and second gateways. The single web socket connection can dramatically reduce the number of connections that need to be established with the cloud-based provisioning system.
US11855832B1

A method and system for multicast flow restoration following network failure detection. Specifically, in addressing the aftermath following a network failure, one or more embodiments disclosed herein propose a solution through which failure-impacted network multicast(s) may be identified and, subsequently, restored with or without third-party intervention. To that end, one or more embodiments disclosed herein employ(s) a centralized network controller configured to obtain aggregated network state, including network topology information, through numerous logical agents interspersed across a network. Thereafter, the aggregated network state may be leveraged to ascertain and remedy any network multicast disruptions.
US11855822B2

Apparatus, methods, and computer-readable media for facilitating multiplexing of time-varying DMRS within a symbol are disclosed herein. An example method for wireless communication at a receiving device includes receiving a first symbol of a single carrier waveform, the first symbol including a first set of DMRS resources. The example method also includes receiving a second symbol of the single carrier waveform, the second symbol including a second set of DMRS resources, the second set of DMRS resources associated with at least one of a DMRS starting location and a DMRS duration that is different than the first set of DMRS resources.
US11855818B1

In a method for adapting an orthogonal frequency division multiplexing (OFDM) numerology configuration for use in a communication network one or more OFDM numerology configurations are adaptively selected at a first communication device to be used in communication with one or more second communication devices. Adaptively one or more OFDM numerology configurations includes selecting at least one combination of two or more of (i) a guard interval duration, (ii) a tone spacing, (iii) a starting location of the selected guard interval duration, and (iv) a starting location of the selected tone spacing. A physical layer (PHY) data unit to be transmitted to a second communication device is generated at the first communication device. The PHY data unit is generated using one of the one or more adaptively selected OFDM numerology configurations to generate OFDM symbols of at least a portion of the PHY data unit.
US11855817B2

A first physical layer device includes a first transmitter and a first receiver. The first transmitter transmits first data to a second physical layer device over a medium at a first line rate during a first transmit period. The first receiver is configured to not receive data during the first transmit period and an echo reflection period occurring after the first transmit period. The echo reflection period is based on a length of the medium between the first physical layer device and the second physical layer device. The first receiver is configured to, after the echo reflection period, receive second data from the second physical layer device over the medium at a second line rate that is less than the first line rate.
US11855807B1

A compact wireless Internet of Things (IOT) gateway for use with industrial internal combustion engines having an engine control module (ECM). The IOT gateway incorporates components, such as a cellular modem and cellular antenna, that enable the IOT gateway to receive, process, and transmit data, particularly performance data related to the engine on which the IOT gateway is mounted. The IOT gateway includes both male and female connectors for connecting to both an ECM and a wire harness assembly on the internal combustion engine. Features of the IOT gateway enable remote monitoring of electronic performance data of the internal combustion engine, as well as updating and reconfiguring control software of the internal combustion engine.
US11855805B2

Some embodiments establish for an entity a virtual network over several public clouds of several public cloud providers and/or in several regions. In some embodiments, the virtual network is an overlay network that spans across several public clouds to interconnect one or more private networks (e.g., networks within branches, divisions, departments of the entity or their associated datacenters), mobile users, and SaaS (Software as a Service) provider machines, and other web applications of the entity. The virtual network in some embodiments can be configured to optimize the routing of the entity's data messages to their destinations for best end-to-end performance, reliability and security, while trying to minimize the routing of this traffic through the Internet. Also, the virtual network in some embodiments can be configured to optimize the layer 4 processing of the data message flows passing through the network.
US11855800B1

Methods and system for one-line synchronous interface are described. A timing device including a first buffer can be connected to a line card including a second buffer. The timing device can control the first buffer to output a synchronization pulse to the line card periodically at a time interval. For each output of the synchronization pulse, the timing device can switch the first buffer from a first output mode to a first input mode. Under the first input mode, the timing device listen for incoming data on the trace. The line card can receive the synchronization pulse periodically at the time interval. For each receipt of the synchronization pulse, the line card can switch the second buffer from a second input mode to a second output mode. Under the second output mode, the line card can transmit outgoing data on the trace.
US11855793B2

In one aspect, an apparatus may include a processor and storage accessible to the processor. The storage may include instructions executable to identify first, second, third, and fourth participants that are to engage in video conferencing. The instructions may also be executable to access data related to the participants. The instructions may then be executable to, based on the data, group the first and second participants together for a first video conference and group the third and fourth participants together for a second video conference. Based on the grouping, the instructions may then be executable to provide a graphical user interface including video feeds of the participants according to the groupings and allowing a fifth participant to enter the different groups to converse audibly with the different groups. The groupings may be made based on past participation in other video conferences and/or traits of the respective participants, for example.
US11855789B2

Embodiments relate to a controller operable to transmit digital data messages to a receiver via a communication link having at least a first and a second transmission path, the controller comprising a first signal terminal the first transmission path and a second signal terminal for the second transmission path. The first signal terminal is operable to digitally transmit a first message to the receiver according to a first transmission technique and the second signal terminal is being operable to digitally transmit a second message to the receiver according to a second, different transmission technique.
US11855783B2

The present specification relates to a wireless communication system, and to a method and a device therefore, the method comprising: determining, in a state in which a first PUCCH resource related to a first UCI overlaps, in a time domain, a plurality of PUCCH resources related respectively to a plurality of HARQ-ACK payloads, a third PUCCH resource for multiplexing a first HARQ-ACK payload and the first UCI on the basis of the first UCI and the first HARQ-ACK payload related to one (a second PUCCH resource) of the plurality of PUCCH resources; and transmitting the first HARQ-ACK payload and the first UCI on the third PUCCH resource.
US11855782B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure discloses a method and an apparatus for transmitting an uplink signal, and the method comprises: receiving downlink control information; and performing transmitting of the uplink signal according to the downlink control information and/or a time-domain attribute of a physical resource of the uplink signal. With the present disclosure, a flexibility of a system can be improved and a transmission efficiency can be increased.
US11855773B2

Systems and methods are described herein that allow information carrying bits of a transmission block to be placed at higher-reliability positions prior to transmission. An exemplary method includes generating a set of payload bits to be encoded for transmission, wherein the set of payload bits includes at least one known bit, interleaving the set of payload bits to generate an interleaved set of payload bits, wherein the interleaved set includes the at least one known bit in a predetermined position in the interleaved set, providing the interleaved set to a cyclic redundancy check (CRC) encoder to generate CRC-interleaved set of payload bits, wherein the CRC-interleaved set includes the at least one known bit in a predetermined position within the CRC-interleaved set, and encoding the CRC-interleaved set for transmission to a wireless device. Associated network nodes and wireless devices are included.
US11855772B2

A storage system, including a storage device configured to store a plurality of encoded values, wherein each value of the plurality of encoded values has a predetermined value length and is within a predetermined range, and wherein the predetermined range is not a power of 2; and at least one processor configured to: group the plurality of encoded values into a codeword; obtain a plurality of bit chunks, wherein each bit chunk of the plurality of bit chunks represents a corresponding encoded value of the plurality of encoded values, and wherein a length of the each bit chunk is selected from among one or more predetermined bit chunk lengths which are determined based on the predetermined range; select a variable-length prefix from among a plurality of variable-length prefixes, wherein the variable-length prefix indicates bit chunk lengths of the plurality of bit chunks; obtain a compressed codeword including the variable-length prefix and the plurality of bit chunks; and decode the plurality of encoded values based on the compressed codeword.
US11855769B2

Systems and methods for creating and accessing content items are provided. In some examples, a method can include receiving a user selection of an interface element located in a persistent user interface of an operating system desktop of a client device associated with a user account, identifying, based on a query to a meeting service, a meeting associated with the user account, displaying, in response to the user selection of the interface element, a set of user options for the meeting, the set of user options comprising an option to access a content item for the meeting, receiving a user selection of the option to access the content item for the meeting, and accessing, in response to the user selection, the content item.
US11855768B2

Assessing risk of a cyber security failure in a computer network of an entity includes: assessing risk of an entity, using a computer agent configured to collect information from at least publicly accessible Internet elements, and automatically recommending, based at least in part on the assessed risk, changes to reduce the assessed risk to mitigate the theoretical damage. The assessed risk comprises a cyber security failure risk in a computer network of the entity; and the assessing of risk comprises: generating a disaster scenario that comprises elements of a disaster event; modeling the disaster scenario against a profile of the entity; and determining theoretical damage based at least in part on the modeling.
US11855763B2

In NR networks with dynamic TDD operation, two types of cross-link interference (CLI) arise: UE-to-UE and TRP-to-TRP. UE-to-UE CLI measurement and reporting can assist the network in managing CLI. The problem is that, for a cell to be able to measure the CLI reference signal transmitted by UEs in another neighboring cell, the cell needs to know what CLI-RS transmission resources assigned to the UEs in the neighboring cells. Embodiments of the present disclosure provide systems and methods for the exchange of such information between cells. In some embodiments, for example, a gNB sends a request message to a neighboring gNB and the neighboring gNB sends back a response message that includes TDD DL/UL Configurations of its cells and a list of the resources assigned to its UEs for transmission of UE-to-UE CLI reference signal.
US11855756B2

A status control method, applied to an optical network unit (ONU) or an optical network terminal (ONT) of a passive optical network (PON) includes: receiving a first downlink data frame, where the first downlink data frame includes data of N different rates and indication information, the indication information includes length information of data of each rate in the first downlink data frame, and N≥2; determining length information of first data in the data of the N different rates, where a rate of the first data is higher than a working rate of a clock and data recovery (CDR) module; and generating control information based on the length information of the first data, to control the CDR module to be in a specified state within a period of time corresponding to the length information of the first data.
US11855754B2

Methods, systems, and apparatus for subcarrier modulation with radio frequency inphase-quadrature (IQ) modulators. A system includes a plurality of IQ modulators, each configured to receive an input electrical signal comprising an inphase signal and a quadrature signal, and each configured to modulate the inphase signal and quadrature signal based on one of a plurality of local oscillator signals to output a multiplexed signal. Each of the plurality of local oscillator signals is supplied by a respective one of a plurality of local oscillator circuits. A modulator circuit is configured to modulate a carrier optical signal from a laser having a frequency ωc based on the multiplexed signal to generate a modulated optical signal centered at frequency ωc and comprising a plurality of subcarriers. A center frequency of each of the plurality of subcarriers is offset from ωc by a frequency of said one of the plurality of local oscillator signals.
US11855753B2

A wireless telecommunication system includes base stations for communicating with terminal devices. One or more base stations support a power boost operating mode in which a base station's available transmission power is concentrated in a subset of its available transmission resources to provide enhanced transmission powers as compared to transmission powers on these transmission resources when the base station is not operating in the power boost mode. A base station establishes an extent to which one or more base stations in the wireless telecommunications system support the power boost operating mode conveys an indication of this to a terminal device. The terminal device receives the indication and uses the corresponding information to control its acquisition of a base station of the wireless telecommunication system, for example by taking account of which base stations support power boosting and/or when power boosting is supported during a cell attach procedure.
US11855742B2

A playset comprises a near field communication extending system. The near field communication extending comprises a main antenna and a plurality of extending antennas. The main antenna is positioned at a first location of the playset and configured to wirelessly communicate to a near field communication device of a mobile device. The plurality of extending antennas is positioned at a plurality of different locations in an interior of the playset. Each of the plurality of extending antennas is connectable to the main antenna via a plurality of connection elements. The playset further comprises an antenna switching mechanism coupled to the plurality of extending antennas via a plurality of connection elements. The antenna switching mechanism is configured to switchably couple the main antenna with each of the plurality of extending antennas.
US11855741B2

An origination device transmits a “received data signal” to a signal forwarding device. The “received data signal” comprises a first set of data. The origination device also transmits at least one “received control signal” to the signal forwarding device and to a destination device. The at least one “received control signal” comprises a first set of control information and a second set of control information. The first and second sets of control information are both associated with the first set of data. The first set of control information contains instructions pertaining to the signal forwarding device processing the first set of data. The second set of control information contains instructions pertaining to the destination device processing the first set of data. The signal forwarding device transmits a “forwarded signal” to the destination device. The “forwarded signal” contains forwarded data, based on the first set of data.
US11855736B2

Methods, systems, and devices for wireless communications are described. A wireless device may identify a resource for wireless communication, the resource being in a first state where the resource is active for wireless communication and is inactive for a communication failure recovery procedure. The wireless device may determine that a communication failure has occurred during a first communication period. In some cases, one or more techniques for confirming the communication failure may be used to verify the failure. The wireless device may transition during a second communication period and based at least in part on the communication failure, the resource to a second state where the resource is inactive for wireless communication and is active for the communication failure recovery procedure. The wireless device may perform the communication failure recovery procedure using the resource transitioned to the second state.
US11855734B2

The present disclosure provides a beam failure processing method and a related device. The method includes: determining, based on a beam failure detection reference signal BFD RS resource group, whether a beam failure occurs in a first cell group, where the BFD RS resource group is configured in a first cell group; and sending a beam failure recovery request message to a network side device in a case that a beam failure occurs in the first cell group.
US11855730B2

The disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data rate after a 4th generation (4G) communication systems such as long term evolution (LTE). The disclosure is for reconstructing a downlink channel in a wireless communication system. An operation method for a base station is provided. The operation method includes the steps of transmitting downlink reference signals (RSs) to a terminal, receiving an indication of a first channel matrix estimated by the terminal and at least one uplink RS; estimating a second channel matrix on the basis of the at least one uplink RS, and on the basis of the first channel matrix and the second channel matrix, reconstructing channel information to be used for data transmission.
US11855720B2

A system and a method are disclosed for normalizing Log-Likelihood Ratios for bits of a transport block. For a narrowband channel estimation (NBCE), a normalization factor is selected based on an estimated delay spread, a cyclic prefix, an estimated Doppler spread, a rank, a modulation and coding scheme (MCS) and a signal-to-noise ratio (SNR) for the transport block, and an input LLRin for the individual bits of the transport block are scaled to respectively form an output LLRout for the individual bits of the transport block using the normalization factor. For a wideband channel estimation, a normalization factor is selected based on the rank/MCS/SNR of the transport block, and the input LLRin for the individual bits of the transport block are scaled to respectively form the output LLRout for the individual bits of the transport block using the normalization factor.
US11855719B2

Example embodiments of the present disclosure relate to a transmitter, method, apparatus and computer readable storage medium for quantized precoding in a massive multiple-input multiple-output (MIMO) system. In example embodiments, a transmitter determines a normalized factor for precoding of a plurality of signals intended for a plurality of receivers. The first device precodes the plurality of intended signals using the normalized factor by iteratively performing acts. The acts include determining, by using the normalized factor, a descending direction of a difference between the plurality of intended signals and corresponding signals received at the plurality of receivers, a descending rate of the difference being above a threshold rate in the descending direction, and determining a plurality of precoded signals based on the descending direction. Then, the first device quantizes the plurality of precoded signals for transmission by the transmitter to the plurality of receivers.
US11855715B2

Apparatuses, systems, and methods for multi-TRP by a UE, including out of order delivery of PDSCH, PUSCH, and/or DL ACK/NACK. The UE may receive, from a base station, a configuration that may include multiple control resource set (CORESET) pools and each CORESET pool may be associated with an index value. The UE may determine that at least two DCIs of the multiple DCIs end at a common symbol and determine, based on one or more predetermined rules, when the UE may be scheduled to receive PDSCHs, transmit PUSCHs, and/or transmit ACK/NACKs from CORESETs associated with the at least two DCIs.
US11855712B2

A method of powering a controller using an intermediate device with power from an environmental system may include receiving current from a power wire from the environmental system; passing the current from the power wire to a second command wire from the controller; monitoring the current flowing between the power wire and the second command wire while the current is below a threshold indicative of an amount of current used to power the controller from the environmental system; detecting when the current flowing between the power wire and the second command wire exceeds the threshold indicating that the controller is sending a command to the environmental system to perform the function; and sending a command to environmental system using a first command wire from the environmental system after detecting that the current exceeds the threshold.
US11855708B2

Techniques and apparatus for determining quality of experience (QoE) for wireless communications are described. One technique involves transmitting a QoE support message to an access point (AP) within an access network. The QoE support message queries whether the AP supports providing key performance indicators (KPI(s)) indicative of QoE provided by the access network. An indication of whether the AP supports providing the KPI(s) is received in response to the QoE support message. The KPI(s) are received when the AP supports providing the KPI(s). A determination is made whether to communicate with the AP based at least in part on the KPI(s). Communications are then performed in accordance with the determination.
US11855693B2

Systems and methods to transmit audio-video signals over an optical communication channel are described. One aspect includes receiving a plurality of audio-video electrical signals at an optical transmitter. The optical transmitter may also receive a plurality of out-of-band electrical signals. The optical transmitter may collectively modulate the audio-video electrical signals to generate a composite electrical signal. In one aspect, the optical transmitter bias current-modulates a bias current level of the composite electrical signal using the electrical out-of-band signals, and generates a modulated electrical signal based on the bias current-modulating. The optical transmitter may convert the modulated electrical signal into a modulated optical signal using a laser diode, and transmit the modulated optical signal to an optical receiver over an optical communication channel.
US11855689B1

A routing method includes: determining a path quality between a first node and each of second nodes in a service to be transmitted through a path quality evaluation model; where, the second node is one next-hop node of the first node; and the path quality evaluation model is constructed according to a signal-to-noise ratio SNR and an ambient temperature change; determining an optimal next-hop node from second nodes according to the path quality; updating a Q table of the first node according to the optimal next-hop node; taking the optimal next-hop node as a new first node; returning to the step of determining a path quality between a first node and each of second nodes until the new first node is a destination node of the service to be transmitted; and determining a transmission path of the service to be transmitted according to the Q table.
US11855688B1

Techniques for identifying sources of degradations within a PON include detecting a degradation pertaining to a segment of the PON and comparing the drift over time of an optical profile of the segment with respective drifts over time of optical profiles of one or more other PON segments, where pairs of segments share respective common endpoints and an optical profile of a segment corresponds to the characteristics of optical signals delivered over the segment (e.g., attenuation, changes in frequencies, changes in power outputs, etc.). The differences between the compared drift(s) over time are utilized to narrow down the candidate components (e.g., segment endpoints, optical fibers, etc.) for the source of the degradation, and may be utilized to particularly identify a particular endpoint or optical fiber as being the source. The source of the degradation may or may not be a component of the segment to which the degradation pertained.
US11855686B2

According to certain embodiments, an electronic device comprises: a wireless communication module configured to support ultra-wide band (UWB) communication; and at least one processor operatively connected with the wireless communication module, wherein the at least one processor is configured to: set the wireless communication module to a wake-up state; when a given number of first ranging response messages (RRMs) are received from second external electronic devices after receiving a first ranging initiation message (RIM) from a first external electronic device in a RIM slot of a first ranging round, set the wireless communication module to a sleep state after receiving a first ranging final message (RFM) from the first external electronic device in a RFM slot of the first ranging round until a RIM slot of a second ranging round is reached after the first ranging round; set the wireless communication module to the wake-up state in the RIM slot in the second ranging round; and set the wireless communication module to the sleep state if a second RIM is not received from a third external electronic device in the RIM slot in the second ranging round.
US11855683B2

A configurable acquisition engine for direct sequence (DS) spread spectrum (SS) is provided that is reconfigurable without increasing memory size for several use cases having different time-frequency uncertainties. The acquisition engine utilizes a frequency-domain decimation filter to reduce the number of output frequency points while still utilizing information from all frequency bins.
US11855678B2

Amplification of received signals in the first and second frequency bands is activated in the absence of a transmission signal in the circuit arrangement in both the first frequency band and the second frequency band. In response to a detection of a transmission signal in the circuit arrangement, the detected transmission signal is checked as to whether the detected transmission signal can be unambiguously assigned to the first frequency band or the second frequency band. If the check reveals that the detected transmission signal cannot be unambiguously assigned to the first frequency band or the second frequency band, a first transmission amplifier path for amplifying the transmission signal in the first frequency band and a first receiving amplifier path for amplifying received signals in the first frequency band are activated.
US11855670B2

A system that incorporates aspects of the subject disclosure may perform operations including, for example, obtaining uplink information associated with a downlink path, wherein the uplink information includes operational parameters used by a plurality of communication devices for transmitting wireless signals on a plurality of uplink paths; performing, based on the uplink information, a plurality of measurements of the plurality of uplink paths; identifying a measurement from the plurality of measurements that is below a threshold, thereby indicating an affected uplink path of the plurality of uplink paths; initiating a first filtering of the affected uplink path, wherein the initiating is based on the identifying and wherein the first filtering is based upon one or more first filtering parameters; and receiving instructions comprising one or more updated filtering parameters, wherein the instructions are received by the system at a port of the system. Other embodiments are disclosed.
US11855669B2

A method for cancelling radio frequency interference (RFI) and a communication system thereof are provided. In the communication system, digital signals of a frequency domain are converted from analog signals and received by the communication system generally carry RFI, and the signals are processed by an equalizer and a far-end crosstalk canceller. Then, for preventing erroneous signals from forming due to an occurrence of a notch, masking parameters applied to the equalizer and the far-end crosstalk canceller are modified for not processing frequency bands that are RFI-affected. The frequency bands can be ignored by masking corresponding bins in the frequency domain after a fast Fourier transformation. The signals processed by the equalizer and the far-end crosstalk canceller are then outputted to an RFI canceller, and the signals with RFI cancellation can be obtained.
US11855667B2

Methods and devices for radio frequency (RF) loopback for transceivers are described. A transceiver for communicating RF signals with a target device may transmit signals at a transmit frequency and receive signals at a (different) receive frequency. The transceiver may include a waveguide diplexer for separating and combining signals based on frequency. The transceiver may be configured to couple a loopback signal from a common port of the waveguide diplexer; the loopback signal may be based on a transmit signal. The transceiver may include a loopback translator to translate the loopback signal from the transmit frequency to the receive frequency and provide the translated loopback signal to a receiver used for receiving signals from the target device. The receiver may compare the translated loopback signal with a representation of the transmit signal to generate a compensation signal. A transmitter may use the compensation signal to adjust subsequent transmit signals.
US11855663B2

The radio frequency front-end systems herein include modules having bandwidth controllable components, such as amplifier and filters. By implementing the modules with bandwidth control, the same module can be used for operation of multiple frequency bands including a first frequency band and a second frequency band. Thus, when implementing features such as carrier aggregation, multiple-input multiple-output (MIMO), and/or sounding resource signaling (SRS) for supporting the multiple frequency bands, the total number of modules used can be reduced and/or additional feature support can be provided compared to an implementation in which each module supports a single frequency band.
US11855657B2

The present disclosure relates to a method and an apparatus for decoding data packets in communication network. The method comprises receiving one or more data packets related to each of one or more data types; and decoding the one or more data packets using a parity check matrix associated with the corresponding data type, wherein the parity check matrix comprises a plurality of layers, arranged according to a combination of layers which is determined using a reinforcement model.
US11855654B2

A successive approximation analog-to-digital converter includes a digital-to-analog converter DAC configured to receive a digital signal. First conversion units of the DAC are configured to sample an analog signal via a first switch and provide a first level voltage. Each first conversion unit includes a first capacitor array and a first switch array controlled from the digital signal. A single second conversion unit of the DAC is configured to provide a second level voltage. The second conversion unit includes a second capacitor array and a second switch array. A comparator operates to compare each of the first level voltages to the second level voltage and to provide a comparison signal based on each comparison and actuation of a set of third switches. A control circuit closes the first switches simultaneously and closes the third switches successively for the conversion of each sampled analog signal.
US11855651B2

A multi-stage pipelined Analog-to-Digital Converter (ADC) has an offset correction circuit embedded in the residue amplifier between stages. The offset corrector has a low-pass filter that filters the output of the residue amplifier, and the filtered offset is amplified and stored on an offset capacitor during an autozeroing phase of the residue amplifier. During an amplify phase of the residue amplifier, switches disconnect the amplifier from the offset capacitor and instead ground the input of the offset capacitor, and other switches connect the output terminal of the offset capacitor to the input of the residue amplifier. The offset stored on the offset capacitor is combined with the residue voltage from the first ADC stage's capacitor array and applied to an input of the residue amplifier to effectively subtract the detected offset. Two offset capacitors and sets of switches can be used to implement a differential offset corrector.
US11855645B2

Aspects of the present disclosure related to a method of duty-cycle distortion compensation in a system including a clock generator configured to generate a clock signal. The method includes measuring one or more parameters of the clock signal, determining a duty-cycle adjustment based on the measured one or more parameters, and adjusting a duty cycle of the clock signal based on the determined duty-cycle adjustment.
US11855641B2

A resistor network with reduced area and/or improved voltage resolution and methods of designing and operating the same are provided. Generally, the resistor network includes a resistor ladder with a first number (n) of integrated resistors coupled in series between a top and a bottom contact, with one or more contacts coupled between adjacent resistors. A second number of integrated resistors is coupled in parallel between the top and bottom contacts, and a third number of integrated resistors is coupled in series between the second integrated resistors and either the top or the bottom contact. Each of the integrated resistors has a resistance of R, and a voltage developed across each resistor in the resistor ladder is equal to a voltage applied between the top and bottom contacts divided by n. Where the second number is n−1, and the third number is 1, the total number of resistors is 2n.
US11855616B2

An integrated circuit, a control method, and a system are provided, to improve reliability of the integrated circuit. The integrated circuit mainly includes a power supply pin, a configuration pin, a switchable pull-up resistor, and a control unit. The integrated circuit can provide a control signal for a target chip using the configuration pin of the integrated circuit. In the integrated circuit, a first end of the switchable pull-up resistor is connected to the power supply pin, a second end of the switchable pull-up resistor is connected to the configuration pin, and a control end of the switchable pull-up resistor is connected to the control unit. The power supply pin can receive a power supply voltage of the integrated circuit.
US11855613B2

A post-driver with low voltage operation and electrostatic discharge protection. In one embodiment, a post-driver structure includes a drive unit including a pull-up driver and a pull-down driver, a pad connected to an external resistance, and an output node connected between the pull-up driver and the pull-down driver, the output node configured to connect to a comparator for impedance calibration of the drive unit. The post-driver structure also includes an operational amplifier connected to a first transistor and the pad in a closed loop configuration, the operational amplifier further connected to a second transistor to form a current mirror circuit between the operational amplifier and the drive unit, wherein the current mirror circuit replicates a voltage at the pad with a voltage at the output node for the impedance calibration.
US11855603B2

Methods of manufacturing an acoustic wave device are disclosed. An anti-reflection layer can be formed over a conductive layer that is over a piezoelectric layer. The conductive layer can include aluminum, for example. The anti-reflection layer can remain distinct from the conductive layer after a heating process. A photolithography process can pattern an interdigital transducer of the acoustic wave device from one or more interdigital transducer electrode layers that include the conductive layer. The anti-reflection layer can reduce reflection from the conductive layer during the photolithography process.
US11855593B2

A method for isolating transmission lines of a radio frequency power amplifier and a transmission structure of the radio frequency power amplifier are provided. The method includes steps of setting a distance between adjacent two of transmission lines on a chip substrate to be greater than 2.5 times a width of each of the transmission lines, and disposing shielding lines at an inner side of each of the transmission lines and an outer side of each of the transmission lines opposite to the inner side; wrapping a permalloy layer on an outer wall of each of the transmission lines; and wrapping an aluminum layer on an outer wall of the permalloy layer, defining a plurality of grooves on an outer wall of the aluminum layer at intervals, where the plurality of the grooves are recessed inward and in an inverted triangular structure.
US11855592B2

A switched mode amplifier system may include a switched mode amplifier having an amplifier input coupled to an output of an analog integrator and an amplifier output and include a calibration system. The calibration system may be configured to force the input of the analog integrator to a fixed known input value, force the amplifier output to a fixed known duty cycle, measure an analog signal generated at the output of the analog integrator in response to forcing the input of the analog integrator to the fixed value, determine an offset of the switched mode amplifier system based on the analog signal, and correct for the offset.
US11855587B2

A power amplifier circuit includes an amplifier transistor that amplifies an input signal, a resistance element coupled in series with the base of the amplifier transistor, a bias transistor that supplies a bias current from the emitter or the source of the bias transistor to the base of the amplifier transistor through the resistance element, and a feedback circuit that changes a base or gate voltage of the bias transistor to follow a change in the bias current supplied to the base of the amplifier transistor.
US11855585B2

A device for receiving and demodulating an amplitude-modulated RF signal, comprising: a first antenna; a first amplifier coupled to the first antenna; a receiving module including: a) a second antenna; b) a second amplifier coupled to the second antenna; c) a phase-shifter coupled to the second amplifier and applying a phase-shift Φ; d) a mixer comprising inputs coupled to the phase-shifter and to the first amplifier, and outputting a product of signals received at the input, and wherein the value of the phase-shift Φ is such that the device performs a demodulation of the RF signal when a wavefront of the RF signal forms, with an axis of alignment of the antennas, an angle α having a particular value a which depends on the phase-shift Φ and on a distance between the antennas.
US11855583B2

A system for a solar-powered protective car charging cover. The solar-powered car charging cover is designed to directly trickle charge electric cars by bypassing the internal charging power supply whilst also providing a protective barrier around the vehicle. This trickle charge provides enough power for charging cellular phones, powering lights, and other small electronics without further draining the battery and may even produce a net-positive charge to charge the vehicle's batteries. The barrier portion is a multi-layer cover with an adjustable-rigid air bladder layer sandwiched between an outer solar-panel layer and an inner vehicle paint protection layer. Zippered portions provide multiple configurations including using the solar-powered car charging cover without a vehicle for a make-shift tent with solar-powered charging ports. A power control box provides the means to connect external power sources to the solar-powered car charging cover.
US11855579B2

According to one embodiment, a power generation element includes a first conductive region including a first surface, a plurality of second conductive regions, and a plurality of insulating structure regions. The second conductive regions are arranged along the first surface. A gap is provided between the second conductive regions and the first surface. One of the structure regions is provided between one of the second conductive regions and the first surface. An other one of the structure regions is provided between an other one of the second conductive regions and the first surface.
US11855574B2

A control device includes first and second input terminals to which a DC voltage for driving a motor is input, and a control unit. The control unit sets a rotation direction of the motor based on first input to the first input terminal or the second input terminal. A rotation speed of the motor is changed based on a subsequence input of the DC voltage.
US11855570B2

This motor device includes: a motor having components including a stator and a rotor; and a controlling circuitry to control the motor. The motor is provided with temperature sensors to detect a heat transfer amount and a transfer direction about the components. The controlling circuitry includes a temperature calculator to calculate a component temperature based on a thermal circuit network from thermal resistances and heat capacities given for the components. On the basis of actual measured values of the heat transfer amount and the transfer direction obtained by the temperature sensors, the temperature calculator corrects thermal resistances and heat capacities about the components obtained on the basis of the thermal circuit network, and estimates the temperature of each component during driving of the motor.
US11855561B2

A motor control determines if a motor is rotating at steady state velocity and then populates a table with information about each individual motor sector. At steady state velocity, the duration of the motor within an electrical sector is measured. The duration of the complete mechanical rotation of the motor is determined. The controller determines a ratio of the measured duration of the sector to a duration of a complete mechanical rotation of the motor. The ratio of sector duration to rotation duration is stored in a table. The controller is configured for controlling the motor using the table values.
US11855544B2

A synchronous average harmonic current controller is used to simultaneously control line load current and switching transformer current for a resonant power converter. The controller takes its feedback input from a current command and a bridge current sensor which measures total current flowing between the bridge switching nodes. The controller is implemented using an inverting switched capacitor filter. The filter switches two capacitors across the output and inverting node of an error amplifier to integrate and compensate current error synchronously over each half of the fundamental period. The superimposed non-modulated common and modulated difference feedback signals apply duty cycle and phase control which reduces the synchronous average error current. As a result of synchronous average current control of the line load and transformer currents, the primary and secondary bridge have a defined voltage relationship which is straightforward to regulate.
US11855541B2

A plurality of power conversion units each include an inductor, a switching circuit, and a PWM control IC. An MPU outputs control signals to the plurality of power conversion units. Output parts of the plurality of power conversion units are connected to an output terminal in a parallel manner. Operating number signal generating circuits of feedback signal generating circuits generate an operating number signal Sop on the basis of individual current signals based on inductor currents in the plurality of power conversion units, and output the operating number signal to the MPU. The MPU sets operations of the plurality of power conversion units on the basis of the operating number signal, and outputs the control signals including the settings of the operations of the power conversion units.
US11855533B2

A power supply device communicable with a system and a method for supplying power to a system through a switch thereof are disclosed. The power supply device includes a switch, a microcontroller unit and a control circuit, and supplies power to the system through the switch. The microcontroller unit provides a first operating voltage to the switch through a first pin, and performs a firmware update procedure when the power supply device communicates with the system. The control circuit is coupled to the switch, and transmits a second operating voltage to the switch. When the microcontroller unit performs the firmware update procedure, the control circuit turns on the switch at least according to the second operating voltage, so that the power supply device does not stop supplying power to the system.
US11855532B2

Circuits/methods for controlling the startup of multiple parallel power converters that avoid inrush current or switch overstress in an added power converter or a power converter having fault conditions. Embodiments include node status detectors coupled to nodes within parallel-connected power converters to monitor voltage/current and configured in some embodiments to work in parallel with an output status detector measuring the startup output voltage of a power converter. With charge pump-based power converters, the node status detectors ensure that the power converter pump capacitors are charged while the output capacitor is charged as well. For such embodiments, a softstart period of startup may be considered finished if both the shared output capacitors and the power converter pump capacitors are charged to target values. Embodiments may also be used for fault detection during steady-state operation.
US11855521B2

A power tool is provided including a housing including a grip portion; and a brushless direct-current (BLDC) motor at least partially disposed within the grip portion of the housing. The motor includes a stator having a rotor core, a rotor, and front and rear bearing support structures. The stator core includes a non-segmented construction with a maximum diameter of approximately smaller than or equal to 34 mm, and a ratio of a motor size (Km) constant of the motor to a length of the motor is in the range of approximately 0.39 to 0.59 (Nmm/√W)/mm. When powered by a 20 V battery pack, a ratio of a maximum power output of the motor to a volume of the motor is at least approximately 0.0106 W/mm{circumflex over ( )}3.
US11855513B2

The invention relates to an electric drive (10), in particular an electric motor of an engine-cooling fan or of an ABS/ESP of a motor vehicle, comprising an electric connector (22) and a housing (12), in the interior (14) of which a drive assembly (16) is arranged. The electric connector (22) has at least one electric line (41) contacting the drive assembly (16), an opening (20) is formed on the housing (12) for guiding through the electric line (41), and a seal (24) is arranged in the region of the housing opening (20). The electric line (41) has a first portion (50) and a second portion (52), the first portion (50) having a conductor (44) mid a sheath (48) encasing the conductor (44), and the second portion (52) being formed as an exposed conductor (44), the electric connector (22) having a sleeve-like element (42) in which the second portion (52) is arranged at least in part. According to the invention, the sleeve-like element (42) is connected in a fluid-tight manner to the second portion (52) and the seal (24) bears at least partially against the sleeve-like element (42), and the electric conductor (22) in the direction of its extent (54) is fluid-tight with respect to the housing interior (14) in the region of the sleeve-like element (42).
US11855504B2

The present invention provides a motor comprising: a shaft; a rotor coupled to the shaft; a stator arranged on the outer side of the rotor; and a terminal arranged on the stator. The stator comprises: a stator core; an insulator coupled to the stator core; and a coil wound on the insulator, wherein the insulator comprises a body on which the coil is wound, and a connector connected to the body. The terminal comprises: an extension arranged in the circumferential direction of the insulator, a pin portion at an end of the extension, and a hook portion at the opposite end of the extension. The coil comprises one continuous wire. The body comprises a first body and a second body, the coil being wound on the first body, passing through the hook portion, and wound on the second body. The hook portion is electrically connected to a portion of the coil, wherein the portion passes through the hook portion.
US11855503B2

A motor-driven compressor includes a plurality of motor wires and an insulating terminal container. The motor wires include portions covered with an insulating tube and distal ends at which a connection terminal is provided. The terminal container includes a cluster block and a terminal holder. The cluster block accommodates the connection terminal and has an opening. The terminal holder holds the connection terminal and has a lid that closes the opening. The cluster block includes a base portion. The lid has a cutout that receives the tube. The lid is in contact with the base portion such that a part of a hole defined by the cutout is closed by the base portion.
US11855501B2

An insulating composition having a polymer resin, a nanoclay, and one or more nanofillers. The insulating composition has a thermal conductivity of greater than about 0.8 W/mK, a dielectric constant of less than about 5, a dissipation factor of less than about 3%, and a breakdown strength of greater than about 1,000 V/mil. The insulating composition has an endurance life of at least 400 hours at 310 volts per mil.
US11855499B2

A voltage balanced winding for a stator of an electric machine with a high number of pole pairs is distributed over several circumferential sections and several radial layers of the stator. The winding consists of at least two phases and each phase of the winding comprises a plurality of conductor segments, one conductor segment for each layer in each sector. Each of the conductor segments comprises a plurality of straight conductor portions arranged in an axial direction of the stator and a plurality of end-windings connecting the straight conductor portions to a wave pattern. The voltage balanced winding is characterized in that the plurality of conductor segments is divided into branches of series connected conductor segments, wherein each branch includes at least D conductor segments selected from D different sections d and D different layers j such that (j+d) mod D equals a predefined number, with D being the number of circumferential sections. At least a first conductor segment of layer j1 and sector d1 and a second conductor segment of layer j2 and sector d2 with j1+d1=j2+d2 are integrally formed as an uninterrupted conductor segment.
US11855488B2

A motor rotor structure including a rotor core. Multiple first permanent magnet slots are disposed in the rotor core in a circumferential direction. At least one second permanent magnet slot is disposed between every two adjacent first permanent magnet slots; each of the first permanent magnet slots and an adjacent second permanent magnet slot thereof are spaced a preset distance apart. Between two kinds of permanent magnets having different coercivities, a first kind of permanent magnet is mounted in each of the first permanent magnet slots and a second kind of permanent magnet is mounted in the second permanent magnet slot. When identical polarities of adjacent two kinds of permanent magnets having different coercivities face each other, the rotor core is in a more-magnetic-pole state. When contrary polarities of adjacent two kinds of permanent magnets having different coercivities face each other, the rotor core is in a fewer-magnetic-pole state.
US11855484B2

A rotor assembly for an axial flux machine may include at least one magnet and first and second support structures. The first support structure may be configured to have the at least one magnet attached thereto and to provide a flux return path for the at least one magnet. The second support structure may be configured to be attached to the first support structure so as to allow torque to be transferred between the at least one magnet and the second support structure via the first support structure, and may be further configured (A) to be attached to a rotatable shaft of the axial flux machine, or (B) to function as an output or input flange of the axial flux machine.
US11855482B2

The present disclosure provides energy control systems for whole home and partial home backup with integrated breaker spaces and metering. The energy control system includes a grid interconnection electrically coupled to a utility grid, a backup power interconnection electrically coupled to a backup power source, a backup load interconnection electrically coupled to at least one backup load, and a non-backup load interconnection electrically coupled to at least one non-backup load. The energy control system includes a microgrid interconnection device that switches between an on-grid mode to electrically connect the grid interconnection and the backup power interconnection with the backup and non-backup load interconnections and a backup mode to electrically disconnect the grid interconnection and the non-backup load interconnection from the backup power interconnection.
US11855481B2

An electronic device includes a battery, a plurality of capacitors, a converter that receives power from the battery and charges each of the plurality of capacitors to different voltages based on the power, a plurality of switches that switch a first path and a second path of each of the plurality of capacitors, and a controller. The controller selects a first switch among the plurality of switches based on a received signal, and controls the first switch such that a path of a capacitor connected to the first switch is switched from the first path to the second path, and the first path is a path which electrically connects each of the plurality of capacitors to the converter, the second path is a path which electrically connects each of the plurality of capacitors and a power amplifier (PA).
US11855478B2

A secondary power system is configured to connect to a motor vehicle having a powertrain comprising an engine and a first alternator. The secondary power system includes a second alternator connected to the engine, one or more electro-chemical storage devices coupled to the second alternator and configured to be charged by the alternator, and one or more inverter chargers. The inverter chargers may operate in a first mode to provide AC power to loads on the vehicle or in a second mode to receive alternative power and charge the storage devices. In an embodiment, the secondary power system includes multiple storage devices each comprising at least one electro-chemical storage pack and a logic. The storage devices are interconnected by a junction box. The logics within each storage device may selectively disrupt power flow from the junction box upon detection of an error condition.
US11855476B2

A charger and a control method are disclosed. A charger according to an embodiment of the present disclosure includes a transceiver configured to obtain, from a battery of a cleaner, temperature information of the battery, and a processor configured to apply power to the battery based on the temperature information transmitted from the transceiver, wherein the processor applies a pulse wave of a first period to the battery when the temperature of the battery is measured within a predetermined first section. Accordingly, even if the temperature of the battery is outside the charge allowance range due to the discharge of the battery built in the cleaner, the battery can be charged more quickly, thereby reducing the total time required for charging the battery.
US11855467B2

A power supply circuit includes a load cable connecting a first battery and a first load; a load cable connecting a second battery and a second load; a transistor provided between a first generator and the load cable; and a transistor provided between the first generator and the load cable, wherein the transistors are turned OFF in a case where power is to be supplied from the first generator to the first load and second load.
US11855466B2

A battery charging cable can be connected to a power supplying device and supply electricity to, and thereby charge, the battery of another device when the battery is low in power. The battery charging cable includes a USB Type-C connector at one end and a positive-electrode clamp and a negative-electrode clamp at the other end, wherein the clamps can be respectively clamped to the positive and negative electrodes of the battery of a device to be charged. With the battery charging cable supporting a USB Power Delivery protocol, and the USB Type-C connector configured to provide a relatively high voltage and power, the battery charging cable provides overload protection and has great power transmission performance.
US11855465B1

A full current balancing method of SOC for an energy storage system is provided. DC output terminals of each battery pack are connected in parallel with a half-bridge control circuit to form a battery module, positive and negative electrodes of battery modules are successively connected in series to form a battery cluster. In operation, SOCs of the battery modules are sorted, battery modules with lower SOCs are put in operation first when charging, and the battery modules with higher SOCs are put in operation first when discharging, thereby achieving full current balancing of SOC among the battery packs in the battery cluster. After multiple battery clusters are connected in parallel to form a battery stack, current of the battery cluster with a low SOC is increased, and current of the battery cluster with a high SOC is decreased, thereby achieving balancing of SOC among the battery clusters.
US11855461B1

The disclosed apparatus may include unmanned aerial vehicle having (1) a flight system that causes movement and hovering of the unmanned aerial vehicle, (2) a coupling mechanism that interacts with a corresponding coupling mechanism of an electronic device for carrying the electronic device from a remote location to a mount of an infrastructure component, and (3) an extension mechanism connecting the coupling mechanism to the flight system, wherein the extension mechanism dynamically extends the coupling mechanism from the flight system to facilitate installation of the electronic device to the mount while the unmanned aerial vehicle hovers. Various other apparatuses, devices, and methods are also disclosed.
US11855449B2

A lightning protection apparatus disposed in a photovoltaic power generation system includes first lightning protection units in a one-to-one correspondence with phase lines at a to-be-protected location in the photovoltaic power generation system and a second lightning protection unit connected in series to the first lightning protection units. A first terminal of each first lightning protection unit is connected to a corresponding to-be-protected phase line, and a second terminal of each first lightning protection unit is connected to a first terminal of the second lightning protection unit. A second terminal of the second lightning protection unit is connected to an earth wire. The second lightning protection unit includes at least one gas discharge tube.
US11855447B2

A downhole power supply and method for supplying downhole power are disclosed. In some embodiments a downhole power supply includes a source power supply including a supply cable coupled to an electric energy source. The downhole power supply further includes at least one downhole distribution network to which the supply cable is configured to couple the electric energy source. The at least one downhole distribution network includes, multiple load supplies providing regulated power levels to multiple downhole loads and a network controller configured to individually connect and disconnect each of the load supplies in response to a failure within the downhole distribution network.
US11855443B2

Provided in this disclosure is a control system and method that monitors current in a spreader motor to accurately detect a mechanical overload condition. The invention distinguishes between a short duration high current transient spike caused by sparking of brushes in the DC motor, and a long duration continuous high current caused by a mechanical overload condition in the DC motor. The control system momentarily deactivates and reactivates the motor. If high current is no longer detected, the control system construes this as a transient spike and no fault condition is indicated. If high current persists, the control system construes this as an actual overload condition, and a fault condition is indicated to the operator. In this manner, a selected default current level can be established in the control system which can be selectively reestablished if conditions within the device change over time.
US11855438B2

A multi-circuit DC breaking system is proposed. According to an exemplary embodiment of the present technique, there may be an advantage that by combining current-limiting technology and multi-circuit breaking technology, a failure may be quickly detected, a magnitude of a fault current may be firstly limited, and a breaking operation is performed, in a range of various fault currents, by distributing the fault currents to some circuits of multi-circuits configured in parallel, thereby easily increasing the capacity thereof.
US11855437B2

An electrical receptacle contains a plug outlet that has a pair of contacts for electrical connection to respective hot and neutral power lines. A controlled switch, such as a TRIAC, is connected in series relationship between the outlet contact and the hot power line. Sensors in the receptacle outputs signals to a processor having an output coupled to the control terminal of the controlled switch. The processor outputs an activation signal or a deactivation signal to the controlled switch in response to received sensor signals that are indicative of conditions relative to the first and second contacts.
US11855435B2

Systems and methods for tripping open circuit interrupters based on the detection of an arc flash using an accessory arc flash detection module are disclosed. The housing of the arc flash detection module is structured to be installed within the frame of a circuit interrupter. The detection module communicates with light sensors structured to detect light from arc flash events, and includes a controller configured to communicate with an electronic trip unit of the circuit interrupter. In one embodiment, the detection module is configured to alert the electronic trip unit that light indicative of arc flash conditions has been detected such that the electronic trip unit can determine whether or not to initiate a trip after determining the magnitude of current flowing through the circuit interrupter. In another embodiment, the detection module is configured to directly actuate a trip of the circuit interrupter based on the detection of light.
US11855434B2

The present disclosure is related to providing an overhead transmission line spacer which can suppress galloping caused by strong wind in the three-conductor transmission line formed of three overhead transmission lines. An overhead transmission line spacer comprising: three clamps configured to individually hold three overhead transmission lines; and a frame body including support members and a frame portion, and configured to maintain separations between the three overhead transmission lines via the three clamps, the clamps being attached to the support members, and the frame portion maintaining separations between the support members, wherein two out of the three clamps are movable clamps, each of which is configured to hold one of the overhead transmission lines in a rotatable manner about the one of the overhead transmission lines, and one out of the three clamps is a fixed clamp configured to hold one of the overhead transmission lines without allowing rotation.
US11855430B2

The invention relates to a junction box (10) with a base part (20) and a cover part (30) arranged pivotably on the base part (20), wherein a spring element (40) is arranged between the base part (20) and the cover part (30), which is preloaded in such a way that it transfers the cover part (30) from an open position to a closed position, wherein a locking element (50) is arranged on the junction box (10), which element is movable between a first position and a second position, and which in the first position locks the cover part (20) against the spring force of the spring element (40) in the open position and allows the cover part (20) to be transferred from the open position to the closed position in the second position.
US11855422B2

A cable gland includes a cavity having first and second axial ends and configured to receive one or more conductors and a curable liquid therein, and an internal dam. The internal dam is adjacent the second axial end of the cavity. The internal dam includes an annular filament holder and a plurality of filaments secured to and extending radially inward from the annular filament holder to receive the one or more conductors to inhibit curable liquid from flowing through the dam and between the dam and the one or more conductors of a cable.
US11855420B1

Methods and apparatus can be used to turn an existing 240 VAC or 480 VAC/600 VAC outlet into two or more time-sharing, i.e., one operating at a time, outlets. An AC switch box with two time-sharing outlets can be made with either a mechanical switch for switching which load receives power, or automatically, by a microcomputer system, for example. In the automatic AC switch box, the non-favored outlet may be typically powered on unless a load is detected at the favored/default outlet, when power to the non-favored outlet is automatically disconnected until the load is reduced or eliminated.
US11855411B2

In one embodiment, a nanobeam cavity device includes an elongated waveguide having a central optical cavity, first and second lateral substrates that are positioned on opposed lateral sides of the waveguide, and carrier-injection beams that extend from the first and second lateral substrates to the central optical cavity of the elongated waveguide.
US11855406B2

Gaseous laser systems and related techniques are disclosed. Techniques disclosed herein may be utilized, in accordance with some embodiments, in providing a gaseous laser system with a configuration that provides (A) pump illumination with distinct edge surfaces for an extended depth and (B) an output beam illumination from a resonator cavity with distinct edges in its reflectivity profile, thereby providing (C) pump beam and output beam illumination on a volume so that the distinct edge surfaces of its pump and beam illumination are shared-edge surfaces with (D) further edge surfaces of the amplifier volume at the surfaces illuminated directly by the pump or output beams, as defined by optical windows and (optionally) by one or more flowing gas curtains depleted of the alkali vapor flowing along those optical windows. Techniques disclosed herein may be implemented, for example, in a diode-pumped alkali laser (DPAL) system, in accordance with some embodiments.
US11855402B2

A female connector structure is provided with a shielded cable configured such that an outer periphery of a coated wire including a core and an insulation coating is surrounded by a braided wire, a female terminal including a wire barrel and a connecting tube portion continuous with the wire barrel and to be connected to a mating terminal, an insulating dielectric, a front outer conductor including a front tube portion and a dielectric locking portion to be locked to at least a part of the dielectric, and a rear outer conductor 33 including a rear tube portion for surrounding the outer periphery of the coated wire 13 exposed from the braided wire, a shield crimping portion to be crimped to the braided wire from outside and a front outer conductor crimping portion to be crimped to the dielectric locking portion from outside.
US11855401B2

A dispensable grease sealant includes a base component in an amount of 50 wt % or more, based on a total weight of the sealant, and a thickener. The base component is selected from a group including a silicone wax, a liquid rubber, and a combination thereof.
US11855392B2

An electrical connector includes an insulating housing, a power leg, a ground leg, a power contact and a ground contact. The insulating housing has a peripheral wall. At least two perforations are defined on the peripheral wall. At least two leg recesses are formed on the peripheral wall. The perforations and the leg recesses are staggered along the peripheral wall. The power leg and the ground leg are both received in the peripheral wall of the insulating housing and are both have leg portions being exposed from the leg recesses. The power contact and the ground contact are both located in the perforations. As described above, manufacture material of the electrical connector is saved.
US11855389B2

A breakaway coaxial cable connector includes a conductive body configured to engage a cable. The conductive body is configured to be selectively coupled to an interface port to maintain electrical connectivity between the cable and the interface during operation of the connector when a first tension force below a predetermined threshold level is applied between the cable and the interface port, and the conductive body is configured to be selectively de-coupled from the interface port so as to interrupt electrical connectivity between the cable and the interface port during operation of the connector when a second tension force above the predetermined threshold level is applied between the cable and the interface port.
US11855387B2

A plug-in assembly structure for a UAV includes a first component (1), a second component (2) and a limit assembly (3). The first component (1) includes a first plug (11) and a positioning sleeve (12), and the positioning sleeve (12) is provided with a first through hole (121). The second component (2) includes a second plug (21), the radial direction of the second plug (21) is provided with a limit hole (2111), the second plug (21) can be electrically connected to the first plug (11), and the limit hole (2111) is facing the first through hole (121). The limit assembly (3) is installed in the limit hole (2111). The limit assembly (3) includes a first elastic element (31) and a limit element (32).
US11855383B2

A cooling device for a connector element includes a cooling channel through which a cooling fluid can flow during operation and a bearing element holding the cooling channel. The cooling channel is a component separate from the bearing element and has a shape of a hollow duct engaging around the bearing element at least in a part of a circumference of the bearing element.
US11855364B2

A conductive layer includes a microwave transformer for scaling the intensity of a microwave signal of a first frequency by a scaling factor. The transformer includes a first physical area delimited with a closed curve on the conductive layer for receiving the microwave signal from a first space angle and re-emitting a ray of the microwave signal to a second space angle. A ratio of the first physical area to the second physical area is smaller than 0.5. The ratio of the first effective area to the first physical area is larger than the ratio of the second effective area to the second physical area. The scaling factor is the ratio of the maximal intensity of the re-emitted ray and the intensity of a ray through an open aperture having a physical area equivalent to the second physical area in the same direction than the re-emitted ray.
US11855358B2

A planar antenna can include one or more high permeability objects that are added near the planar coil's tips. Further, the planar antenna includes a coil having two or more layers, with each layer having two or more turns. The planar antenna also has a restricted conductor arrangement, where there are a maximum number of turns arranged in any horizontal layer. A turn's conductor could be a single conductor or could be two (2) or more conductors arranged in parallel.
US11855355B2

An antenna apparatus includes a patch antenna pattern; a first feed via to feed power to the patch antenna pattern in a non-contact manner on a first side of the patch antenna pattern; and a plurality of feed patterns disposed on the first side of the patch antenna pattern on different levels and overlapping each other, and including at least one feed pattern that is electrically connected to the first feed via, and each having a width greater than a width of the first feed via and a cross-sectional area smaller than a cross-sectional area of the patch antenna pattern.
US11855353B2

The techniques described herein relate to a Radio Frequency (RF) communication module for a hand-held mobile electronic device. The Radio Frequency (RF) communication module includes a circuit board and a plurality of antennas disposed on a top side and bottom side of the circuit board. The plurality of antennas comprise a first subset of antennas comprising end-fire antennas and a second subset of antennas comprising broadside antennas. The first subset of antennas and the second subset of antennas also have a bandwidth of approximately 40 percent. The Radio Frequency (RF) communication module also includes a shielded area comprising circuitry coupled to the circuit board for controlling the antennas.
US11855352B2

Radiating elements include a first and second dipole arms that extend along a first axis and that are configured to transmit RF signals in a first frequency band. The first dipole arm is configured to be more transparent to RF signals in a second frequency band than it is to RF signals in a third frequency band, and the second dipole arm is configured to be more transparent to RF signals in the third frequency band than it is to RF signals in the second frequency band. Related base station antennas are also provided.
US11855343B2

An antenna includes a first radiator and a first capacitor structure. A first end of the first radiator is electrically connected to a signal feed end of a printed circuit board by means of the first capacitor structure, and a second end of the first radiator is electrically connected to a ground end of the printed circuit board. The first radiator, the first capacitor structure, the signal feed end, and the ground end form a first antenna configured to produce a first resonance frequency. An electrical length of the first radiator is greater than one eighth of a wavelength corresponding to the first resonance frequency, and the electrical length of the first radiator is less than a quarter of the wavelength corresponding to the first resonance frequency.
US11855335B2

An integrated base station antenna includes a feed board having a plurality of columns of radiating elements mounted thereon and a plurality of phase shifters coupled to the plurality of columns of radiating elements mounted on a same side of the feed board as the plurality of columns of radiating elements.
US11855323B2

A heat treatment apparatus of membrane electrode assemblies includes a base, a first member extending from the base in a first direction, and a plurality of second members formed on the base in a radially outward direction of the first member and having inner surfaces facing the first member, where the first member or the second members includes a heat wire member, and membrane electrode assemblies are disposed between the first member and the second members.
US11855322B1

A fuel cell power plant includes an energy storage system connected in parallel with a fuel cell system. The fuel cell system includes a controller, a fuel flow system, an air flow system, and an internal water management system. The controller is operable to receive, as inputs, the energy storage system state of charge and the power demand from an electric load. The controller is further operable to determine a power split set point and execute commands, as output, to control operation of the air flow system, wherein the air flow system actively regulates the proportion of current flow between the fuel cell system and the energy storage system to meet the power demand of the electric load.
US11855318B2

The present invention aims to provide a fuel battery system improved in reliability by accurately detecting when a fuel electrode gas or an air electrode gas has leaked. A fuel battery cell according to the present invention includes a first electrode, an electrolyte membrane, and a second electrode which are layered on a support substrate. Further, at least any one of the first electrode, the electrolyte membrane, and the second electrode is electrically isolated by an insulating member to form a first region and a second region. The insulating member is disposed at a position where the insulating member does not overlap with an opening portion of the support substrate (refer to FIG. 3).
US11855316B2

A water discharge control system and method for a fuel cell are provided. The water discharge control system includes a fuel cell stack that generates power through an internal chemical reaction, a fuel supply line that recirculates fuel discharged from the fuel cell stack and supplies the fuel to the fuel cell stack, and a water trap that is disposed in the fuel supply line to store water generated in the fuel cell stack. A drain valve is disposed in an outlet port of the water trap to block discharge of the water stored in the water trap to the outside when closed. A drain controller determines whether fuel in the fuel supply line is being discharged through the outlet port when the drain valve is in an open state and closes the drain valve upon determining that fuel is being discharged.
US11855314B2

An electrochemical arrangement with two metallic separator plates which each define a plate plane and which are stacked in a stack direction perpendicular to the plate planes. The separator plates comprise sealing elements which are embossed into the separator plate and which are supported against one another for sealing the electrochemical cell which is arranged between the separator plates and which are reversibly deformable in the stack direction up to a distance z2. The arrangement further comprises at least one support element which is arranged between the separator plates and which is distanced to the sealing elements of the separator plates in a direction parallel to the plate planes.
US11855312B2

A redox flow battery may include: a membrane interposed between a first electrode positioned at a first side of the membrane and a second electrode positioned at a second side of the membrane opposite to the first side; a first flow field plate comprising a plurality of positive flow field ribs, each of the plurality of positive flow field ribs contacting the first electrode at first supporting regions on the first side; and the second electrode, including an electrode spacer positioned between the membrane and a second flow field plate, the electrode spacer comprising a plurality of main ribs, each of the plurality of main ribs contacting the second flow field plate at second supporting regions on the second side, each of the second supporting regions aligned opposite to one of the plurality of first supporting regions. As such, a current density distribution at a plating surface may be reduced.
US11855306B1

This invention uses the process of osmosis and diffusion of a liquid of low concentration into a liquid of high concentration. The device taps the energy created by a liquid of low concentration flowing into a liquid of high concentration. The inventor has created several embodiments that can be heat engines, heat pumps, energy storage devices, and batteries. The invention changes solar ponds and concentration cells into heat storage devices and rechargeable batteries. Osmosis at two semipervious membranes, one heated and one cooled, in a loop of tubing produces a heat engine. A heat pipe is changed into a heat engine by using different concentrations at each end. Two vessels, one containing a high concentration of a liquid and the other containing a low concentration of a liquid, can be configured with the used of electrodes, turbines, semipervious membranes into heat engines, heat pumps, energy storage devices, and batteries.
US11855303B2

An embodiment of the present invention relates to a cylindrical lithium ion secondary battery. The technical problem to be solved is to provide a cylindrical lithium ion secondary battery which is designed such that a safety vent is formed and at the same time or afterwards excess metal can be guided to a curved portion adjacent to the safety vent, thereby enhancing the flatness of a can floor and reducing damage to the safety vent. To this end, the present invention provides a cylindrical lithium ion secondary battery comprising: a cylindrical can; an electrode assembly accommodated in the cylindrical can; and a cap assembly for sealing the cylindrical can, wherein the cylindrical can comprises a circular floor portion, a curved portion curved from the floor portion towards the electrode assembly, and a safety vent formed on the curved portion.
US11855298B2

A cell module includes a plurality of cylindrical batteries and a holder composed by arranging each of cylindrical batteries in a parallel posture. The holder includes: a holder body having holding spaces for arranging cylindrical batteries at fixed positions; and a sub holder stacked on the holder body. The holder body has stopper portions deformed toward surfaces of cylindrical batteries arranged in holding spaces. The sub holder has push rods that push out stopper portions to cylindrical batteries in a state of being coupled to the holder body. In a state in which the sub holder is coupled to the holder body, in the cell module, the push rods thrust stopper portions against cylindrical batteries, and press the surfaces of cylindrical batteries arranged in holding spaces.
US11855296B2

Disclosed in a battery cell including: an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive and negative electrodes, with electrode tabs protruding from at least one side of outside peripheral portions of the electrode assembly; and a battery casing including first and second casings provided with first and second receiving parts, respectively, the first and second receiving parts respectively accommodating the electrode assemblies and having different sizes or shapes, wherein in a state in which electrode leads connected to the electrode tabs protrude from outside peripheral portions of the first and second casings, the battery casing is sealed by thermal fusion along the outside peripheral portions of the first and second casings, wherein electrode lead grooves recessed downwardly such that the electrode leads are seated therein are provided at a portion of the outside peripheral portions of the first and second casings.
US11855293B2

Electrical storage devices (10,38) are provided with pasted negative electrodes (12) and pasted positive electrodes (15) with porous separators (18) between them, with current collectors (20,22) disposed between the separator (18) and the negative and positive pastes (13,16), respectively.
US11855286B2

Disclosed are a cathode for an all-solid-state battery including a cathode thin film for an all-solid-state battery or a cathode composite membrane for an all-solid-state battery, and an all-solid-state battery including the same. The cathode for an all-solid-state battery contains a grain that has a plane having a low surface energy and has a grain boundary arranged parallel to the electron movement direction, thus effectively lowering the interfacial resistance of the thin film while suppressing the dissolution and diffusion of the transition metal, thereby improving the cycle stability of the all-solid-state battery including the same.
US11855266B2

Systems and methods that provide improved cooling for batteries are disclosed. A battery system according to the present disclosure may include a cooling plate, one or more battery cells coupled to one surface of the cooling plate, and one or more battery cells coupled to the opposite surface of the cooling plate. The cooling plate and corresponding batteries may be included in a battery module, and multiple battery modules electrically connected may make up a battery pack. The cooling plates may comprise channels for cooling fluid, which may be provided to the plates in parallel from a cooling fluid source. Cooling the battery cells at the ends of the cells, where they are coupled to the cooling plate, may advantageously provide one or more of improved energy density, thermal management, and safety.
US11855257B2

Solid-state lithium ion electrolytes of lithium fluoride based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium fluoride based composites are also provided.
US11855249B2

A method for producing an electrochemical energy storage cell is provided. A current conductor, which is configured for electrically connecting an electrode stack to a cell terminal and has a contact arm, is positioned relative to the electrode stack such that an edge of the contact arm abuts a first lateral surface of a conductor arrangement that projects out of the electrode stack. The conductor arrangement is bent around the edge of the contact arm such that the first lateral surface of the conductor arrangement rests at least in part on a first contact arm lateral surface. The contact arm is supported on a second contact arm lateral surface opposite the first contact arm lateral surface. A contact pressure is exerted on the conductor arrangement resting at least in part on the first contact arm lateral surface, and the conductor arrangement is connected to the current conductor.
US11855247B2

This lithium-containing transition metal composite oxide includes secondary particles that are aggregates of primary particles into or from which lithium ions are dopable or dedopable, and satisfies the following conditions: (1) the lithium-containing transition metal composite oxide is represented by Formula (I), Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O2  (I) (2) from X-ray photoelectron spectroscopy, a specific γ is calculated for each of the surface of the secondary particle and the inside of the secondary particle, and when the γ value of the surface of the secondary particle is referred to as γ1 and the γ value of the inside of the secondary particle is referred to as γ2, γ1 and γ2 satisfy the condition of Formula (II). 0.3≤γ1/γ2≤1.0  (II)
US11855236B2

A sensor includes a first electrode and a second electrode, and a photo-active layer between the first electrode and the second electrode. The photo-active layer includes a light absorbing semiconductor configured to form a Schottky junction with the first electrode. The photo-active layer has a charge carrier trapping site configured to capture photo-generated charge carriers generated based on the light absorbing semiconductor absorbing incident light that enters at least the photo-active layer at a position adjacent to the first electrode. The sensor is configured to have an external quantum efficiency (EQE) that is adjusted based on a voltage bias being applied between the first electrode and the second electrode.
US11855234B2

A method of manufacturing a solar cell, includes forming a rounded uneven member having a rounded end portion at a second surface of a semiconductor substrate having a first surface and the second surface opposite to each other, forming conductive regions comprising forming a first conductive region at the first surface of the semiconductor substrate and forming a second conductive region on the second surface of the semiconductor substrate, wherein the second conductive region comprises a semiconductor layer different and separated from the semiconductor substrate and forming electrodes comprising forming a first electrode electrically connected to the first conductive region and forming a second electrode electrically connected to the second conductive region.
US11855227B2

A solid-state image pickup unit includes: a substrate made of a first semiconductor; a substrate made of a first semiconductor; a photoelectric conversion device provided on the substrate and including a first electrode, a photoelectric conversion layer, and a second electrode in order from the substrate; and a plurality of field-effect transistors configured to perform signal reading from the photoelectric conversion device. The plurality of transistors include a transfer transistor and an amplification transistor, the transfer transistor includes an active layer containing a second semiconductor with a larger band gap than that of the first semiconductor, and one terminal of a source and a drain of the transfer transistor also serves the first electrode or the second electrode of the photoelectric conversion device, and the other terminal of the transfer transistor is connected to a gate of the amplification transistor.
US11855220B2

A device a includes a substrate, two source/drain (S/D) features over the substrate, and semiconductor layers suspended over the substrate and connecting the two S/D features. The device further includes a dielectric layer disposed between two adjacent layers of the semiconductor layers and an air gap between the dielectric layer and one of the S/D features, where a ratio between a length of the air gap to a thickness of the first dielectric layer is in a range of 0.1 to 1.0.
US11855219B2

A fin field effect transistor (FinFET), and a method of forming, is provided. The FinFET has a fin having one or more semiconductor layers epitaxially grown on a substrate. A first passivation layer is formed over the fins, and isolation regions are formed between the fins. An upper portion of the fins are reshaped and a second passivation layer is formed over the reshaped portion. Thereafter, a gate structure may be formed over the fins and source/drain regions may be formed.
US11855210B2

A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
US11855208B2

A method for forming a FinFET device structure is provided. The method includes forming a fin structure extended above a substrate and forming a gate structure formed over a portion of the fin structure. The method also includes forming a source/drain (S/D) structure over the fin structure, and the S/D structure is adjacent to the gate structure. The method further includes doping an outer portion of the S/D structure to form a doped region, and the doped region includes gallium (Ga). The method includes forming a metal silicide layer over the doped region; and forming an S/D contact structure over the metal silicide layer.
US11855203B2

A power semiconductor device includes a P-type substrate, an N-type well region, a P-type body region, a gate oxide layer, a polysilicon gate, a first oxide layer, a first N+ contact region, a first P+ contact region, drain metal, a first-type doped region, and a gate oxide layer. An end of the P-type body region is flush with or exceeds an end of the polysilicon gate, wherein Cgd of the power semiconductor device is reduced and a switching frequency of the power semiconductor device is increased. A polysilicon field plate connected with a source is introduced over a drift region that is not only shield an influence of the polysilicon gate on the drift region, thereby eliminating Cgd caused by overlapping of traditional polysilicon gate and drift region, but also enable the power semiconductor device to have strong robustness against an hot carrier effect.
US11855201B2

A semiconductor structure includes a semiconductor substrate, a transistor, a plurality of isolation structures, and a conductive feature. The transistor is over the semiconductor substrate. The isolation structures are over the semiconductor substrate. The isolation structures define a semiconductor ring of the semiconductor substrate surrounding the transistor. The conductive feature extends vertically in the semiconductor substrate and surrounds the transistor and semiconductor ring. The conductive feature has a rounded corner facing the semiconductor ring from a top view.
US11855200B2

High-voltage semiconductor devices are disclosed, each having gate, source and drain electrodes. A deep well layer is formed on a substrate and has a surface, where the substrate and the deep well layer are of first-type and second-type conductivities, respectively. A field isolation layer on the surface isolates a drain active region from a source active region. The source electrode contacts the source active region on the surface to form an ohmic contact. The drain electrode contacts the drain active region on the surface. A first well layer of the first-type conductivity is formed on the surface and between the ohmic contact and the drain active region, and at least a portion of the first well layer is under the field isolation layer. A bottom layer of the first-type conductivity is formed at a bottom of the deep well layer. The gate electrode is on the field isolation layer.
US11855198B2

A multi-gate HEMT includes at least two gates, with at least one recessed the same depth or at a deeper depth in a barrier layer than at least one other gate. Recessing a gate decreases the thickness of the barrier layer beneath the gate, reducing a density of high mobility carriers in a two-dimensional electron gas layer (2DEG) conductive channel formed at the heterojunction of a barrier layer and a buffer layer below the recessed gate. The recessed gate can increase gate control of the 2DEG conductive channel. The multi-gate HEMT has at least one gate recessed the same depth or a deeper depth into the buffer layer than another gate, which forms at least two different turn-on voltages for different gates. This can achieve improvement of transconductance linearity and a positive shift of the threshold voltage.
US11855193B2

A semiconductor device includes a gate electrode over a channel region of a semiconductor fin, first spacers over the semiconductor fin, and second spacers over the semiconductor fin. A lower portion of the gate electrode is between the first spacers. An upper portion of the gate electrode is above the first spacers. The second spacers are adjacent the first spacers opposite the gate electrode. The upper portion of the gate electrode is between the second spacers.
US11855189B2

A semiconductor device includes a substrate, a semiconductor fin, a gate structure, and source/drain structures. The semiconductor fin extends upwardly from the substrate. The gate structure is across the semiconductor fin and includes a high-k dielectric layer over the semiconductor fin, a fluorine-containing work function layer over the high-k dielectric layer and comprising fluorine, a tungsten-containing layer over the fluorine-containing work function layer, and a metal gate electrode over the tungsten-containing layer. The source/drain structures are on the semiconductor fin and at opposite sides of the gate structure.
US11855188B2

A method includes forming a first semiconductor fin and a second semiconductor fin in an n-type Fin Field-Effect (FinFET) region and a p-type FinFET region, respectively, forming a first dielectric fin and a second dielectric fin in the n-type FinFET region and the p-type FinFET region, respectively, forming a first epitaxy mask to cover the second semiconductor fin and the second dielectric fin, performing a first epitaxy process to form an n-type epitaxy region based on the first semiconductor fin, removing the first epitaxy mask, forming a second epitaxy mask to cover the n-type epitaxy region and the first dielectric fin, performing a second epitaxy process to form a p-type epitaxy region based on the second semiconductor fin, and removing the second epitaxy mask. After the second epitaxy mask is removed, a portion of the second epitaxy mask is left on the first dielectric fin.
US11855181B2

A semiconductor structure includes an interfacial layer disposed over a semiconductor layer, a high-k gate dielectric layer disposed over the interfacial layer, where the high-k gate dielectric layer includes a first metal, a metal oxide layer disposed between the high-k gate dielectric layer and the interfacial layer, where the metal oxide layer is configured to form a dipole moment with the interfacial layer, and a metal gate stack disposed over the high-k gate dielectric layer. The metal oxide layer includes a second metal different from the first metal, and a concentration of the second metal decreases from a top surface of the high-k gate dielectric layer to the interface between the high-k gate dielectric layer and the interfacial layer.
US11855175B2

Semiconductor devices and methods of forming the same are provided. An example method includes providing a workpiece including a first dummy gate stack and a second dummy gate stack in a first area of the workpiece, a third dummy gate stack and a fourth dummy gate stack in a second area of the workpiece, a hard mask layer over each of the first dummy gate stack, the second dummy gate stack, the third dummy gate stack, and the fourth dummy gate stack. The method further includes depositing a photoresist (PR) layer over the workpiece to form a first PR layer portion over the first area and a second PR layer portion over the second area; and selectively forming a first opening through the second PR layer portion over the third dummy gate stack and a second opening through the second PR layer portion over the fourth dummy gate stack.
US11855174B2

A high electron mobility transistor (HEMT) includes a substrate, a channel layer disposed on the substrate, a barrier layer disposed on the channel layer, a first passivation layer disposed on the barrier layer, a plurality of trenches through at least a portion of the first passivation layer, and a conductive plate structure disposed on the first passivation layer. The conductive plate structure includes a base portion over the trenches and a plurality of protruding portions extending from a lower surface of the base portion and into the trenches.
US11855173B2

A semiconductor die includes a transistor with an emitter, base, and collector. The base includes an intrinsic base that is located in monocrystalline semiconductor material grown in an opening of a first semiconductor layer. A second semiconductor layer is located above the first semiconductor layer and includes a monocrystalline portion. In some embodiments, an opening was formed in the second semiconductor layer wherein a portion of the underlying first semiconductor layer was etched to form a cavity in which a monocrystalline intrinsic base was grown.
US11855171B2

A method includes forming source/drain regions in a semiconductor substrate; depositing a zirconium-containing oxide layer over a channel region in the semiconductor substrate and between the source/drain region; forming a titanium oxide layer in contact with the zirconium-containing oxide layer; forming a top electrode over the zirconium-containing oxide layer, wherein no annealing is performed after depositing the zirconium-containing oxide layer and prior to forming the top electrode.
US11855153B2

A semiconductor device and method of manufacture are provided which utilize a remote plasma process which reduces or eliminates segregation of material. By reducing segregation of the material, overlying conductive material can be deposited on a smoother interface. By depositing on smoother interfaces, overall losses of the deposited material may be avoided, which improves the overall yield.
US11855152B2

Various forms of MgxGe1-xO2-x are disclosed, where the MgxGe1-xO2-x are epitaxial layers formed on a substrate comprising a substantially single crystal substrate material. The epitaxial layer of MgxGe1-xO2-x has a crystal symmetry compatible with the substrate material. Semiconductor structures and devices comprising the epitaxial layer of MgxGe1-xO2-x are disclosed, along with methods of making the epitaxial layers and semiconductor structures and devices.
US11855149B2

A method and resulting structures for a semiconductor device includes forming a source terminal of a semiconductor fin on a substrate. An energy barrier is formed on a surface of the source terminal. A channel is formed on a surface of the energy barrier, and a drain terminal is formed on a surface of the channel. The drain terminal and the channel are recessed on either sides of the channel, and the energy barrier is etched in recesses formed by the recessing. The source terminal is recessed using timed etching to remove a portion of the source terminal in the recesses formed by etching the energy barrier. A first bottom spacer is formed on a surface of the source terminal and a sidewall of the semiconductor fin, and a gate stack is formed on the surface of the first bottom spacer.
US11855134B2

A semiconductor device includes, as a semiconductor region in which semiconductor layers are formed, an active region through which current flows and an edge termination structure region outside the active region and in which an edge termination structure is formed. The semiconductor device includes as the semiconductor layers: a drift layer of a first conductivity type and a base layer of a second conductivity type, in contact with the edge termination region; and includes an interlayer insulating film provided on the semiconductor region, on a side thereof where the base layer is formed. The edge termination region has a first semiconductor layer of the second conductivity type, continuous from the base layer and having an outer peripheral end not in contact with the interlayer insulating film, and a second semiconductor layer of the first conductivity type, in contact with the first semiconductor layer and forming a first PN junction therewith.
US11855127B2

A semiconductor structure includes a first electrode, a second electrode over the first electrode, a third electrode over the second electrode, a first insulating layer between the first electrode and the second electrode, and a second insulating layer between the second electrode and the third electrode. The third electrode includes a first bottom surface and a second bottom surface. The first bottom surface and the second bottom surface are at different levels. A width of the first bottom surface is greater than a width of the second bottom surface.
US11855124B2

A semiconductor device has a package substrate, a system-on-chip (SoC) die, and a power management integrated circuit (PMIC) die, arranged in a vertical stack. The SoC die is disposed on a first surface of the package substrate, and the PMIC die is mechanically coupled to a second surface of the package substrate. The PMIC die is electrically coupled to the SOC die via first via connectors of the package substrate and configured to provide DC power to the SOC die via DC connectors electrically coupled to the via connectors of the package substrate. The PMIC die includes thin film inductors, corresponding to the DC connectors, on a surface of the PMIC die and located adjacent to the second surface of the package substrate.
US11855122B2

A display device includes subpixels comprising a plurality of first type subpixels and a plurality of second type subpixels, a plurality of electrodes, each comprising an electrode stem portion and at least one electrode protrusion portion, a plurality of light emitting elements having a shape of extending in one direction and disposed on the electrode stem portion of the one electrode and the electrode protrusion portion of the other electrode, and a plurality of first contact electrodes contacting a first end of the light emitting elements and a plurality of second contact electrodes contacting a second end of the light emitting elements, wherein the light emitting elements comprise first type light emitting elements and second type light emitting elements, and the first ends of the first type light emitting elements and the second type light emitting elements face in opposite directions.
US11855114B2

An integrated device, the device including: a first level including a first mono-crystal layer, the first mono-crystal layer including a plurality of single crystal transistors; an overlying oxide disposed on top of the first level; a second level including a second mono-crystal layer, the second level overlaying the oxide, where the second mono-crystal layer includes a plurality of semiconductor devices; a third level overlaying the second level, where the third level includes a plurality of image sensors, where the first level includes a plurality of landing pads, where the second level is bonded to the first level, where the bonded includes an oxide to oxide bond; and an isolation layer disposed between the second mono-crystal layer and the third level.
US11855111B2

A Mid-Wave Infrared (MWIR) objective lens having an F # of 2.64 and a 33.6° angular field of view. It is deployed, with a focal plane and scanning system, on an airborne platform for remote sensing applications. Focal length is 9 inches, and the image is formed on a focal plane constituting CCD or CMOS with micro lenses. The lens has, from object to image, three optical element groups with a cold shield/aperture stop. Group 1 has a positive optical power and three optical elements; Group 2 has a positive optical power and four optical elements; Group 3 has a positive optical power and three optical elements. The objective lens is made of two Germanium and Silicon. The lens is both apochromatic and orthoscopic, and corrected for monochromatic and chromatic aberrations over 3.3 to 5.1 micrometers.
US11855104B2

A display device includes: a first electrode layer; a semiconductor layer including a source region, a drain region, and a channel region, wherein at least a portion of the source region or the drain region overlaps the first electrode layer; a second electrode layer arranged adjacent to the channel region; a third electrode layer overlapping the second electrode layer and at least a portion of the source region or the drain region; and a power line electrically connected to the first electrode layer and the third electrode layer.
US11855096B2

According to one example, a semiconductor device includes a substrate and a fin stack that includes a plurality of nanostructures, a gate device surrounding each of the nanostructures, and inner spacers along the gate device and between the nanostructures. A width of the inner spacers differs between different layers of the fin stack.
US11855095B2

A semiconductor device includes a semiconductor substrate and a first dielectric layer. The semiconductor substrate includes at least one fin. The first dielectric layer is disposed on the at least one fin. A thickness of the first dielectric layer located on a top surface of the at least one fin is greater than a thickness of the first dielectric layer located on a sidewall of the at least one fin.
US11855085B2

Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
US11855079B2

An integrated circuit includes a first nanosheet transistor and a second nanosheet transistor on a substrate. The first and second nanosheet each include gate electrodes. A gate isolation structure extends from a backside of the substrate between the gate electrodes. The gate isolation structure physically and electrically isolates the first and second gate electrodes from each other.
US11855077B2

A semiconductor device is preferably excellent in characteristics such as a loss characteristic. Provided is a semiconductor device including a semiconductor substrate, including an upper-surface electrode provided on an upper surface of the semiconductor substrate; an lower-surface electrode provided on a lower surface of the semiconductor substrate; a transistor portion provided in the semiconductor substrate and connected to the upper-surface electrode and the lower-surface electrode; a first diode portion provided in the semiconductor substrate and connected to the upper-surface electrode and the lower-surface electrode; and a second diode portion provided in the semiconductor substrate and connected to the upper-surface electrode and the lower-surface electrode, wherein the first diode portion and the second diode portion have different resistivities in a depth direction of the semiconductor substrate.
US11855071B2

Devices and methods of manufacture for a deep trench layout area-saving semiconductor structure for use with bipolar-CMOS-DMOS (BCD) devices. A semiconductor device may comprise a first BCD device formed within a first perimeter of a first BCD layout area, and a deep trench isolation structure defining the first perimeter of the first BCD layout area, in which the deep trench isolation structure may comprise a first rounded corner that may define a first corner of the first BCD layout area. A semiconductor device may comprise, a substrate, BCD device formed on the substrate, and a deep trench isolation structure laterally surrounding the BCD device. The deep trench isolation structure, with respect to a top-down view, may comprise vertical portions, horizontal portions, a “T”-shaped intersection connecting at least one vertical portion and at least one horizontal portion, and a cross-shaped intersection connecting two vertical portions and two horizontal portions.
US11855068B2

A semiconductor cell structure includes first-type transistors aligned within a first-type active zone, second-type transistors aligned within a second-type active zone, a first power rail and a second power rail. Each of the first-type active zone and the second-type active zone is between a first alignment boundary and a second alignment boundary extending in a first direction which is perpendicular to a second direction. A first distance along the second direction between the long edge of the first power rail and the first alignment boundary of the first-type active zone is different from a second distance along the second direction between the long edge of the second power rail and the first alignment boundary of the second-type active zone by a predetermined distance.
US11855059B2

Structures and methods of forming fan-out packages are provided. The packages described herein may include a cavity substrate, one or more semiconductor devices located in a cavity of the cavity substrate, and one or more redistribution structures. Embodiments include a cavity preformed in a cavity substrate. Various devices, such as integrated circuit dies, packages, or the like, may be placed in the cavity. Redistribution structures may also be formed.
US11855057B2

Provided are a package structure and a method of forming the same. The method includes: laterally encapsulating a device die and an interconnect die by a first encapsulant; forming a redistribution layer (RDL) structure on the device die, the interconnect die, and the first encapsulant; bonding a package substrate onto the RDL structure, so that the RDL structure is sandwiched between the package substrate and the device die, the interconnect die, and the first encapsulant; laterally encapsulating the package substrate by a second encapsulant; and bonding a memory die onto the interconnect die, wherein the memory die is electrically connected to the device die through the interconnect die and the RDL structure.
US11855051B2

A method is provided for the selective harvest of microLED devices from a carrier substrate. Defect regions are predetermined that include a plurality of adjacent defective microLED devices on a carrier substrate. A solvent-resistant binding material is formed overlying the predetermined defect regions and exposed adhesive is dissolved with an adhesive dissolving solvent. Non-defective microLED devices located outside the predetermined defect regions are separated from the carrier substrate while adhesive attachment is maintained between the microLED devices inside the predetermined defect regions and the carrier substrate. Methods are also provided for the dispersal of microLED devices on an emissive display panel by initially optically measuring a suspension of microLEDs to determine suspension homogeneity and calculate the number of microLEDs per unit volume. If the number of harvested microLED devices in the suspension is known, a calculation can be made of the number of microLED devices per unit of suspension volume.
US11855045B2

A semiconductor device and a method of manufacture are provided. In particular, a semiconductor device using blocks, e.g., discrete connection blocks, having through vias and/or integrated passive devices formed therein are provided. Embodiments such as those disclosed herein may be utilized in PoP applications. In an embodiment, the semiconductor device includes a die and a connection block encased in a molding compound. Interconnection layers may be formed on surfaces of the die, the connection block and the molding compound. One or more dies and/or packages may be attached to the interconnection layers.
US11855043B1

A multi-chip module (MCM) includes a common substrate and first and second integrated circuit (IC) chips disposed on the common substrate. The first integrated circuit (IC) chip includes a first interface circuit disposed proximate a first edge of the first IC chip and a second interface circuit disposed proximate the first edge of the first IC chip. A first chiplet couples to the first interface circuit via a first link. A second chiplet couples to the second interface circuit via a second link. A first position of the first chiplet with respect to the first IC chip is staggered in a longitudinal dimension relative to a second position of the second chiplet with respect to the first IC chip.
US11855038B2

A method for assembling components includes assembling a first component including solder bumps with a second component including connectors. The assembly of the components is preceded by pre-treating the first and second components wherein the solder bumps are contacted with a pre-treatment liquid configured to at least partially remove an oxide layer initially present on the solder. The pre-treatment liquid is an aqueous solution containing carboxylic acids or polycarboxylic acids. The assembly of the components is carried out after the pre-treatment in the absence of liquid or gas flux.
US11855032B2

The disclosed semiconductor structure includes a semiconductor substrate, a metal pad, a bump, a first solder layer, a barrier layer, and a second solder layer. The metal pad is disposed on the semiconductor substrate; the bump is arranged on the metal pad; the barrier layer is configured on the side of the bump away from the metal pad. The barrier layer includes a first surface and a second surface. The first solder layer is arranged between the bump and the first surface of the barrier layer. The second solder layer is configured on the second surface of the barrier layer. Since the first solder layer and the second solder layer are formed by reflowed and melt solder at a high temperature and can be stretched, the height of the second solder can be adjusted automatically, which reduces the non-wetting problem caused by the package substrate deformation after reflow.
US11855027B2

An article of manufacture comprises: an integrated circuit having a contact; a conductive bump electrically coupled to the contact, the conductive bump having a profile with a wave pattern; a lead frame electrically coupled to the conductive bump; and an integrated circuit package mold, the integrated circuit package mold covering portions of the conductive bump and the lead frame.
US11855014B2

A semiconductor device and method of manufacturing is provided, whereby a support structure is utilized to provide additional support for a conductive element in order to eliminate or reduce the formation of a defective surface such that the conductive element may be formed to have a thinner structure without suffering deleterious structures.
US11855013B2

A semiconductor device may include a substrate, a first semiconductor chip buried in the substrate, a first antenna pattern, a second antenna pattern, and outer terminals. A bottom surface of the substrate may include first and second regions spaced apart from each other. The first semiconductor chip may have a first active surface that is directed to the top surface of a core portion of the substrate. The first antenna pattern may be provided on the top surface of the substrate and electrically connected to the first semiconductor chip. The outer terminals may be provided on the first region of the bottom surface of the substrate, and the second antenna pattern may be provided on the second region of the bottom surface of the substrate.
US11855009B2

A chip package is provided. The chip package includes a substrate and a semiconductor chip over the substrate. The chip package also includes an upper plate extending across edges of the semiconductor chip. The chip package further includes a first support structure connecting a first corner portion of the substrate and a first corner of the upper plate. In addition, the chip package includes a second support structure connecting a second corner portion of the substrate and a second corner of the upper plate. The upper plate has a side edge connecting the first support structure and the second support structure, and the side edge extends across opposite edges of the semiconductor chip.
US11854997B2

A method includes encapsulating a device die in an encapsulating material, forming a first dielectric layer over the device die and the encapsulating material, forming first redistribution lines extending into the first dielectric layer to electrically couple to the device die, forming an alignment mark over the first dielectric layer, wherein the alignment mark includes a plurality of elongated strips, forming a second dielectric layer over the first redistribution lines and the alignment mark, and forming second redistribution lines extending into the second dielectric layer to electrically couple to the first redistribution lines. The second redistribution lines are formed using the alignment mark for alignment.
US11854995B2

Implementations of a semiconductor substrate may include a wafer including a first side and a second side; and a support structure coupled to the wafer at a desired location on the first side, the second side, or both the first side and the second side. The support structure may include an organic compound.
US11854991B2

In one example, a semiconductor device comprises a main substrate having a top side and a bottom side, a first electronic component on the top side of the main substrate, a second electronic component on the bottom side of the main substrate, a substrate structure on the bottom side of the main substrate adjacent to the second electronic component, and an encapsulant structure comprising an encapsulant top portion on the top side of the main substrate and contacting a side of the first electronic component, and an encapsulant bottom portion on the bottom side of the main substrate and contacting a side of the second electronic component and a side of the substrate structure. Other examples and related methods are also disclosed herein.
US11854969B2

A semiconductor structure and a method for forming the semiconductor structure are disclosed. The method includes the following operations. A first integrated circuit component having a fuse structure is received. A second integrated circuit component having an inductor is received. The second integrated circuit component is bonded to the first integrated circuit component. The inductor is electrically connected to the fuse structure, wherein the inductor is electrically connected to a ground through the fuse structure.
US11854966B2

A method of manufacturing a semiconductor device includes forming via structures in a first via layer over a transistor layer, the forming the via structures in the first via layer including forming a first via structure in the first via layer, the first via structure being included in a first deep via arrangement; forming conductive segments in a first metallization layer over the first via layer, the forming the conductive segments in the first metallization layer including forming M_1st routing segments at least a majority of which, relative to a first direction, have corresponding long axes with lengths which at least equal if not exceed a first permissible minimum value for routing segments in the first metallization layer; and forming an M_1st interconnection segment having a long axis which is less than the first permissible minimum value, the M_1st interconnection segment being included in the first deep via arrangement.
US11854962B2

A semiconductor device includes a substrate, a bottom etch stop layer over the substrate, a middle etch stop layer over the bottom etch stop layer, and a top etch stop layer over the middle etch stop layer. The top, middle, and bottom etch stop layers include different material compositions from each other. The semiconductor device further includes a dielectric layer over the top etch stop layer and a via extending through the dielectric layer and the top, middle, and bottom etch stop layers. The via has a first sidewall in contact with the dielectric layer and slanted inwardly from top to bottom towards a center of the via and a second sidewall in contact with the bottom etch stop layer and slanted outwardly from top to bottom away from the center of the via.
US11854960B2

A semiconductor device includes an active region over a substrate extending along a first lateral direction. The semiconductor device includes a number of first conductive structures operatively coupled to the active region. The first conductive structures extend along a second lateral direction. The semiconductor device includes a number of second conductive structures disposed above the plurality of first conductive structures. The second conductive structures extend along the first lateral direction. The semiconductor device includes a first capacitor having a first electrode and a second electrode. The first electrode includes one of the first conductive structures and the active region, and the second electrode includes a first one of the second conductive structures. Each of the active region and the first conductive structures is electrically coupled to a power rail structure configured to carry a supply voltage.
US11854957B2

The integrated circuit device includes: a pad that has a shape having a longitudinal direction and a lateral direction; a circuit that overlaps the pad in a plan view, and that is electrically coupled to the pad; a lead-out wiring that is led out from an outer edge on a longitudinal side of the pad along the lateral direction of the pad; and a via group that electrically couples the lead-out wiring and a wiring of the circuit and that does not overlap the pad in the plan view.
US11854947B2

An integrated circuit (IC) chip can include a die with an interconnect conductively coupled to a leadframe, wherein the leadframe forms a portion of a given surface of the IC chip. The IC chip can also include an encapsulating material molded over the die and the leadframe. The encapsulating material can form another surface of the IC chip. The other surface of the IC chip opposes the given surface of the IC chip. The IC chip can further include a vertical wire extending through the encapsulating material in a direction that is substantially perpendicular to the given surface of the IC chip and the vertical wire protruding through the other surface of the IC chip to form a vertical connector for the IC chip. The vertical connector can be coupled to the interconnect on the die.
US11854946B2

A semiconductor device includes a semiconductor chip with bonding pads, the bonding pads being arranged along one side of an element forming surface of the semiconductor chip, a lead frame including first and second internal leads arranged such that tips thereof correspond to some of the bonding pads of the semiconductor chip, and first and second bonding vires by which the first internal leads and the some of the bonding pads are bonded to each other. The semiconductor device further includes a hanging pin section provided on the element non-forming surface of the semiconductor chip, and a sealing member with which the semiconductor chip is sealed including the hanging pin section and a bonding section between the first and second internal leads and the first and second bonding wires.
US11854932B2

Embodiments disclosed herein include electronic packages and thermal solutions for such electronic packages. In an embodiment, an electronic package comprises, a package substrate with a first surface, a second surface opposite from the first surface, and a sidewall surface connecting the first surface to the second surface. In an embodiment, the electronic package further comprises a heat spreader, where a first portion of the heat spreader is attached to the first surface of the package substrate and a second portion of the heat spreader is attached to the second surface of the package substrate. In an embodiment, a third portion of the heat spreader adjacent to the sidewall surface of the package substrate connects the first portion of the heat spreader to the second portion of the heat spreader.
US11854924B2

A semiconductor device includes a semiconductor die having an active surface, an opposite surface, a vertical sidewall extending between the active surface and the opposite surface, and input/output (I/O) connections disposed on the active surface. A redistribution layer (RDL) is disposed on the active surface of the semiconductor die. A plurality of first connecting elements is disposed on the RDL. A molding compound encapsulates the opposite surface and the vertical sidewall of the semiconductor die. The molding compound also covers the RDL and surrounds the plurality of first connecting elements. An interconnect substrate is mounted on the plurality of first connecting elements and on the molding compound.
US11854923B2

A semiconductor device includes a semiconductor element, first and second leads, and a sealing resin. The semiconductor element includes first and second electrodes. The first lead includes a mounting base having a main face to which the first electrode is bonded and a back face, and includes a first terminal connected to the first electrode. The second lead includes a second terminal connected to the second electrode. The sealing resin includes a main face and a back face opposite to each other, and includes an end face oriented in the protruding direction of the terminals. The back face of the mounting base is exposed from the back face of the resin. The sealing resin includes a groove formed in its back face and disposed between the back face of the mounting base and a boundary between the second terminal and the end face of the resin.
US11854914B2

A memory device includes a first memory block. The first memory block includes a first memory sub-array and a first interface portion disposed next to the first memory sub-array. The first memory block further includes a plurality of first interconnect structures electrically coupled to the first memory sub-array through the first interface portion, and a second plurality of interconnect structures configured to electrically couple a corresponding one of the plurality of first interconnect structures to a transistor. The memory device further includes a first test structure and a second test structure disposed next to the first memory block, each configured to simulate electrical connections of the plurality of second interconnect structures. The first and second test structures are electrically coupled to each other and are each electrically isolated form the first memory block.
US11854910B2

The present disclosure describes a method to form a stacked semiconductor device with power rails. The method includes forming the stacked semiconductor device on a first surface of a substrate. The stacked semiconductor device includes a first fin structure, an isolation structure on the first fin structure, and a second fin structure above the first fin structure and in contact with the isolation structure. The first fin structure includes a first source/drain (S/D) region, and the second fin structure includes a second S/D region. The method also includes etching a second surface of the substrate and a portion of the first S/D region or the second S/D region to form an opening. The second surface is opposite to the first surface. The method further includes forming a dielectric barrier in the opening and forming an S/D contact in the opening.
US11854905B2

Among other things, one or semiconductor arrangements, and techniques for forming such semiconductor arrangements are provided. For example, one or more silicon and silicon germanium stacks are utilized to form PMOS transistors comprising germanium nanostructure channels and NMOS transistors comprising silicon nanostructure channels. In an example, a first silicon and silicon germanium stack is oxidized to transform silicon to silicon oxide regions, which are removed to form germanium nanostructure channels for PMOS transistors. In another example, silicon and germanium layers within a second silicon and silicon germanium stack are removed to form silicon nanostructure channels for NMOS transistors. PMOS transistors having germanium nanostructure channels and NMOS transistors having silicon nanostructure channels are formed as part of a single fabrication process.
US11854903B2

A method includes forming a gate stack, which includes a first portion over a portion of a first semiconductor fin, a second portion over a portion of a second semiconductor fin, and a third portion connecting the first portion to the second portion. An anisotropic etching is performed on the third portion of the gate stack to form an opening between the first portion and the second portion. A footing portion of the third portion remains after the anisotropic etching. The method further includes performing an isotropic etching to remove a metal gate portion of the footing portion, and filling the opening with a dielectric material.
US11854902B2

Examples of an integrated circuit with an interconnect structure that includes a buried interconnect conductor and a method for forming the integrated circuit are provided herein. In some examples, the method includes receiving a substrate that includes a plurality of fins extending from a remainder of the substrate. A spacer layer is formed between the plurality of fins, and a buried interconnect conductor is formed on the spacer layer between the plurality of fins. A set of capping layers is formed on the buried interconnect conductor between the plurality of fins. A contact recess is etched through the set of capping layers that exposes the buried interconnect conductor, and a contact is formed in the contact recess that is electrically coupled to the buried interconnect conductor.
US11854899B2

A method of fabricating a semiconductor device is described. A plurality of fins is formed over a substrate. Dummy gates are formed patterned over the fins, each dummy gate having a spacer on sidewalls of the patterned dummy gates. Recesses are formed in the fins using the patterned dummy gates as a mask. A passivation layer is formed over the fins and in the recesses in the fins. The passivation layer is patterned to leave a remaining passivation layer only in some of the recesses in the fins. Source and drain regions are epitaxially formed only in the recesses in the fins without the remaining passivation layer.
US11854898B2

A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
US11854894B2

Integrated circuit cell architectures including both front-side and back-side structures. One or more of back-side implant, semiconductor deposition, dielectric deposition, metallization, film patterning, and wafer-level layer transfer is integrated with front-side processing. Such double-side processing may entail revealing a back side of structures fabricated from the front-side of a substrate. Host-donor substrate assemblies may be built-up to support and protect front-side structures during back-side processing. Front-side devices, such as FETs, may be modified and/or interconnected during back-side processing. Electrical test may be performed from front and back sides of a workpiece. Back-side devices, such as FETs, may be integrated with front-side devices to expand device functionality, improve performance, or increase device density.
US11854891B2

A wafer manufacturing method includes a wafer preparing step of preparing a wafer including a semiconductor device formed in each of a plurality of regions demarcated by a plurality of streets intersecting each other, a removing step of separating, from the wafer, a defective device region including a semiconductor device determined to be a defective product among a plurality of the semiconductor devices formed in the wafer, and a fitting step of fitting, into a through hole formed by separating the defective device region from the wafer, a device chip including a semiconductor device as a non-defective product having same functions as those of the semiconductor device determined to be a defective product and having a size capable of being fitted into the through hole.
US11854886B2

The present disclosure relates to through-via structures with dielectric shielding of interconnections for advanced wafer level semiconductor packaging. The methods described herein enable the formation of high thickness dielectric shielding layers within low aspect ratio through-via structures, thus facilitating thin and small-form-factor package structures having high I/O density with improved bandwidth and power.
US11854883B2

A method for forming an interconnect structure is provided. The method for forming the interconnect structure includes forming a first dielectric layer over a substrate, forming a first conductive feature through the first dielectric layer, etching the first conductive feature to form a recess over the first conductive feature, forming a second dielectric layer over the first dielectric layer and filling the recess, etching the second dielectric layer to form an opening exposing an upper surface of the first conductive feature, and forming a second conductive feature in the opening.
US11854874B2

A semiconductor device and method of formation are provided. The semiconductor device comprises a silicide layer over a substrate, a metal plug in an opening defined by a dielectric layer over the substrate, a first metal layer between the metal plug and the dielectric layer and between the metal plug and the silicide layer, a second metal layer over the first metal layer, and an amorphous layer between the first metal layer and the second metal layer.
US11854870B2

A method for making a middle-of-line interconnect structure in a semiconductor device includes forming, near a surface of a first interconnect structure comprised of a first metal, a region of varied composition including the first metal and a second element. The method further includes forming a recess within the region of varied composition. The recess laterally extends a first distance along the surface and vertically extends a second distance below the first surface. The method further includes filling the recess with a second metal to form a second interconnect structure that contacts the first interconnect structure.
US11854869B2

Methods of forming high aspect ratio openings. The method comprises removing a portion of a dielectric material at a temperature less than about 0° C. to form at least one opening in the dielectric material. The at least one opening comprises an aspect ratio of greater than about 30:1. A protective material is formed in the at least one opening and on sidewalls of the dielectric material at a temperature less than about 0° C. Methods of forming high aspect ratio features are also disclosed, as are semiconductor devices.
US11854868B2

Small sized and closely pitched features can be formed by patterning a layer to have holes therein and then expanding the layer so that the holes shrink. If the expansion is sufficient to pinch off the respective holes, multiple holes can be formed from one larger hole. Holes smaller and of closer pitch than practical or possible may be obtained in this way. One process for expanding the layer includes implanting a dopant species having a larger average atomic spacing than does the material of the layer.
US11854866B2

In some embodiments, the present disclosure relates to a method of forming an integrated chip. The method includes forming a gate electrode over a substrate. The gate electrode is laterally separated from a dielectric by a spacer structure. A sacrificial layer is formed over a top surface of the gate electrode. A liner layer is formed along a sidewall of the spacer structure and on the sacrificial layer. The sacrificial layer is removed and a hard mask material is formed over the gate electrode. A part of the dielectric is removed to form a contact opening laterally separated from the gate electrode by the spacer structure. A conductive contact is formed within the contact opening.
US11854861B2

A spin dry etching process includes loading an object into a dry etching system. A dry etching process is performed to the object, and the object is spun while the dry etching process is being performed. The spin dry etching process is performed using a semiconductor fabrication system. The semiconductor fabrication system includes a dry etching chamber in which a dry etching process is performed. A holder apparatus has a horizontally-facing slot that is configured for horizontal insertion of an etchable object therein. The etchable object includes either a photomask or a wafer. A controller is communicatively coupled to the holder apparatus and configured to spin the holder apparatus in a clockwise or counterclockwise direction while the dry etching process is being performed. An insertion of the etchable object into the horizontally-facing slot of the holder apparatus restricts a movement of the object as the dry etching process is performed.
US11854858B2

An expander unit of a cryogenic refrigerator device includes a moving assembly with a porous regenerative heat exchanger configured to move back and forth along a longitudinal axis. A magnetic spring assembly includes a stationary magnetic assembly fixed to the cold finger base that includes one or more magnetic rings fixedly arranged about a bore. A movable magnetic assembly includes one or more movable magnetic rings fixed to the moving assembly. An outer lateral dimension of each of the movable magnetic rings is less than an inner lateral dimension of the bore. The stationary magnetic assembly and the movable magnetic assembly are configured such that, when the moving assembly is displaced along the longitudinal axis from an equilibrium position, attractive and repulsive forces between the movable magnetic assembly and the stationary magnetic assembly yield a restoring force that is directed to restore the moving assembly to the equilibrium position.
US11854852B2

Discussed is a substrate chuck including: a substrate support part for supporting a substrate having an assembly electrode; a vertical moving part which moves the substrate so that one surface of the substrate comes in contact with a fluid in a state in which the substrate is supported by the substrate support; an electrode connection part for applying power to the assembly electrode to generate an electric field so that semiconductor light-emitting diodes are placed at the predetermined positions of the substrate in a process of moving the semiconductor light-emitting diodes by a position change of at least one magnet; and a rotating part for rotating the substrate support part around a rotating shaft so that the substrate is placed in an upward or downward direction, wherein the rotating shaft is spaced apart from a center of the substrate support part at a predetermined distance.
US11854851B2

A closed gas circulation system may include a sealed plenum, circulation fans, and a fan filter unit (FFU) inlet to contain, filter, condition, and re-circulate a gas through a chamber of an interface tool. The gas provided to the chamber is maintained in a conditioned environment in the closed gas circulation system as opposed to introducing external air into the chamber through the FFU inlet. This enables precise control over the relative humidity and oxygen concentration of the gas used in the chamber, which reduces the oxidation of semiconductor wafers that are transferred through the chamber. The closed gas circulation system may also include an air-flow rectifier, a return vent, and one or more vacuum pumps to form a downflow of collimated gas in the chamber and to automatically control the feed-forward pressure and flow of gas through the chamber and the sealed plenum.
US11854850B2

Described herein is a technique capable of improving the controllability of a thickness of a film formed on a large surface area substrate having a surface area greater than a surface area of a bare substrate and improving the thickness uniformity between films formed on a plurality of large surface area substrates accommodated in a substrate loading region by reducing the influence of the surface area of the large surface area substrate and the number of the large surface area substrates due to a loading effect even when the plurality of large surface area substrates are batch-processed using a batch type processing furnace.
US11854843B2

A substrate stage includes: a base portion having a mounting surface; an annular support configured to support a substrate; an annular partition wall configured to divide the mounting surface into an outer region and an inner region in a radial direction of the substrate; a plurality of protrusions provided on the mounting surface and configured to support the substrate with a gap left between an upper end surface of the partition wall and the substrate; an outer flow path in communication with the outer region, and configured to allow a heat transfer gas supplied to a space between the substrate and the mounting surface to flow therethrough; an inner flow path in communication with the inner region, and configured to allow the heat transfer gas to flow therethrough; and an annular diffusion portion configured to diffuse the heat transfer gas along a circumferential direction of the partition wall.
US11854840B2

A substrate processing system includes: a substrate transfer device; processing units each having a substrate holding mechanism for rotatably holding a substrate received from the substrate transfer device and a processing fluid supply part for supplying a processing fluid to the substrate; and a controller for controlling the substrate transfer device and the processing units according to processing recipe information so as to execute the substrate processing process. When an abnormality in a certain unit of the processing units occurs in the substrate processing process for the substrate to be processed, the controller controls the substrate transfer device and a relief processing unit according to complementary recipe information so that the complementary processing process for a relief substrate is executed in the relief processing unit by transferring the relief substrate to the relief processing unit different from the certain processing unit.
US11854839B2

An isolation valve assembly including a valve body having an inlet and an outlet. The isolation valve includes a seal plate disposed within an interior cavity of the valve body. The seal plate is movable between a first position allowing gas flow from the inlet to the outlet, and a second position preventing gas flow from the inlet to the outlet. The isolation valve includes a closure element disposed within the valve body. The closure element is configured to retain the seal plate stationary in the first position or the second position. The closure element includes a first sealing element positioned adjacent to a first surface of the seal plate. A working surface of the first sealing element is substantially obscured from the gas flow when the seal plate is stationary.
US11854837B2

Semiconductor devices and methods of manufactured are presented in which a first redistribution structure is formed, semiconductor devices are bonded to the first redistribution structure, and the semiconductor devices are encapsulated in an encapsulant. First openings are formed within the encapsulant, such as along corners of the encapsulant, in order to help relieve stress and reduce cracks.
US11854830B2

A method of manufacturing a circuit board includes preparing a substrate having electrical conductivity, removing a portion of a first surface of the substrate to form a plurality of pillars on the first surface of the substrate, locating an insulating material on the first surface of the substrate to cover a space between the plurality of pillars of the substrate, forming a pattern on a second surface, which is opposite to the first surface of the substrate, by removing a portion of the second surface of the substrate, forming a first metal layer on the first surface of the substrate, and forming a second metal layer on the second surface of the substrate.
US11854821B2

A method of removing a hard mask is provided. Gate stacks are patterned on a substrate, where the gate stacks include a polysilicon layer and the hard mask deposited over the polysilicon layer. A dielectric layer is deposited on the substrate and on the patterned gate stacks. A first portion of the dielectric layer is planarized by chemical mechanical polishing (CMP) to remove a topography of the dielectric layer. The hard mask and a second portion of the dielectric layer are removed by the CMP.
US11854809B2

A manufacturing method of an electronic device includes: forming a drift layer of an N type; forming a trench in the drift layer; forming an edge-termination structure alongside the trench by implanting dopant species of a P type; and forming a depression region between the trench and the edge-termination structure by digging the drift layer. The steps of forming the depression region and the trench are carried out at the same time. The step of forming the depression region comprises patterning the drift layer to form a structural connection with the edge-termination structure having a first slope, and the step of forming the trench comprises etching the drift layer to define side walls of the trench, which have a second slope steeper than the first slope.
US11854807B2

Methods of forming line-end extensions and devices having line-end extensions are provided. In some embodiments, a method includes forming a patterned photoresist on a first region of a hard mask layer. A line-end extension region is formed in the hard mask layer. The line-end extension region extends laterally outward from an end of the first region of the hard mask layer. The line-end extension region may be formed by changing a physical property of the hard mask layer at the line-end extension region.
US11854801B2

A method for depositing an object, including: —approaching, in an enclosure, a holder in the direction of a carrier substrate, then—transferring, in the enclosure, the object from the holder to an area for depositing the carrier substrate. The transfer step is preferably carried out when the inside of the enclosure is in a vacuum at a pressure below 10−6 bar.
US11854796B2

A semiconductor device structure is provided. The structure includes a semiconductor substrate and a gate stack over the semiconductor substrate. The structure also includes a sealing element extending along a sidewall of the gate stack. The sealing element has a first atomic layer and a second atomic layer, and the first atomic layer and the second atomic layer have different atomic concentrations of carbon. The structure further includes a spacer element over the sealing element.
US11854794B2

A method for cleaning a through via including the following steps is provided: heating a cleaning fluid to a predetermined temperature; mixing the cleaning liquid with an inert gas and entering into a cleaning cavity; atomizing the cleaning liquid in an atomizer to spray on a wafer surface and to wet an inner wall and a bottom of the through via; and closing a cleaning liquid valve.
US11854790B2

The disclosure discloses a global shutter CMOS image sensor, which adopts non-uniform storage diffusion region doping to reduce the junction leakage at storage points, so as to ensure that with the increase of the depth of photodiodes and the increase of pixels, all carriers in rows read subsequently can be transferred to storage diffusion regions, the loss of the carriers in the storage diffusion regions is not caused when a global shutter transistor is turned on, and the carriers can be completely transferred from the storage diffusion regions to floating diffusion regions through second transfer transistors even if the number of rows of pixel units increases during reading-out row by row. The disclosure further discloses a method for making the global shutter CMOS image sensor.
US11854789B2

Semiconductor structures and methods for forming the same are provided. The method includes forming a dummy gate structure over a substrate and forming a sealing layer surrounding the dummy gate structure. The method includes forming a spacer covering the sealing layer and removing the dummy gate structure to form a trench. The method further includes forming an interfacial layer and a gate dielectric layer. The method further includes forming a capping layer over the gate dielectric layer and partially oxidizing the capping layer to form a capping oxide layer. The method further includes forming a work function metal layer over the capping oxide layer and forming a gate electrode layer over the work function metal layer. In addition, a bottom surface of the capping oxide layer is higher than a bottom surface of the spacer.
US11854787B2

Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
US11854786B2

An integrated circuit includes a plurality of first layer deep lines and a plurality of first layer shallow lines. The integrated circuit also includes a plurality of second layer deep lines and a plurality of second layer shallow lines. Each of the first layer deep lines and the first layer shallow lines is in a first conductive layer. Each of the second layer deep lines and the second layer shallow lines is in a second conductive layer above the first conductive layer.
US11854784B2

A semiconductor package structure includes a semiconductor die, a redistribution layer (RDL) structure, a protective insulating layer, and a conductive structure. The semiconductor die has a first surface, a second surface opposite the first surface, and a third surface adjoined between the first surface and the second surface. The RDL structure is on the first surface of the semiconductor die and is electrically coupled to the semiconductor die. The protective insulating layer covers the RDL structure, the second surface and the third surface of the semiconductor die. The conductive structure passes through the protective insulating layer and is electrically coupled to the RDL structure.
US11854782B2

A semiconductor device comprising a semiconductor substrate having upper and lower surfaces and a hydrogen containing region containing hydrogen and helium is provided. The carrier concentration distribution of the hydrogen containing region has: a first local maximum point; a second local maximum point closest to the first local maximum point among local maximum points positioned between the first local maximum point and the upper surface; a first intermediate point of the local minimum between the first and second local maximum points; and a second intermediate point closest to the second local maximum point among local minimum points or flat points where the carrier concentration remains constant positioned between the second local maximum point and the upper surface. A highest point of a helium concentration peak is positioned between the first and second local maximum points. The carrier concentration is lower at the first intermediate point than the second intermediate point.
US11854775B2

The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated optical measurement system that enable microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond while measuring the local surface properties of the component while being grown. Related methods include deposition of the component, measurement of the local surface properties, and/or alteration of operating conditions during deposition in response to the local surface properties. As described in more detail below, the MPCR apparatus includes one or more electrically conductive, optically transparent regions forming part of the external boundary of its microwave chamber, thus permitting external optical interrogation of internal reactor conditions during deposition while providing a desired electrical microwave chamber to maintain selected microwave excitation modes therein.
US11854772B2

A plasma processing apparatus according to an exemplary embodiment includes a processing container, a stage, a dielectric plate, an upper electrode, an introduction part, a driving shaft, and an actuator. The stage is provided in the processing container. The dielectric plate is provided above the stage via a space in the processing container. The upper electrode has flexibility, is provided above the dielectric plate, and provides a gap between the dielectric plate and the upper electrode. The introduction part is an introduction part of radio frequency waves that are VHF waves or UHF waves, is provided at a horizontal end portion of the space. The driving shaft is coupled to the upper electrode on a central axial line of the processing container. The actuator is configured to move the driving shaft in a vertical direction.
US11854767B2

A measuring method includes placing a substrate on an electrostatic chuck disposed inside a chamber, attracting the substrate onto the electrostatic chuck, generating plasma inside the chamber, detecting an amount of light reflected at the substrate by light emission of the plasma, and calculating a natural frequency of the substrate based on the amount of light.
US11854766B2

Embodiments described herein relate to plasma processes. A plasma process includes generating a plasma containing negatively charged oxygen ions. A substrate is exposed to the plasma. The substrate is disposed on a pedestal while being exposed to the plasma. While exposing the substrate to the plasma, a negative direct current (DC) bias voltage is applied to the pedestal to repel the negatively charged oxygen ions from the substrate.
US11854760B2

A crucible that exploits the observation that molten metal tends to flow toward the hottest regions is disclosed. The crucible includes an interior in which dopant material may be disposed. The crucible has a pathway leading from the interior toward an aperture, wherein the temperature is continuously increasing along the pathway. The aperture may be disposed in or near the interior of the arc chamber of an ion source. The liquid metal flows along the pathway toward the arc chamber, where it is vaporized and then ionized. By controlling the flow rate of the pathway, spillage may be reduced. In another embodiment, an inverted crucible is disclosed. The inverted crucible comprises a closed end in communication with the interior of the ion source, so that the closed end is the hottest region of the crucible. An opening is disposed on a different wall to allow vapor to exit the crucible.
US11854757B2

In an embodiment a switching device includes at least two stationary contacts in a switching chamber and a movable contact in the switching chamber, wherein the switching chamber has a switching chamber wall, wherein each of the stationary contacts projects into the switching chamber through a respective opening in the switching chamber wall, wherein, on an inner side of the switching chamber that faces the movable contact, a continuous surface region occluded from the stationary contacts is located between the openings in the switching chamber wall, wherein the continuous surface region includes a trench, wherein the continuous surface region is arranged between at least two dam-like raised portions extending above the inner side of the switching chamber, and wherein the continuous surface region is arranged symmetrically in relation to the stationary contacts.
US11854746B2

A dielectric ceramic composition includes a barium titanate (BaTiO3)-based base material main ingredient and an accessory ingredient, the accessory ingredient including dysprosium (Dy) and praseodymium (Pr) as first accessory ingredients. A content of the Pr satisfies 0.233 mol≤Pr≤0.699 mol, based on 100 mol of the barium titanate base material main ingredient.
US11854722B2

A power cable for transmitting electrical power includes at least two electrical conductors extending mainly along a power transmission axis. A first of the conductors called the external conductor surrounds a second of the conductors called the internal conductor along the axis. At least one insert is arranged between the internal conductor and the external conductor. The insert extends over only part of the cable along the axis. The insert introduces a first impedance between the internal conductor and the external conductor with a value different from a second impedance between the internal conductor and the external conductor outside of the part of the cable over which the insert extends.
US11854717B2

The present disclosure relates to a method for preparing high-temperature superconducting yttrium barium copper oxide (YBCO) wire by 3D-printing, this method is divided into the following four steps: firstly, preparing a nano-level superconducting powder precursor; and then, preparing a printing paste with suitable viscosity and supporting characteristics; after that, using a CAD 3D modeling, exporting STL format model data and slicing by a professional software; implementing one-step preparing strands with low AC loss by twisting the print nozzle. Finally, the printed twisted wire is formed into a practical superconducting twisted cable through the processes such as plastic removal process, crystallizing process, oxygen supplementing process and assembling process in order. The present disclosure firstly provides an application for applying high temperature superconducting material to direct ink writing 3D-printing technology. By preparing micro/nano level superconducting core filaments based on 3D-printing, the diameter of the core filaments could be reduced, and thereby a material-structure integrative design could be implemented. The present disclosure simplifies the preparation of high temperature superconducting wires, improves the current-carrying capacity and the production efficiency of the high temperature super conducting wires, and reduces the production cost.
US11854714B2

A tempering process for tempering an aluminum alloy coil includes a first reel-to-reel process including an anneal to solutionize the aluminum alloy followed by a quench, a second reel-to-reel process comprising rolling reduction, and a hardening anneal performed on the aluminum alloy coil. Cladding may be performed during the second reel-to-reel process; or a subsequent reel-to-reel electroplating process may be performed including an alkaline soak clean, an alkaline microetch and seed electroplating, and aqueous electroplating of a contact metal onto the seed electroplating. Electrical interconnect components may be stamped from the tempered and clad or electroplated aluminum alloy coil. The electrical interconnect components may, for example, be connectors, lead frames, or bus bars.
US11854712B2

An X-ray collimator (30) that comprises: a collimator body (31) comprising: a collimation conduit (32) provided with an inlet (320), configured to be connected to an X-ray source (20) for the inlet of a beam (B) of X-rays, and an outlet (321), configured to emit a collimated portion (B1) of the X-ray beam (B); and a derivation conduit (33) inclined with respect to the collimation conduit (32), wherein the derivation conduit (33) is provided with an inlet (330), configured to be connected to the X-ray source (20) for the inlet of a peripheral portion (B2) of the same X-ray beam (B) emitted by the source (20), and an outlet (331); a reference detector (40) fixed to the collimator body (31) and provided with an inlet window (41) facing the outlet (331) of the derivation conduit (33).
US11854710B2

A method for manufacturing nuclear reactor fuel assembly. The method comprises applying a protective coating on fuel elements, wherein each fuel element is moved through a protective coating application device installed on an assembly stand. The protective coating comprises a water-soluble lubricant consisting of nonylphenol ethoxylate and monobasic unsaturated fatty acids. The method further comprises installing the coated fuel elements into grid cells of an assembly, wherein during the installing, each coated fuel element is moved on the assembly stand in a horizontal direction along its own axis into the grid cells. At least part of the steps of applying a protective coating and installing the coated fuel elements occur simultaneously. After installing the coating, top and bottom nozzles are attached to the assembly. After attaching the top and bottom nozzles, the fuel elements are washed to remove the protective coating from the fuel elements, which are subsequently dried.
US11854708B2

Embodiments are directed to managing the provisioning of healthcare services. A visit profile that includes a reason for the visit and patient demographic information may be provided by a patient requesting a visit to obtain healthcare services. Match scores for providers may be generated based on matching models and the visit profile. A provider may be assigned to the visit based on the match scores. A virtual waiting room may be provided for the patient based on the visit profile. The visit profile may be updated with supplemental information based on the interactions between the patient and the virtual waiting room, patient information, or visit information. Updated match scores may be provided for the providers based on the updated visit profile. If an updated match score exceeds a previously determined higher match score, another provider associated with a higher match score may be assigned to the visit.
US11854706B2

The MIHIC system in various embodiments described herein helps clinicians predict the risk of maternal mortality by detecting diseases early and identifying possible risks in mothers, fetuses and infants across pre, peri and post-natal stages of pregnancy. The system quantifies risk as a single MIHIC score, which through quantification assigns possible risks to the mother, fetus and infant. The MIHIC score uses a specialized algorithm to derive the individual and overall risk as a value between 0 and 1 and uses the risk scores to stratify the patients into High, Medium and Low risk for preventive intervention and improved pregnancy outcome.
US11854700B1

A method of and system for the determination of MMI to assist in injury and exposure claim adjudication by assisting stakeholders access to a metric system analysis based on an objective claim data set. The method and system utilizes a recovery score index for determining whether the individual is medically stable and one or more recovery phase classifications for determining that available treatment has been provided to the individual. Based on these metrics, the present invention is able to determine a highly accurate and objective maximum medical improvement status and dating assignment.
US11854696B2

A computer system for routing breathing apparatus compliance data that includes a processor and network interface configured to receive input data including breathing apparatus compliance data via a network, format the compliance data into a destination format in accordance with formatting data and transmit the formatted compliance data via a network to a recipient system in accordance with routing information.
US11854692B2

Proposed is a cloud-based API specification management method for simultaneously interworking multiple hospital servers and consortium servers. In the method, a cloud server may simultaneously inquire a patient number from the multiple hospital servers when a user terminal executes a dedicated application to input personal identification information, the registration confirmation of the patient number is transmitted to the user terminal when the cloud server confirms whether the patient number is registered in an hospital server among the multiple hospital servers, and the user terminal logs in with the patient number, and the cloud server identifies hospital information when it calls the medical treatment service, thus requesting the hospital server to interwork the medical treatment service. Further, the cloud server may merge multiple pieces of patient data and simultaneously requests service interworking from the multiple consortium servers in response to the service selected by the user terminal.
US11854665B2

Illustrative embodiments of systems and methods for the identification of traits associated with DNA samples using epigenetic-based patterns detected via massively parallel sequencing (MPS) are disclosed. Illustrative embodiments may involve digesting a DNA sample with a methylation-dependent endonuclease, amplifying loci of the digested DNA sample (including a positive control locus that does not contain a restriction site for the methylation-dependent endonuclease) using a multiplex PCR to produce amplicons, sequencing the amplicons using an MPS instrument to generate sequence reads, determining a sequence count for each of the loci by comparing each of the sequence reads to reference sequences, normalizing the sequence count for each of the loci to the sequence count of the positive control locus, and identifying a trait associated with the DNA sample by applying a classification algorithm to the normalized sequence counts.
US11854664B2

Embodiments of the present invention provide a computer-implemented system and method for generating and searching a database containing all of the potential substructures (e.g., metabolites) of a chosen complex molecule based on minimum cleavable units (MCUs) of the chosen complex molecule, wherein each record in the generated database suitably defines the molecular weight and physical arrangement of each substructure. Embodiments of the invention also provide a user interface and a search engine for searching the database based on a query molecular weight (or query molecular weight range) to identify all of the substructures having a total molecular weight matching the query molecular weight or range. Embodiments of the invention are also capable of transmitting to a display device operated by an end user a description and/or a graphical representation of every identified substructure of the chosen complex molecule.
US11854663B2

A method of operating a memory circuit includes enabling a first row of select transistors, disabling a second row of select transistors, enabling a first row of memory cells in response to a first word line signal, and disabling a second row of memory cells in response to a second word line signal. Enabling the first row of select transistors includes turning on a first select transistor in the first row of select transistors in response to a first select line signal thereby electrically coupling a first local bit line and a global bit line to each other. Disabling the second row of select transistors includes turning off a second select transistor in the second row of select transistors in response to a second select line signal thereby electrically decoupling a second local bit line and the global bit line from each other.
US11854650B2

A memory device that includes a first memory cell, a second memory cell and a sense amplifier. The sense amplifier includes a first branch and a second branch and are configured to output a first voltage and a second voltage to the first memory and the second memory, respectively in a trimming operation. A first clamp device of the sense amplifier includes a first clamp transistor and a plurality of first trimming transistors that are coupled to the first clamp transistor in parallel. The gate terminals of the first clamp transistor and the plurality of first trimming transistors are biased by a fixed clamp voltage. Each of the plurality of first trimming transistors is selectively conducted to compensate a mismatch between the first voltage and the second voltage.
US11854646B1

A 3D memory device including: a plurality of memory cells, where each memory cell of the plurality of memory cells includes at least one memory transistor, where each of the at least one memory transistor includes a source, a drain, and a channel; and a plurality of bit-line pillars, where each bit-line pillar of the plurality of bit-line pillars is directly connected to a plurality of the source or the drain, where the plurality of bit-line pillars are vertically oriented, where the channel is horizontally oriented, where each of the at least one memory transistor is directly connected to at least one of the plurality of bit-line pillars, where the plurality of memory cells include a partially or fully metalized source structure and/or a partially or fully metalized drain structure, where the metalized source includes two metal structures, and where the two metal structures include a tungsten structure.
US11854638B2

A memory stores dummy data including a first data area having more “0” than “1” of a binary logic and a second data area having more “1” than “0” of the binary logic. An ECC processor detects a first error bit number related to the first data area and a second error bit number related to the second data area. A calculator calculates a relative difference of the first error bit number from the second error bit number. A comparator compares the relative difference with a predetermined value. A corrector corrects a read voltage on the basis of a result of comparison by the comparator.
US11854635B2

Several embodiments of reclaimable semiconductor device packages and assemblies are disclosed herein. A semiconductor device assembly (100) includes a package (101) having a housing (102) and a package contact (104) arranged to receive a signal indicative of a reclamation state. A plurality of modules of semiconductor dies (106) are located within the housing and electrically coupled to the package contact (104). The dies (106) of the first and second modules dies are configured to store a module configuration state. The first and second modules (107a, 107b) are enabled for operation based, at least in part, on the reclamation state and the module configuration state.
US11854630B2

A storage device is provided which shares a host memory with a host. The storage device includes an interface that exchanges data with the host and implements a protocol to use a partial area of the host memory as a buffer of the storage device. A storage controller of the storage device monitors deterioration information of a first area of the buffer and transmits a corruption prediction notification associated with the first area to the host based on a result of the monitoring.
US11854628B2

A system can include a voltage generator configured to generate a reference voltage, a power-up voltage, and a replicated voltage based on a power supply voltage. The system can further include a logic sub-component coupled to the voltage generator and configured to output a reset signal based on a comparison of the reference voltage to the power-up voltage and an indication that the reference voltage that has entered a steady state and is reliable as a measurement with respect to a voltage level of the power supply voltage. The indication can be determined based on a comparison of the replicated voltage to a particular threshold voltage level.
US11854613B2

A memory device is provided. The memory device includes an array of memory cells arranged in a plurality of rows, a plurality of word lines respectively coupled to the plurality of rows of the memory cells, and a peripheral circuit coupled to the word lines. The peripheral circuit is configured to convert a first value to a second value based on a mapping relationship between a read gray code and a program gray code, perform a program operation to program the second value into a memory cell as a state based on the read gray code, and perform a read operation to read out the state from the memory cell based on the read gray code to be the first value.
US11854608B2

The present invention relates generally to the field of semiconductor memories and in particular to memory cells comprising a static random access memory (SRAM) bitcell (100). Leakage current in the read path is reduced by connecting a read access transistor terminal either to GND or VDD during read access or write access and idle state. The SRAM cell inverters may be asymmetrical in size. The memory may comprise various boost circuits to allow low voltage operation or application of distinguished supply voltages.
US11854606B2

A sense amplifier includes a first power terminal, a second power terminal, a first switching unit, a second switching unit, a third switching unit, a fourth switching unit, a first NMOS transistor, a second NMOS transistor, a first PMOS transistor, a second PMOS transistor, a third PMOS transistor and a fourth PMOS transistor. When the sense amplifier works, by outputting appropriate sequential logic signals to the four switching units respectively, controlling the on and off of the four switching units.
US11854603B2

A data storage device including, in one implementation, a memory device and a controller configured to configured to retrieve a plurality of physical memory addresses from a first lookup table in the non-volatile memory. Each physical memory address is a combination of a word line and a string number of the non-volatile memory and the each physical memory address has a first number of bits. The controller is further configured to generate a plurality of encoded values by encoding the plurality of physical memory addresses. Each of the plurality of encoded values has a second number of bits that is smaller than the first number of bits. The controller is further configured to store the plurality of encoded values in the first lookup table, generate a logical to encoded value look-up table with the plurality of encoded values, and store the logical to encoded value look-up table in the memory.
US11854601B2

Apparatuses, systems, and methods for read clock timing alignment in a stacked memory. An interface die provides a read clock to a core die. The core die includes a serializer which generates data with timing based on the read clock and an adjustable delay circuit which provides a delayed read clock back to the interface die. The interface die outputs the data with timing based on the delayed read clock received from the core die. In this way, the read clock passes along a return clock path from the interface die, through a delay circuit of the core die and back to the interface die before controlling data output timing. Each core die may adjust the timing of the delay of the read clock in order to better align the read clock with the timing of data provided from that die.
US11854590B2

A sense amplifier reference is generated with the same memory cell columns as data cells in order to match signal paths between the data and reference signals. Each row of data memory cells may have a corresponding set of reference cells, which greatly reduces the number of data cells supported by a reference, and in turn reduces the impact of process variations. A memory array may include data columns, a first reference column in the memory array configured to provide a logic 0 reference signal, and a second reference column in the memory array configured to provide a logic 1 reference signal. A circuit is configured to combine at least the logic 0 reference signal and the logic 1 reference signal to generate a reference signal for a sense amplifier to identify the data signal provided from the data columns.
US11854586B2

A magnetic tape in which a C—H derived C concentration calculated from a C—H peak surface area ratio in C1s spectra obtained by XPS performed on a surface of the magnetic layer at a photoelectron take-off angle of 10 degrees is 45 atom % to 65 atom %, and in an environment with a temperature of 23° C. and a relative humidity of 50%, an AlFeSil abrasion value45° of the surface of the magnetic layer measured at a tilt angle of 45° of an AlFeSil prism is 20 μm to 50 μm, a standard deviation of an AlFeSil abrasion value of the surface of the magnetic layer measured at each of given tilt angles of the AlFeSil prism is 30 μm or less, and the tilt angle of the AlFeSil prism is an angle formed by a longitudinal direction of the AlFeSil prism and a width direction of the magnetic tape.
US11854579B2

Apparati, methods, and computer readable media for inserting identity information from a source image (static image or video) (301) into a destination video (302), while mimicking motion of the destination video (302). In an apparatus embodiment, an identity encoder (304) is configured to encode identity information of the source image (301). When source image (301) is a multi-frame static image or a video, an identity code aggregator (307) is positioned at an output of the identity encoder (304), and produces an identity vector (314). A driver encoder (313) is coupled to the destination (driver) video (302), and has two components: a pose encoder (305) configured to encode pose information of the destination video (302), and a motion encoder (315) configured to separately encode motion information of the destination video (302). The driver encoder (313) produces two vectors: a pose vector (308) and a motion vector (316). A neural network generator (310) has three inputs: the identity vector (314), the pose vector (308), and the motion vector (316). The neural network generator (310) is configured to generate, in response to these three inputs, a composite video (303) comprising identity information of the source image (301) inserted into the destination video (302), where the composite video (303) has substantially the same temporal information as the destination video (302).
US11854571B2

Apparatuses and methods of transmitting and receiving a speech signal. The method of transmitting a speech signal includes extracting low frequency feature information from an input speech signal by using a first feature extracting network; and transmitting a speech signal corresponding to the low frequency feature information to a receiving end. The method of receiving a speech signal includes receiving a first speech signal transmitted by a transmitting end; extracting low frequency feature information from the first speech signal and recovering high frequency feature information based on the low frequency feature information, by using a second feature extracting network; and outputting a second speech signal including the low frequency feature information and the high frequency feature information.
US11854569B2

The present invention relates to a method for receiving data transmitted acoustically. The method includes receiving an acoustically transmitted signal encoding data; processing the received signal to minimise environmental interference within the received signal; and decoding the processed signal to extract the data. The data encoded within the signal using a sequence of tones. A method for encoding data for acoustic transmission is also disclosed. This method includes encoding data into an audio signal using a sequence of tones. The audio signal in this method is configured to minimise environmental interference. A system and software are also disclosed.
US11854567B2

One example includes a digital twin of a microphone array. The digital twin acts as a digital copy of a physical microphone array. The digital array allows the microphone array to be analyzed, simulated and optimized. Further, the microphone array can be optimized for performing sound quality operations such as noise suppression and speech intelligibility.
US11854564B1

A device capable of autonomous motion may move in an environment and may receive audio data from a microphone. A model may be trained to process the audio data to suppress noise from the audio data. The model may include an encoder that includes one or more convolutional layers, one or more recurrent layers, and a decoder that includes one or more convolutional layers.
US11854562B2

A method (and structure and computer product) to permit zero-shot voice conversion with non-parallel data includes receiving source speaker speech data as input data into a content encoder of a style transfer autoencoder system, the content encoder providing a source speaker disentanglement of the source speaker speech data by reducing speaker style information of the input source speech data while retaining content information and receiving target speaker input speech as input data into a target speaker encoder. The output of the content encoder and the target speaker encoder are combined in a decoder of the style transfer autoencoder, and the output of the decoder provides the content information of the input source speech data in a style of the target speaker speech information.
US11854559B2

A schematic block diagram of a decoder for decoding an encoded audio signal is shown. The decoder includes an adaptive spectrum-time converter and an overlap-add-processor. The adaptive spectrum-time converter converts successive blocks of spectral values into successive blocks of time values, e.g. via a frequency-to-time transform. Furthermore, the adaptive spectrum-time converter receives a control information and switches, in response to the control information, between transform kernels of a first group of transform kernels including one or more transform kernels having different symmetries at sides of a kernel, and a second group of transform kernels including one or more transform kernels having the same symmetries at sides of a transform kernel. Moreover, the overlap-add-processor overlaps and adds the successive blocks of time values to obtain decoded audio values, which may be a decoded audio signal.
US11854556B2

Methods and apparatus are disclosed for supplementing partially readable and/or inaccurate codes. An example apparatus includes a watermark analyzer to select a first watermark and a second watermark decoded from media; a comparator to compare a first decoded timestamp of the first watermark to a second decoded timestamp of the second watermark; and a timestamp adjuster to adjust the second decoded timestamp based on the first decoded timestamp of the second watermark when at least a threshold number of symbols of the second decoded timestamp match corresponding symbols of the first decoded timestamp.
US11854555B2

An audio signal processing apparatus in which different pieces of predetermined parameter information regarding acoustic transfer in a head of a listener are retained as preset candidates, a parameter information list including the retained preset candidates is presented, to prompt a user to select parameter information, and an audio signal for the user is generated by using the user-selected parameter information.
US11854553B2

A method comprises obtaining, by a computing system, first audio data representing one or more initial utterances during an interactive voice session with an interactive voice system; generating, by the computing system, based on the first audio data, a prediction regarding whether a subsequent utterance of a user during the interactive voice session will contain sensitive information, the subsequent utterance following the one or more initial utterances in time; obtaining, by the computing system, second audio data representing the subsequent utterance; determining, by the computing system, based on the prediction, whether to transmit the second audio data; and based on a determination not to transmit the second audio data: replacing, by the computing system, the second audio data with third audio data that is based on a voice of the user; and transmitting, by the computing system, the third audio data.
US11854552B2

Techniques for using validated communications identifiers of a user's communications profile to resolve entries in another user's contact list are described. When a user imports a contact list, the contact list may include multiple entities related to the same person. The system may identify one of the entries in the contact list that corresponds to a validated communications identifier stored in another user's communications profile. The system may identify other validated communications identifiers in the other user's communications profile and cross-reference them against the entries of the contact list. If the system determines the contact list includes entries for the different validated communications identifiers of the other user, the system may consolidate the entries into a single entry associated with the other user.
US11854550B2

A method of presenting a signal to a speech processing engine is disclosed. According to an example of the method, an audio signal is received via a microphone. A portion of the audio signal is identified, and a probability is determined that the portion comprises speech directed by a user of the speech processing engine as input to the speech processing engine. In accordance with a determination that the probability exceeds a threshold, the portion of the audio signal is presented as input to the speech processing engine. In accordance with a determination that the probability does not exceed the threshold, the portion of the audio signal is not presented as input to the speech processing engine.
US11854549B2

Systems and methods for distinguishing valid voice commands from false voice commands in an interactive media guidance application. In some aspects, the interactive media guidance application receives, at a user device, a signature sound sequence. The interactive media guidance application determines, using control circuitry, based on the signature sound sequence, a threshold gain for the current location of the user device. The interactive media guidance application receives, at the user device, a voice command. The interactive media guidance application determines, using the control circuitry, based on the voice command, a gain for the voice command. The interactive media guidance application determines, using the control circuitry, whether the gain for the voice command is different from the threshold gain. Based on determining that the gain for the voice command is different from the threshold gain, the interactive media guidance application executes, using the control circuitry, the voice command.
US11854547B2

In one aspect, a playback device includes a voice assistant service (VAS) wake-word engine and a command keyword engine. The playback device detects, via the command keyword engine, a first command keyword of in voice input of sound detected by one or more microphones of the playback device. The playback device determines an intent based on at least one keyword in the voice input via a local natural language unit (NLU). After detecting the first command keyword event and determining the intent, the playback device performs a first playback command corresponding to the first command keyword and according to the determined intent. When the playback device detects, via the wake-word engine, a wake-word in voice input, the playback device streams sound data corresponding to at least a portion of the voice input to one or more remote servers associated with the VAS.
US11854540B2

A device may receive text data, audio data, and video data associated with a user, and may process the received data, with a first model, to determine a stress level of the user. The device may process the received data, with second models, to determine depression levels of the user, and may combine the depression levels to identify an overall depression level. The device may process the received data, with a third model, to determine a continuous affect prediction, and may process the received data, with a fourth model, to determine an emotion of the user. The device may process the received data, with a fifth model, to determine a response to the user, and may utilize a sixth model to determine a context for the response. The device may utilize seventh models to generate contextual conversation data, and may perform actions based on the contextual conversational data.
US11854532B2

Disclosed is a system and method for detecting and addressing bias in training data prior to building language models based on the training data. Accordingly system and method, detect bias in training data for Intelligent Virtual Assistant (IVA) understanding and highlight any found. Suggestions for reducing or eliminating them may be provided This detection may be done for each model within the Natural Language Understanding (NLU) component. For example, the language model, as well as any sentiment or other metadata models used by the NLU, can introduce understanding bias. For each model deployed, training data is automatically analyzed for bias and corrections suggested.
US11854523B2

A sound absorber includes cavities mutually different in at least one of shape and size. A wall of a first cavity included in the cavities includes a first region and a second region. Through-holes connecting an interior to an exterior of the first cavity is formed in the first region. No through-holes connecting the interior and the exterior of the first cavity is formed in the second region adjacent to the first region. A wall of a second cavity included in the cavities includes a third region and a fourth region. Through-holes connecting an interior to an exterior of the second cavity is formed in the third region. No through-holes connecting the interior and the exterior of the second cavity is formed in the fourth region adjacent to the third region. Size of through-holes in the first region is different from size of through-holes in the third region.
US11854515B1

Systems and methods for monitoring non-use of personal electronic devices are disclosed. Connection of a personal electronic device to a charging circuit is detected and identified to a particular personal electronic device. Connections of each personal electronic device are aggregated and rendered to a display to provide feedback and gamification of periods of non-use of the personal electronic devices. Gamification is employed to promote non-use of the personal electronic devices.
US11854505B2

A display compensation method and device, and a display panel are disclosed. The display panel includes a plurality of pixel units each including a plurality of subpixels. The display compensation method includes obtaining original grayscale values of sub-images included in a pending image corresponding to the pixel units, and determining the sub-images whose original grayscale value is less than or equal to a grayscale threshold value as a target sub-image. The target sub-image is displayed through each of the subpixels of a target pixel unit corresponding to the target sub-image, and each of the subpixels of the target pixel unit has a grayscale value equal to a grayscale value of the target sub-image.
US11854503B2

A wireless electronic label comprises a display module, a rectenna module and a control drive module. The display module has a display surface. The rectenna module is disposed on the display surface of the display module. The rectenna module is used to receive an electromagnetic wave signal and convert it into an electrical energy signal. The rectenna module is made of light-transmitting electronically conductive material. The control drive module is used to convert the electrical energy signal into electrical energy to power the wireless electronic label and to send a command signal to the display module. The display module is further used to display a label signal on the display surface according to the command signal.
US11854494B2

The technology of this application relates to a voltage adjustment method and an electronic device. The method includes obtaining a target luminance value of current display of a display pixel, determining a voltage increment value based on the target luminance value, and adjusting, based on the voltage increment value, an initial cathode voltage of an OLED device corresponding to the display pixel, where after voltage adjustment, a change amount between a luminance value of the display pixel and the target luminance value falls within a preset range. This application may be applied to an electronic device, and display quality of a display screen can be improved while reducing power consumption of the display screen.
US11854490B1

To reduce the amount of space occupied in the inactive area of a display by gate driver circuitry, at least a portion of the gate driver circuitry may be positioned in the active area of the display. To accommodate the gate driver circuitry, emissive sub-pixels may be laterally shifted relative to corresponding thin-film transistor sub-pixels. This allows for the thin-film transistor sub-pixels to be grouped adjacent to the central area of the active area, leaving room along an edge of the active area to accommodate one or more additional display components such as gate driver circuitry or fanout portions of data lines.
US11854481B1

A display panel includes a display area and a non-display area surrounding the display area. The display area includes a plurality of display lines and a plurality of display sub-pixels arranged in arrays. The non-display area further includes a dummy sub-pixel, a driver chip, a feedback line and a compensation line. The driver chip is used for acquiring a current signal of a light-emitting element in the dummy sub-pixel through the feedback line, and generating a compensation signal when the current signal fed back by the feedback line is not equal to the preset threshold value, and also for generating a display compensation signal when the current signal fed back by the feedback line is equal to the preset threshold value, and the display compensation signal is transmitted to the pixel driving circuit of the display sub-pixel through the display line.
US11854478B2

The present application discloses a current-driven display device that can perform accurate external compensation in consideration of a temperature distribution in a display panel while preventing the configuration from being complicated. A display portion of an organic EL display device is provided with a plurality of temperature detection circuits in addition to pixel circuits arranged in a matrix. A data-side drive circuit measures a current flowing through a transistor in each temperature detection circuit. A display control circuit obtains a temperature from the measured value based on a temperature characteristic of the transistor, estimates a temperature of each pixel circuit from the temperature, corrects a current value measured at the time of characteristic detection for a drive transistor of each pixel circuit considering the estimated temperature, and updates correction data for compensating for variations in the threshold voltage and gain of the drive transistor based on the corrected current value.
US11854477B2

A pixel circuit includes a capacitor, a light emitting control transistors, a driving transistor, and multiple light emitting transistors. The light emitting control transistor includes a gate electrode coupled to a light emitting control signal, a source electrode coupled to a supply voltage, and a drain electrode. The driving transistor includes a gate electrode coupled to the capacitor, a source electrode coupled to the drain electrode of the light emitting control transistor, and a drain electrode. Each light emitting transistor includes a gate electrode coupled to a respective light emitting signal, a source electrode coupled to the drain electrode of the driving transistor, and a drain electrode coupled to a respective light emitting element. Each light emitting signal turns on the respective light emitting transistor during a respective light emitting period within a frame period to cause the respective light emitting element to emit a light. The light emitting control signal turns on the light emitting control transistor during each light emitting period within the frame period.
US11854469B2

A display device includes a display panel including a plurality of pixels, and a panel driver configured to drive the display panel. The panel driver receives input image data at a variable input frame frequency, stores the variable input frame frequency as a previous frame frequency by monitoring the variable input frame frequency, determines a reference frequency based on the previous frame frequency, determines a reference luminance as a luminance of the display panel at the reference frequency, and adjusts data voltages applied to the plurality of pixels such that a luminance of the display panel at the variable input frame frequency becomes the reference luminance.
US11854468B2

The present disclosure provide a display panel and a display apparatus. The display panel includes a pixel driving circuit including a light-emitting control signal terminal and a node control signal terminal; the display panel further includes a light-emitting driving circuit, including a plurality of light-emitting driving units, an output terminal of each light-emitting driving unit transmitting a light-emitting control signal to a light-emitting control signal terminal; a gate driving circuit, including a plurality of gate driving units, an output terminal of gate driving unit transmitting a node control signal to the node control signal terminal, where signals inputted to input terminals of the light-emitting driving units and input terminals of the gate driving units are the same; and a common transmission signal line, the input terminals of the light-emitting driving units and the input terminals of the gate driving units are connected to the same common transmission signal line.
US11854465B2

The present disclosure provides a driving circuit of a display device and the display device. The driving circuit includes an input unit, a control unit coupled to the input unit, and a light emitting unit coupled to the control unit. The control unit is configured to drive the light emitting unit to emit light. the control unit comprises a pulse width modulation (PWM) control unit and a pulse amplitude modulation (PAM) control unit, the PWM control unit and the PAM control unit are mutually independent, the PWM control unit is configured to control a light emitting time of the light emitting unit, and the PAM control unit is configured to control a magnitude of a driving current in the light emitting unit.
US11854463B2

A data driving integrated circuit of the present embodiment may include a digital to analog converter configured to change a digital signal into an analog signal and an amplifier configured to receive the analog signal through an input terminal and output a data voltage to a pixel connected to a data line, wherein the amplifier may receive, as feedback, one of a plurality of output signals from a plurality of output terminals.
US11854456B2

An electro-optic display having a plurality of pixels is driven from a first image to a second image using a first drive scheme, and then from the second image to a third image using a second drive scheme different from the first drive scheme and having at least one impulse differential gray level having an impulse potential different from the corresponding gray level in the first drive scheme. Each pixel which is in an impulse differential gray level in the second image is driven from the second image to the third image using a modified version of the second drive scheme which reduces its impulse differential The subsequent transition from the third image to a fourth image is also conducted using the modified second drive scheme but after a limited number of transitions using the modified second drive scheme, all subsequent transitions are conducted using the unmodified second drive scheme.
US11854455B2

A method of generating information to control display of images providing a display device with align pattern data to which box data having a maximum reference gray level is added, obtaining a first capture image generated based on the align pattern data to which the box data is added, providing the display device with one or more full pattern data respectively having one or more reference gray levels lower than the maximum reference gray level, and obtaining one or more second capture images generated based on the one or more full pattern data. The method also includes generating compensation data including compensation values at the one or more reference gray levels and the maximum reference gray level. The compensation data may be generated based on the one or more second capture images and a portion of the first capture image corresponding to the box data.
US11854451B2

An electronic circuit adapted to process fingerprint data from a panel including touch sensors and fingerprint sensors is provided. The electronic circuit includes a first circuit, a second circuit and a control circuit. The first circuit is configured to receive touch sensing signals from the touch sensors. The second circuit is configured to receive fingerprint sensing signals corresponding to at least one fingerprint imprint from the fingerprint sensors via fingerprint sensing lines. The control circuit is configured to determine a fingerprint touch area according to the touch sensing signals, and select a subset of the fingerprint sensing lines to form a fingerprint sensing zone adapted for a fingerprint sensing operation and including at least one boundary based on the determined fingerprint touch area. The subset of fingerprint sensing lines is selected based on the at least one boundary of the fingerprint sensing zone. An electronic device and a method for sensing at least one fingerprint imprint from a panel are also provided.
US11854450B2

A display device includes a display panel including a plurality of pixels, a data driver configured to provide data signals to the plurality of pixels, a scan driver configured to provide scan signals to the plurality of pixels, and a controller configured to control the data driver and the scan driver. The controller includes a volatile age memory configured to store accumulated degradation amounts for the plurality of pixels, and an internal age memory configured to store backup accumulated degradation amounts generated based on the accumulated degradation amounts. The controller is further configured to compensate input image data by selectively using the accumulated degradation amounts of the volatile age memory or the backup accumulated degradation amounts of the internal age memory.
US11854446B2

A method for measuring a luminance profile of a display device including pixels divided into blocks, includes: measuring a first reference luminance profile when a partial area of each of the blocks is in a display state and a remaining area of each of the blocks is in a non-display state; measuring a first luminance profile when an entire area of a first block among the blocks is in the display state, the partial area of each of remaining blocks is in the display state, and the remaining area of each of the remaining blocks is in the non-display state; and measuring a second luminance profile when an entire area of a second block among the blocks is in the display state, the partial area of each of remaining blocks is in the display state, and the remaining area of each of the remaining blocks is in the non-display state.
US11854435B2

A device that makes it possible to make the movements of moving platforms safer and relates more particularly to a linear actuator that can be used in a hexapod positioner supporting a load is provided. The actuator is actuated by electric control and comprises at least one hydraulic damper positioned on the actuator such that the forces generated by damping in the event of extreme breakdown are experienced only by the load and are distributed such as to limit force and acceleration peaks.
US11854433B2

Systems and methods of the present invention provide for estimating latent ability of responders to a digital assessment in the form of ability scores and estimating item parameters an assessment item of the digital assessment including difficulty scores and discrimination scores. Maximum likelihood estimation may be performed based on an item response theory model to estimate the item parameters. Supervisory, extraction, and worker modules of a workflow manager module may initiate general purpose graphics processing unit instances and cause these instances to perform the maximum likelihood estimation calculations. The item response theory model may be a two parameter model that is modified to account for changes in difficulty caused by the use of hints.
US11854428B2

A tactile display device including a nodule having variable stiffness under a surface to provide a near-real feeling of palpation for a physician. The device utilizes granular jamming technology using pneumatic actuation to control a nodule that maintains its shape while allowing the modulation in stiffness. The nodule includes two hemispheres, a contact portion and an actuation portion, forming a sphere. The contact portion and the actuation portion include different thicknesses and/or materials, while the dimensions of the dimensions of the nodule are maintained. As such, a physician can utilize the device to identify the difference between a normal lump and an affected lump even if the shape of each lump appears to be the same. With the tactile display device, due to the different levels of stiffness, a physician can detect the severity of the lump.
US11854422B2

A method and a device for information interaction. The method comprises: in response to receiving an oral practice request initiated by a user, outputting task information for indicating a target oral practice task (201), wherein the task information corresponds to task intention information and task keyword information; acquiring voice information inputted by the user with regard to the task information (202); recognizing the voice information, so as to determine user intention information and user keyword information corresponding to the user (203); generating a matching result for indicating whether the user has completed the target oral practice task (204), wherein the matching result is obtained by the following step: respectively matching the user intention information with the task intention information, and the user keyword information with the task keyword information, so as to obtain the matching result; and presenting the matching result to the user (205).
US11854419B2

The present invention relates to a system for monitoring food waste. The system includes a weight mechanism configured for weighing a waste receptacle, wherein the waste receptacle is configured for receiving food waste from a plurality of consecutive disposal events before emptying, a processor configured for measuring the difference in weight of the waste receptacle between each disposal event and calculating the weight of a disposal event based upon the difference and a user interface configured to receive at least one indication categorising the food waste in a disposal event by a user. A method for monitoring food waste is also described.
US11854416B2

According to an example aspect of the present invention, there is provided a drone station comprising a housing having a cavity, and a structure permeable to air and configured to be moved from a first position into a second position and reverse, wherein a platform for landing, storing and starting of a drone is provided by the structure within the cavity in the first position, and wherein an entry into the cavity or an exit out of the cavity through a ventral access is provided for the drone in the second position.
US11854410B2

A common command and control architecture (alternatively termed herein as a “universal control architecture”) is disclosed that allows different unmanned systems, including different types of unmanned systems (e.g., air, ground, and/or maritime unmanned systems), to be controlled simultaneously through a common control device (e.g., a controller that can be an input and/or output device). The universal control architecture brings significant efficiency gains in engineering, deployment, training, maintenance, and future upgrades of unmanned systems. In addition, the disclosed common command and control architecture breaks the traditional stovepipe development involving deployment models and thus reducing hardware and software maintenance, creating a streamlined training/proficiency initiative, reducing physical space requirements for transport, and creating a scalable, more connected interoperable approach to control of unmanned systems over existing unmanned systems technology.
US11854408B2

Providing an open interface to a navigation system is provided herein. A single partition (or more than one partition) of a partitioned operating system can be utilized to provide connectivity between a navigation system and one or more user equipment devices. Thus, the navigation system and the one or more user equipment devices can be communicatively coupled via the at least one partition. Further, a Software Development Kit (SDK) can be configured to enable bi-directional communication between the navigation system and the one or more user equipment devices. In addition, the SDK can provide security for the navigation system when communicating with the one or more user equipment devices.
US11854405B2

An example operation may include one or more of identifying one or more blockchain members of a vehicle platoon placement group, receiving a request to perform a task from the blockchain members, creating a scheduled task date associated with the task, notifying the blockchain members of the scheduled task date, receiving task progress updates corresponding to the blockchain members, and storing the task progress updates in a blockchain.
US11854402B2

An approach is provided for detecting lane departure events based on map data and probe data. The approach, for example, involves map-matching probe data to a lane of a road segment. The probe data is collected from one or more sensors of at least one vehicle and/or at least one user device that traversed the road segment. The approach also involves processing the probe data to detect at least one lane departure event. The approach further involves categorizing the at least one lane departure event as an intentional lane departure event or an unintentional lane departure event. The approach further involves creating a lane departure warning message for the road segment based on the at least one categorized lane departure event, and/or road segments associated with multiple lane departure warning messages within a certain time period. The approach further involves providing the lane departure warning message as an output.
US11854399B2

A system with control of vehicle driving through a roundabout includes: a position recognizer configured to recognize that a host vehicle is traveling around the roundabout; a front sensor disposed at a front of the host vehicle and configured to sense a vehicle that possibly enters the roundabout while the host vehicle is traveling around the roundabout; a rear sensor disposed at a rear of the host vehicle and configured to recognize a vehicle following the host vehicle while the host vehicle is traveling around the roundabout; a controller configured to calculate a possible entry time of the vehicle that possibly enters the roundabout, using information sensed by the rear sensor; and a communicator configured to provide the calculated possible entry time to the vehicle that possibly enters the roundabout.
US11854396B2

The present disclosure provides a method for managing a parking lot in a smart city based on an Internet of Things, which is executed by a management platform. The method comprises obtaining a user position of a user platform based on a service platform, determining a candidate parking lot that meets a preset condition; determining time when a vehicle to be parked arrives at the candidate parking lot based on the user position; determining free parking space information when the vehicle to be parked arrives at the candidate parking lot; determining recommendation information based on the free parking space information; and sending the recommendation information to the user platform based on the service platform.
US11854388B2

A method and apparatus for level of service assessment at signalized intersections is disclosed. In an exemplary embodiment, a method for estimating an average delay per vehicle at a signalized intersection with a traffic signal, including sampling vehicle arrival rates at the signalized intersection, sampling vehicle departure rates at the signalized intersection, analyzing generated shock waves at the traffic signal, wherein the traffic signal shock wave is a change in vehicle density due to changes in the traffic signal, and estimating the average delay per vehicle based on the vehicle arrival rates, the vehicle departure rates, and the traffic shock waves at the signalized intersection.
US11854358B2

A monitoring system for deriving a measurement of a separation distance between a monitor and one or more tags, where each tag is adapted to be attached to or contained within an object to be monitored, comprises a monitor that is operable to trigger an event if the separation distance exceeds a set separation limit. A frequency of packet exchange between a tag and monitor is dynamically altered based on a comparison of one or more.
US11854357B2

Methods, systems, apparatus, and computer programs, for tracking objects are disclosed. In one aspect, a method is disclosed that includes actions of obtaining an image, determining that a user of a first monitoring system has opted-in for object tracking by a second monitoring system that is remote from the first monitoring system, and based on a determination that the user of the first monitoring system has opted-in for object tracking: determining whether the obtained image satisfies a predetermined level of similarity to a stored tracking object image model stored on a first device of the first monitoring system, and based on a determination that the obtained image satisfies a predetermined level of similarity to the stored tracking object image model, generating a tracking update notification, and transmitting the tracking update notification to the second monitoring system that is remote from the first monitoring system.
US11854352B2

A gaming machine having an electronic display which displays a plurality of empty drinking cups. A game controller causes the display of a ball and its movement toward and into one of the empty cups. A game play mechanism allows the player to direct the movement of the ball. If the player is successful in movement of a ball into a cup, the cup and the ball is then removed from the display. During play of the game, an amount of sobriety is determined in accord with the number of cups removed by the player. In accordance with the amount of sobriety determined, the cups are displayed in wobbling movement in order to give amusement to the game as well as difficulty in the play.
US11854344B2

A fraud detection system which detects fraud in a game of performing collection and redemption of chips in accordance with a win or lose result includes a camera which captures an image of chips contained in a chip tray of a dealer, an image analyzing apparatus which analyses the image captured by the camera to detect an amount of the chips contained in the chip tray, a card distribution device which determines a win or lose result of a game, and a control device which compares the win or lose result of the game and the amount of the chips contained in the chip tray before and after collection and redemption of the chips to detect fraud.
US11854343B2

A fraud detection system which detects fraud in a game of performing collection and redemption of chips in accordance with a win or lose result includes a camera which captures an image of chips contained in a chip tray of a dealer, an image analyzing apparatus which analyses the image captured by the camera to detect an amount of the chips contained in the chip tray, a card distribution device which determines a win or lose result of a game, and a control device which compares the win or lose result of the game and the amount of the chips contained in the chip tray before and after collection and redemption of the chips to detect fraud.
US11854339B2

A “dual” gaming unit or machine is configured to implement both one or more traditional casino-style wagering games, such as games having outcomes determined primarily by chance and not skill, and one or more games which are traditionally not casino style games, such as amusement-type games or games having amusement-type game components, such as games where the outcome is determined substantially by skill. The wagering game portion of the gaming machine may award monetary awards to the player for winning wagering game outcomes, and the amusement portion of the gaming machine may be used to award promotional prizes to the player. A player rewards system may include such dual gaming units or other award dispensing mechanisms.
US11854326B2

In some embodiments, an authentication device is provided. The authentication device configured to determine that the wearable device is authorized to participate in the premises security system, cause transmission of a first security token that is usable to validate that the wearable device is authorized to participate in the premises security system, in response to the status update, request the first security token from the wearable device, validate that the wearable device is authorized to participate in the premises security system based at least in part on the first security token received from the wearable device and in response to validating that the wearable device is authorized to participate in the premises security system, cause transmission of a second security token to the wearable device where the second security token is usable to trigger a premises security system action.
US11854321B2

An access control method for people in which the access control device (16) is assigned to an access point. Each access control device (16) has at least one antenna (1, 2, 8, 9, 10, 11), which emits beacons. Each access area (3) can only accommodate one person at a time. All antennas lie on an antenna plane. The transmitted beacons containing a unique access point ID, which positively identifies the access point and a unique antenna ID within predefined intervals. The received beacons are analyzed based on the RSSIs (Received Signal Strength Indicator) such that the distance of the mobile device (14) to the at least one antenna (1, 2, 8, 9, 10, 11) is determined. The received access point ID are transmitted to a server (15) or to the access control device (16) for analysis. Access is granted if the access authorization is valid for the access point ID.
US11854313B2

This disclosure relates to a distributed data center that includes resources carried by a fleet of vehicles. The system includes sensors configured to generate output signals conveying information related to the vehicles. The system may detect vehicle events based on the information conveyed by the output signals. The system includes a remote computing server configured to present a user interface to a user. Through the user interface, the user may query information from one or more vehicles in the fleet. The distributed query is transmitted to individual vehicles, and results are locally processed in accordance with response constraints and subsequently transmitted back to the remote computing server for presentation to the user.
US11854291B2

In one embodiment, a sensor system includes an active thermal sensor pixel matrix, a plurality of presence sensors, and an image acquisition controller. The pixel matrix includes a plurality of pixels arranged in a plurality of rows and a plurality of columns and a boundary defining a perimeter. The plurality of presence sensors is disposed at least partially within the boundary of the pixel matrix. The image acquisition controller is coupled to the pixel matrix and the plurality of presence sensors. The image acquisition controller is configured to: (i) receive signals from the presence sensors; (ii) identify, based on the signals, a scan region, wherein the scan region is a portion of the pixel matrix that is in contact with or adjacent to a specimen; and (iii) obtain image data only from pixels that are within the scan region for generating an image of the specimen.
US11854286B2

Systems and methods for receiving a set of documents (e.g., financial documents) converting them into graphical images, performing image-based, artificial intelligence analysis to determine a score for the set of documents. In addition, the artificial intelligence system generates an image output that indicates how the artificial intelligence system arrived at the score be visually depicting the graphical features detected by the artificial intelligence system. This may allow insight as to the basis for the score.
US11854283B2

The present disclosure provides a method for visual question answering, which relates to fields of computer vision and natural language processing. The method includes: acquiring an input image and an input question; detecting visual information and position information of each of at least one text region in the input image; determining semantic information and attribute information of each of the at least one text region based on the visual information and the position information; determining a global feature of the input image based on the visual information, the position information, the semantic information, and the attribute information; determining a question feature based on the input question; and generating a predicted answer for the input image and the input question based on the global feature and the question feature. The present disclosure further provides a device for visual question answering, a computer device and a medium.
US11854260B2

Techniques disclosed herein combine computer vision with eye tracking by identifying, via computer vision, safety hazards in a video captured by a camera mounted on a pair of safety glasses, and generating an alert if a user wearing the safety glasses has not (recently) noticed the hazard. Whether the user has noticed the hazard is determined based on eye tracking information extracted from a video captured by another camera that is mounted on the safety glasses and points toward the user. As a result, safety hazards may be automatically detected and reported to the user. In addition, only those hazards that have not been (recently) noticed by the user cause an alert to be generated, so the user is not distracted with unnecessary notifications.
US11854249B2

A character recognition method includes: performing feature extraction on an image to be recognized to obtain a first feature map; processing the first feature map to at least obtain N first candidate carrier detection boxes, each first candidate carrier detection box being configured to outline a region of a character carrier; screening the N first candidate carrier detection boxes to obtain K first target carrier detection boxes; performing a feature extraction on the first feature map to obtain a second feature map; processing the second feature map to obtain L first candidate character detection boxes, each first candidate character detection box being configured to outline a region containing at least one character; screening the L first candidate character detection boxes to obtain J first target character detection boxes; and recognizing characters in the J first target character detection boxes to obtain J target character informations.
US11854242B2

Methods, systems, and computer readable media for providing personalized saliency models, e.g., for use in mixed reality environments, are disclosed herein, comprising: obtaining, from a server, a first saliency model for the characterization of captured images, wherein the first saliency model represents a global saliency model; capturing a first plurality of images by a first device; obtaining information indicative of a reaction of a first user of the first device to the capture of one or more images of the first plurality images; updating the first saliency model based, at least in part, on the obtained information to form a personalized, second saliency model; and transmitting at least a portion of the second saliency model to the server for inclusion into the global saliency model. In some embodiments, a user's personalized (i.e., updated) saliency model may be used to modify one or more characteristics of at least one subsequently captured image.
Patent Agency Ranking