一种基于深度编解码对偶模型的复杂视觉图像重构方法
摘要:
本发明公开了一种基于深度编解码对偶模型的复杂视觉图像重构方法,属于生物医学图像脑解码中的视觉场景重构技术领域。本发明首先采集观看大量自然图像下的功能磁共振信号。然后分别建立四个网络模型:1、编码模型,即使用卷积神经网络将自然图像编码成视觉区的体素信号;2、解码模型,即是用卷积神经网络以及反卷积神经网络将视觉区体素信号解码成自然图像;3、判别自然图像模型,即判断真图像与假图像;4、判别视觉区响应模型,即判断真信号与假信号。通过训练设计好的四个模型,可实现从脑信号中还原出视觉场景图像。本发明首次解决了自然场景与脑信号之间直接相互转换的问题,可以实现脑机接口场景的实际应用。
0/0