一种联合动态脑网络和长短时记忆网络的癫痫识别装置

    公开(公告)号:CN107967686A

    公开(公告)日:2018-04-27

    申请号:CN201711442389.5

    申请日:2017-12-27

    IPC分类号: G06T7/00

    摘要: 本发明公开了一种联合动态脑网络和长短时记忆网络的癫痫识别装置,属于生物医学图像模式识别技术领域。本发明首先计算癫痫患者和正常对照组的功能磁共振成像的脑网络和动态脑网络。然后对于脑网络,使用F-score特征选择算法计算脑网络中每一个功能连接的F值,取出F值大于0.06对应的动态脑网络的特征作为长短时记忆网络的输入。接下来建立长短时记忆网络结构,输入为选出的动态脑网络特征,输出为样本标签,其中癫痫患者标签为1,正常人标签为0。最后使用随机梯度下降算法来优化网络中的参数,经过不断的训练,最终完成癫痫患者于正常人之间的识别任务。本发明首次结合动态脑网络和长短时记忆网络来进行癫痫医疗辅助诊断任务。

    一种基于深度编解码对偶模型的复杂视觉图像重构方法

    公开(公告)号:CN108573512B

    公开(公告)日:2021-04-30

    申请号:CN201810233579.4

    申请日:2018-03-21

    IPC分类号: G06T9/00

    摘要: 本发明公开了一种基于深度编解码对偶模型的复杂视觉图像重构方法,属于生物医学图像脑解码中的视觉场景重构技术领域。本发明首先采集观看大量自然图像下的功能磁共振信号。然后分别建立四个网络模型:1、编码模型,即使用卷积神经网络将自然图像编码成视觉区的体素信号;2、解码模型,即是用卷积神经网络以及反卷积神经网络将视觉区体素信号解码成自然图像;3、判别自然图像模型,即判断真图像与假图像;4、判别视觉区响应模型,即判断真信号与假信号。通过训练设计好的四个模型,可实现从脑信号中还原出视觉场景图像。本发明首次解决了自然场景与脑信号之间直接相互转换的问题,可以实现脑机接口场景的实际应用。

    一种基于深度编解码对偶模型的复杂视觉图像重构方法

    公开(公告)号:CN108573512A

    公开(公告)日:2018-09-25

    申请号:CN201810233579.4

    申请日:2018-03-21

    IPC分类号: G06T9/00

    摘要: 本发明公开了一种基于深度编解码对偶模型的复杂视觉图像重构方法,属于生物医学图像脑解码中的视觉场景重构技术领域。本发明首先采集观看大量自然图像下的功能磁共振信号。然后分别建立四个网络模型:1、编码模型,即使用卷积神经网络将自然图像编码成视觉区的体素信号;2、解码模型,即是用卷积神经网络以及反卷积神经网络将视觉区体素信号解码成自然图像;3、判别自然图像模型,即判断真图像与假图像;4、判别视觉区响应模型,即判断真信号与假信号。通过训练设计好的四个模型,可实现从脑信号中还原出视觉场景图像。本发明首次解决了自然场景与脑信号之间直接相互转换的问题,可以实现脑机接口场景的实际应用。

    一种联合动态脑网络和长短时记忆网络的癫痫识别装置

    公开(公告)号:CN107967686B

    公开(公告)日:2021-07-06

    申请号:CN201711442389.5

    申请日:2017-12-27

    摘要: 本发明公开了一种联合动态脑网络和长短时记忆网络的癫痫识别装置,属于生物医学图像模式识别技术领域。本发明首先计算癫痫患者和正常对照组的功能磁共振成像的脑网络和动态脑网络。然后对于脑网络,使用F‑score特征选择算法计算脑网络中每一个功能连接的F值,取出F值大于0.06对应的动态脑网络的特征作为长短时记忆网络的输入。接下来建立长短时记忆网络结构,输入为选出的动态脑网络特征,输出为样本标签,其中癫痫患者标签为1,正常人标签为0。最后使用随机梯度下降算法来优化网络中的参数,经过不断的训练,最终完成癫痫患者于正常人之间的识别任务。本发明首次结合动态脑网络和长短时记忆网络来进行癫痫医疗辅助诊断任务。

    基于GAN的交通视频显著性预测方法

    公开(公告)号:CN112308005A

    公开(公告)日:2021-02-02

    申请号:CN202011241840.9

    申请日:2020-11-09

    摘要: 本发明公开了一种基于GAN的交通视频显著性预测方法,属于计算机视觉技术领域。本发明将驾驶中的选择性注意机制与深度学习方法相结合,设计了逐渐生长多步判别的GAN网络模型,可以实时计算和预测行车记录仪拍摄的交通场景视频的显著性区域。基于本发明的GAN网络模型,可以有效地估计交通驾驶环境中驾驶员视觉搜索的显著性区域和环境周边突发情况,同时也能计算出交通标志等值得关注的重要目标。本发明通过结合视觉注意的相关机理及显著性检测模型去理解和预测交通驾驶场景中与驾驶任务有关的信息,可对未来的智能驾驶车辆、驾驶训练和辅助驾驶系统等提供有用的理论依据和视觉感知相关技术手段。