一种铝型材瑕疵检测方法
Abstract:
本发明公开了一种铝型材瑕疵检测方法,属于机器学习视觉检测领域。所述方法包括以下步骤:S1:获取全部图像,进行图像预处理;S2:对预处理后的图像进行特征提取;S3:将数据集分为训练集和测试集;S4:构造和训练BRDPSO‑RF模型,同步进行特征选择和RF参数的优化;S5:应用选择好的特征子集和优化后的RF模型对测试集进行瑕疵检测。本发明通过提出BRDPSO‑RF模型同步选择最优的特征子集和随机森林RF分类器的参数优化,提高瑕疵检测的准确度,减少学习及训练的时间复杂度。
Public/Granted literature
Patent Agency Ranking
0/0