摘要:
本发明公开了一种基于虚实孪生空间的电力设备小样本故障诊断方法及系统,属于电力设备的故障诊断领域,该方法包括:获取包含电力设备不同故障位置、故障类型及严重程度的测试样本组成精确实体空间;根据待诊断设备的仿真模型,仿真得到模糊镜像空间;将精确实体空间训练集与模糊镜像空间样本集进行空间杂交得到孪生空间训练样本集;将孪生空间训练样本集作为精确实体空间训练集的补充,故障类型和位置作为诊断标签,输入到深度卷积神经网络中进行训练,对精确实体空间验证集进行故障辨识与定位,验证诊断效果。本发明利用电力设备仿真来对实测样本进行数据增强,可以充分发挥电力仿真在诊断实践中的辅助作用,有效提高小样本诊断情形下的准确率。
公开/授权文献
- CN111400930A 基于虚实孪生空间的电力设备小样本故障诊断方法及系统 公开/授权日:2020-07-10