一种MIMU整体动态智能标定补偿方法
摘要:
本发明公开了一种MIMU整体动态智能标定补偿方法。该方法为:通过工装将MEMS‑IMU固定在测试设备上,采集保存IMU以及测试设备的输出;基于DeepAR递归神经网络建立误差补偿模型,确定神经网络输入输出结构、隐含层数目以及神经元数目;将采集到惯性测量单元实测数据作为神经网络的输入,测试设备的数据与惯性测量单元的实际输出的差值分别作为神经网络模型的输出,建立训练集与测试集,利用训练集对神经网络模型进行训练;利用训练完成的神经网络模型结合测试集输入得到模型的输出数据,将输出数据与测试集输出数据进行对比,评价模型性能并对模型参数进行调整优化,进而得到最终的补偿模型。本发明标定精度高,适应性强。
公开/授权文献
0/0