- 专利标题: Training with adaptive runtime and precision profiling
-
申请号: US15581031申请日: 2017-04-28
-
公开(公告)号: US11017291B2公开(公告)日: 2021-05-25
- 发明人: Brian T. Lewis , Rajkishore Barik , Murali Sundaresan , Leonard Truong , Feng Chen , Xiaoming Chen , Mike B. Macpherson
- 申请人: Intel Corporation
- 申请人地址: US CA Santa Clara
- 专利权人: Intel Corporation
- 当前专利权人: Intel Corporation
- 当前专利权人地址: US CA Santa Clara
- 代理机构: Jaffery Watson Mendonsa & Hamilton LLP
- 主分类号: G06N3/00
- IPC分类号: G06N3/00 ; G06N3/063 ; G06N3/04 ; G06F7/483 ; G06N3/08
摘要:
A mechanism is described for facilitating efficient training of neural networks at computing devices. A method of embodiments, as described herein, includes detecting one or more inputs for training of a neural network, and introducing randomness in floating point (FP) numbers to prevent overtraining of the neural network, where introducing randomness includes replacing less-significant low-order bits of operand and result values with new low-order bits during the training of the neural network.
公开/授权文献
- US20180314935A1 TRAINING WITH ADAPTIVE RUNTIME AND PRECISION PROFILING 公开/授权日:2018-11-01
信息查询
IPC分类:
G | 物理 |
G06 | 计算;推算或计数 |
G06N | 基于特定计算模型的计算机系统 |
G06N3/00 | 基于生物学模型的计算机系统 |