-
公开(公告)号:US12141891B2
公开(公告)日:2024-11-12
申请号:US18466991
申请日:2023-09-14
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Nicolas C. Galoppo Von Borries
IPC: G06F12/02 , G06F9/30 , G06F9/38 , G06F9/48 , G06F12/0811 , G06F12/0815 , G06F12/0831 , G06F12/0888 , G06F17/16 , G06F18/2136 , G06N3/04 , G06N3/08 , G06N20/00 , G06T1/20 , G06T1/60 , G06T15/00 , H03M7/30
Abstract: Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
-
公开(公告)号:US12112397B2
公开(公告)日:2024-10-08
申请号:US18334733
申请日:2023-06-14
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
IPC: G06T1/20 , G06F9/30 , G06F9/38 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/08 , G06N3/084
CPC classification number: G06T1/20 , G06F9/3001 , G06F9/3017 , G06F9/3851 , G06F9/3887 , G06F9/3895 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/08 , G06N3/084
Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.
-
公开(公告)号:US11727527B2
公开(公告)日:2023-08-15
申请号:US17541413
申请日:2021-12-03
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
IPC: G06T1/20 , G06N3/063 , G06F9/38 , G06F9/30 , G06N3/084 , G06N3/044 , G06N3/045 , G06N3/04 , G06N3/08
CPC classification number: G06T1/20 , G06F9/3001 , G06F9/3017 , G06F9/3851 , G06F9/3887 , G06F9/3895 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/08 , G06N3/084
Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex compute operation.
-
公开(公告)号:US11693658B2
公开(公告)日:2023-07-04
申请号:US17443376
申请日:2021-07-26
Applicant: Intel Corporation
Inventor: Kevin Nealis , Anbang Yao , Xiaoming Chen , Elmoustapha Ould-Ahmed-Vall , Sara S. Baghsorkhi , Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha
CPC classification number: G06F9/3001 , G06F9/3851 , G06F9/3887 , G06F9/3893 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/084 , G06T1/20 , G06F2207/4824
Abstract: One embodiment provides for a compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction that specifies multiple operands including a multi-bit input value and a ternary weight associated with a neural network and an arithmetic logic unit including a multiplier, an adder, and an accumulator register. To execute the decoded instruction, the multiplier is to perform a multiplication operation on the multi-bit input based on the ternary weight to generate an intermediate product and the adder is to add the intermediate product to a value stored in the accumulator register and update the value stored in the accumulator register.
-
公开(公告)号:US11593910B2
公开(公告)日:2023-02-28
申请号:US17741934
申请日:2022-05-11
Applicant: Intel Corporation
Inventor: Prasoonkumar Surti , Narayan Srinivasa , Feng Chen , Joydeep Ray , Ben J. Ashbaugh , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Sara S. Baghsorkhi , Justin E. Gottschlich , Altug Koker , Nadathur Rajagopalan Satish , Farshad Akhbari , Dukhwan Kim , Wenyin Fu , Travis T. Schluessler , Josh B. Mastronarde , Linda L. Hurd , John H. Feit , Jeffery S. Boles , Adam T. Lake , Karthik Vaidyanathan , Devan Burke , Subramaniam Maiyuran , Abhishek R. Appu
Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.
-
公开(公告)号:US11562461B2
公开(公告)日:2023-01-24
申请号:US17529862
申请日:2021-11-18
Applicant: Intel Corporation
Inventor: Prasoonkumar Surti , Narayan Srinivasa , Feng Chen , Joydeep Ray , Ben J. Ashbaugh , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Sara S. Baghsorkhi , Justin E. Gottschlich , Altug Koker , Nadathur Rajagopalan Satish , Farshad Akhbari , Dukhwan Kim , Wenyin Fu , Travis T. Schluessler , Josh B. Mastronarde , Linda L. Hurd , John H. Feit , Jeffery S. Boles , Adam T. Lake , Karthik Vaidyanathan , Devan Burke , Subramaniam Maiyuran , Abhishek R. Appu
IPC: G06T1/20 , G06T15/80 , G06F3/14 , G06T1/60 , G09G5/36 , G06F3/06 , G06N3/08 , G06N3/04 , G06N3/063 , G09G5/00
Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes one or more processing units to provide a first set of shader operations associated with a shader stage of a graphics pipeline, a scheduler to schedule shader threads for processing, and a field-programmable gate array (FPGA) dynamically configured to provide a second set of shader operations associated with the shader stage of the graphics pipeline.
-
公开(公告)号:US20230017304A1
公开(公告)日:2023-01-19
申请号:US17874876
申请日:2022-07-27
Applicant: Intel Corporation
Inventor: Rajkishore Barik , Brian T. Lewis , Murali Sundaresan , Jeffrey Jackson , Feng Chen , Xiaoming Chen , Mike Macpherson
Abstract: A mechanism is described for facilitating smart distribution of resources for deep learning autonomous machines. A method of embodiments, as described herein, includes detecting one or more sets of data from one or more sources over one or more networks, and introducing a library to a neural network application to determine optimal point at which to apply frequency scaling without degrading performance of the neural network application at a computing device.
-
公开(公告)号:US11488005B2
公开(公告)日:2022-11-01
申请号:US16518828
申请日:2019-07-22
Applicant: Intel Corporation
Inventor: Brian T. Lewis , Feng Chen , Jeffrey R. Jackson , Justin E. Gottschlich , Rajkishore Barik , Xiaoming Chen , Prasoonkumar Surti , Mike B. Macpherson , Murali Sundaresan
Abstract: A mechanism is described for facilitating smart collection of data and smart management of autonomous machines. A method of embodiments, as described herein, includes detecting one or more sets of data from one or more sources over one or more networks, and combining a first computation directed to be performed locally at a local computing device with a second computation directed to be performed remotely at a remote computing device in communication with the local computing device over the one or more networks, where the first computation consumes low power, wherein the second computation consumes high power.
-
公开(公告)号:US20210217130A1
公开(公告)日:2021-07-15
申请号:US17193658
申请日:2021-03-05
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Nicolas C. Galoppo Von Borries
IPC: G06T1/20 , G06F9/30 , G06F9/38 , G06F12/0811 , G06F12/0815 , G06F12/0831 , G06F12/0888 , H03M7/30 , G06K9/62 , G06N20/00 , G06F9/48 , G06F17/16 , G06N3/04 , G06N3/08 , G06T1/60 , G06T15/00
Abstract: Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
-
公开(公告)号:US11017291B2
公开(公告)日:2021-05-25
申请号:US15581031
申请日:2017-04-28
Applicant: Intel Corporation
Inventor: Brian T. Lewis , Rajkishore Barik , Murali Sundaresan , Leonard Truong , Feng Chen , Xiaoming Chen , Mike B. Macpherson
Abstract: A mechanism is described for facilitating efficient training of neural networks at computing devices. A method of embodiments, as described herein, includes detecting one or more inputs for training of a neural network, and introducing randomness in floating point (FP) numbers to prevent overtraining of the neural network, where introducing randomness includes replacing less-significant low-order bits of operand and result values with new low-order bits during the training of the neural network.
-
-
-
-
-
-
-
-
-