-
公开(公告)号:CN111650365B
公开(公告)日:2021-05-07
申请号:CN202010672513.2
申请日:2020-07-14
申请人: 清华大学 , 中国三峡建设管理有限公司
摘要: 本发明公开了一种智能灌浆多功能试验装置,包括智能灌浆单元机、试验箱、试验台架、地应力加载系统和地下水模拟系统;智能灌浆单元机通过灌浆管路与试验箱上的灌浆孔连通;试验箱位于试验台架内,并与试验台架形成至少一个间隔空间,试验箱上设置有至少一个与空间配合的排水孔,排水孔和空间构成用于模拟有无静、动地下水的地下水模拟系统;地应力加载系统包括设置于所述空间的、用于模拟应力状态和/或盖重的至少一个力加载器以及与所述力加载器连接的力加载控制系统;试验箱内设置传感器。通过本发明的试验装置可实现多种节理和裂隙组合的试样、浆液以及边界条件的组合试验,同时通过地应力加载系统和地下水模拟系统可更加真实反映灌浆情况。
-
公开(公告)号:CN112228111A
公开(公告)日:2021-01-15
申请号:CN202011086649.1
申请日:2020-10-12
申请人: 清华大学 , 中国三峡建设管理有限公司
摘要: 本公开是关于一种衬砌混凝土温度控制方法及系统,方法包括:根据衬砌混凝土浇筑块尺寸和冷却水管参数建立三维仿真模型,以确定温度传感器的最优埋设方式;通过以最优埋设方式布置的温度传感器获取衬砌混凝土的温度监测数据;基于所述温度监测数据,重构衬砌混凝土的温度场,得到混凝土的真实温度分布;根据所述混凝土的真实温度分布计算混凝土内部的温度梯度;将温度梯度大于预设梯度值的目标混凝土区域,通过智能通水与养护技术进行温度梯度控制。通过该技术方案,可以实现衬砌混凝土温度的精准控制。
-
公开(公告)号:CN109947064B
公开(公告)日:2020-07-14
申请号:CN201910264458.0
申请日:2019-04-03
申请人: 清华大学 , 中国三峡建设管理有限公司
IPC分类号: G05B19/418
摘要: 本发明提供了一种智能通水温度控制专家系统及硬件检测和数据监测方法,能够对系统中的硬件进行检测,对检测到的数据进行分析,基于多点实时采集的硬件数据,在数据初步对比的基础上,进一步根据预设的控制策略,准确确定故障发生位置和原因,有效甄别异常数据的有效性,从而减少故障排除时大量人力物力的投入,短时间内进行故障的排除,并能够避免无效的数据误差的干扰,精确、实时、自动的检测混凝土大坝的温度。
-
公开(公告)号:CN110006284B
公开(公告)日:2020-05-15
申请号:CN201910263617.5
申请日:2019-04-01
申请人: 清华大学 , 中国三峡建设管理有限公司
摘要: 本发明属于土木工程智能介质换热温控施工技术领域,提供了一种介质换热智能控制系统及方法。所述介质换热智能控制系统包括:热交换装置、热交换辅助装置和控制装置;多个所述一体流温控制装置设置于流温介质集成控制柜中;所述流温介质集成控制柜和数据采集分析反馈智能控制柜设置于所述热交换介质的回路中,所述控制装置控制所述热交换介质经所述回路及热交换辅助装置、热交换装置完成与所述目标区域的热量交换。本发明的有益效果在于:采用智能PID算法控制,通过梯度闭环智能学习控制方法进行换热过程中的最高温度控制、目标区域换热全过程空间温度变化率协调梯度控制和目标区域换热过程中异常温控工况的控制,可有效应对各种突发异常情况。
-
公开(公告)号:CN111046457A
公开(公告)日:2020-04-21
申请号:CN201911089572.0
申请日:2019-11-08
申请人: 清华大学 , 中国三峡建设管理有限公司
摘要: 本发明公开了一种施工全周期混凝土拱坝温控曲线模型。混凝土拱坝温控曲线模型包括连续的四个分期。四个分期分别为(1)升温期,从混凝土拌合楼出机口到入仓浇筑后最高温度出现前;(2)降温期,从最高温度出现到达到拱坝设计的封拱温度,期间采用全程连续光滑的降温方案;(3)控温期,从达到封拱温度到通水换热结束;(4)回升期,从通水换热结束到拱坝整体建设完成,主要监测指标为温度回升。本发明提供的施工全周期混凝土拱坝温控曲线模型应用于大体积中、低热混凝土拱坝的施工中,结合智能通水温控系统可实现对混凝土拱坝施工全周期的最高温度可控、温控过程可调、温控措施可优化,有效减小混凝土时空温度梯度,降低大坝的开裂风险。
-
公开(公告)号:CN110820747A
公开(公告)日:2020-02-21
申请号:CN201911089556.1
申请日:2019-11-08
申请人: 清华大学 , 中国三峡建设管理有限公司 , 中清控(武汉)科技有限公司
摘要: 本发明公开了一种混凝土仓内温差控制方法,包括:S1、基于仿真计算及材料试验确定混凝土仓内温度梯度控制标准;S2、基于混凝土仓的方量和配管率要求确定所埋冷却水管的总量;S3、按混凝土级配、仓形状等,对混凝土仓进行分区;S4、按照分区布设温度测点,并安装冷却水管,建立混凝土温度测点与冷却水管的对应关系;S5、计算温度测点间的最大距离,与仓内温度梯度控制标准相乘,得到仓内温差控制标准;S6、基于仓内温差控制标准和混凝土仓目标温控曲线设定各分区温度测点目标控温曲线;S7、分区调控通水冷却措施。通过“先控制后平均”的方法,可个性化调控混凝土仓内温差,有利于降低由于混凝土仓内温差过大引起的开裂风险。
-
公开(公告)号:CN110658875A
公开(公告)日:2020-01-07
申请号:CN201911089571.6
申请日:2019-11-08
申请人: 中国三峡建设管理有限公司 , 清华大学
摘要: 本发明提供一种大坝廊道温湿风在线监测及智能控制系统,包括数据采集及温湿风控制硬件系统、云平台系统和人机查询与控制界面。该系统可以实时在线监测廊道内小气候变化,包括廊道内温度、湿度和风速,并将采集的数据通过无线网络传输至云端以供查询及决策,通过超声波加湿器、入口封闭预警等手段动态调控廊道内小气候。本系统能及时有效地进行廊道内温湿度风速的动态监控,降低廊道开裂风险,同时减少人力成本。
-
公开(公告)号:CN109946960B
公开(公告)日:2020-07-28
申请号:CN201910258205.2
申请日:2019-04-01
申请人: 清华大学 , 中国三峡建设管理有限公司
摘要: 本发明属于水利水电工程智能通水温控施工技术领域,提供了一种数据采集柜。所述数据采集柜包括:柜体、接线装置、采集模块、中央处理模块和外设模块;所述接线装置用于安装所述采集模块、中央处理模块和外设模块;所述采集模块用于采集集成控制柜中的热交换媒介的流量、进出热交换媒介温度和混凝土块温度;所述中央处理模块将采集的数据上传至云服务器进行数据交互;所述中央处理模块采用梯度智能闭环学习控制方法对所述热交换媒介的流量进行控制,从而实现对控制对象的最高温度可控、降温速率可调和异常温度的可诊断。本发明的有益效果在于:所述数据采集柜抗干扰,可持续、稳定、高效运行,可实时地进行数据的采集、分析和控制。
-
公开(公告)号:CN110820846A
公开(公告)日:2020-02-21
申请号:CN201911112837.4
申请日:2019-11-14
申请人: 中国三峡建设管理有限公司 , 清华大学 , 中清控(武汉)科技有限公司 , 中国水利水电第八工程局有限公司 , 中国水利水电第四工程局有限公司
摘要: 本发明公开了一种坝后供水管网优化设计方法,所述方法包括:仓内管路设计、连接管设计、智能通水系统设计、供水包设计、坝后供水主管设计、供水主管网设计、水流换向设计、制冷水站设计、管网监控及管道交通设计流程。通过对坝后供水管网的系统设计,提供了更加精细、智能的供水保障,可显著提升大坝混凝土通水冷却的效率与质量,解决了现有技术中坝后供水管网管路布置复杂、连接件多、运行状态不可知以及控制不精准等技术问题。
-
公开(公告)号:CN110532609A
公开(公告)日:2019-12-03
申请号:CN201910672411.8
申请日:2019-07-24
申请人: 清华大学 , 中国华能集团有限公司 , 中国三峡建设管理有限公司
IPC分类号: G06F17/50
摘要: 本发明公开了一种基于分区等效灌浆压力向量的灌浆压力模拟方法及装置。其中,该方法包括:根据灌浆段所在高程及灌浆孔的倾斜角度划分多个灌浆区域;根据所述灌浆区域的岩性和灌浆施工布置条件设置所述灌浆区域的敏感系数;根据所述灌浆区域以及所述灌浆区域的敏感系数,建立分区等效灌浆压力向量模型,其中,分区等效灌浆压力向量的表达式为: 所述分区等效灌浆压力向量模型用于模拟灌浆压力在裂隙网络中的复杂分布。本发明解决了无法通过数值方法真实模拟实际灌浆压力指导工程施工的技术问题。
-
-
-
-
-
-
-
-
-