-
公开(公告)号:CN116561334A
公开(公告)日:2023-08-08
申请号:CN202310403556.4
申请日:2023-04-14
Applicant: 国家计算机网络与信息安全管理中心 , 长城计算机软件与系统有限公司
IPC: G06F16/36 , G06F16/31 , G06N3/0464 , G06F18/22 , G06N3/084
Abstract: 本发明实施例涉及一种关系抽取方法、装置、图谱构建方法及存储介质,所述方法包括:确定预设实体库中各实体之间的关系,所述关系为所述实体库中技术与技术之间的关系,和/或所述实体库中技术与企业之间的关系;根据所述实体库中所述实体之间的关系,建立邻接矩阵;基于所述邻接矩阵,构建与所述实体对应的图卷积网络;利用所述图卷积网络抽取所述实体库中各实体之间的关系。由此,可以实现确定预设实体库中各实体之间的关系,根据实体之间的关系建立邻接矩阵,进而构建与实体对应的图卷积网络,以实现基于图卷积网络简单、便捷地确定各个实体之间的关系,提高效率,提升用户体验。
-
公开(公告)号:CN116561244A
公开(公告)日:2023-08-08
申请号:CN202310403811.5
申请日:2023-04-14
Applicant: 国家计算机网络与信息安全管理中心 , 长城计算机软件与系统有限公司
IPC: G06F16/31 , G06F16/35 , G06F40/289 , G06F16/36 , G06F18/214 , G06F18/24 , G06F40/30 , G06N3/0499 , G06N3/0895
Abstract: 本发明实施例涉及一种目标关系的识别方法及装置,所述方法包括:获取目标关系对应的训练数据集和检测数据集;根据上下句预测和掩码预测对联合模型进行模型预训练,得到训练好的联合抽取预训练模型;将所述训练数据集输入到所述联合抽取预训练模型中进行模型训练,得到训练好的联合抽取模型;将所述检测数据集输入到所述联合抽取模型中进行数据抽取处理,得到检测抽取结果;根据所述检测抽取结果确定所述检测数据集对应目标关系的识别结果。通过将检测数据集输入到训练好的联合抽取模型中,实现数据抽取,得到检测抽取结果,将在抽取到的检测抽取结果进行判断分析,确定所述检测数据集的识别结果;由本方案,可以实现企业关系、资本谱系或实体关系的快速识别的技术效果。
-
公开(公告)号:CN116092102A
公开(公告)日:2023-05-09
申请号:CN202211714858.5
申请日:2022-12-27
Applicant: 国家计算机网络与信息安全管理中心 , 长城计算机软件与系统有限公司
IPC: G06V30/412 , G06V30/413 , G06V30/18 , G06V30/162 , G06V30/148 , G06V30/19 , G06V10/44 , G06V10/26 , G06V10/28 , G06V10/48 , G06V10/764 , G06V10/82 , G06N3/044 , G06N3/08
Abstract: 本发明公开了一种包含文本信息的结构图的处理方法,所述方法包括:基于包含文本信息的结构图的线段组成进行轮廓检测;根据检测出的轮廓拟合出几何多边形;基于所述结构图中文本框的特征条件,从所述几何多边形中过滤掉不符合所述特征条件的形状,得到边框。本发明能够从包含有文本信息的结构图中高效、准确地提取出边框。
-
公开(公告)号:CN115827871A
公开(公告)日:2023-03-21
申请号:CN202211690035.3
申请日:2022-12-27
Applicant: 国家计算机网络与信息安全管理中心 , 长城计算机软件与系统有限公司
IPC: G06F16/35 , G06N3/08 , G06F18/241 , G06N3/0464
Abstract: 本发明提供了一种互联网企业分类的方法和装置,其中该方法包括:S1:获取互联网企业的多维度数据,并对所述多维度数据预处理以生成长文本数据;S2:将所述长文本数据输入基于Transformer编码器的Bert网络模型进行处理;S3:将经过处理后的数据送入分类器来对所述互联网企业进行分类。本发明的方案基于在Transformer架构的深度神经网络中进行自动特征组合学习,能够对互联网企业准确进行行业分类,并能够极大提升互联网企业行业分类的准确率。本发明的方案能够快速将海量企业多维度信息进行识别,无需人工干预。本发明的方案基于大语料预训练模型加下游任务微调的方案能灵活应用在不同场景中海量企业的快速分类。
-
公开(公告)号:CN114819432B
公开(公告)日:2025-04-11
申请号:CN202110065882.X
申请日:2021-01-18
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06Q10/0635
Abstract: 本发明实施例涉及一种企业非法集资风险预测方法、装置、电子设备及存储介质,所述方法包括:获取待进行非法集资风险预测的目标企业的企业数据;对所述企业数据进行特征提取,得到所述目标企业的企业特征;将所述企业特征输入至至少一个已训练的非法集资风险预测模型,得到至少一个所述目标企业非法集资的风险概率;根据至少一个所述目标企业非法集资的风险概率确定所述目标企业是否存在非法集资风险。由此,可以提高对企业非法集资风险进行预测的预测结果的准确性。
-
公开(公告)号:CN114817485B
公开(公告)日:2024-09-06
申请号:CN202110078586.3
申请日:2021-01-20
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/332 , G06F16/35 , G06F18/241
Abstract: 本发明实施例涉及一种非法集资线索识别方法、装置、电子设备及存储介质,所述方法包括:获取多个待进行非法集资线索识别的目标文本数据;基于预设的线索特征规则库从多个所述目标文本数据中确定疑似非法集资线索数据;将所述疑似非法集资线索数据输入至至少一个已训练的非法集资线索分类模型,得到至少一个预测参数;依据所述疑似非法集资线索数据与所述疑似非法集资线索数据对应的至少一个所述预测参数构建非法集资线索数据库。由此,可以提高从海量互联网数据中筛选非法集资线索数据的效率,以及提高最终筛选出的非法集资线索数据的准确性、全面性。
-
公开(公告)号:CN110837608B
公开(公告)日:2024-04-12
申请号:CN201911080716.6
申请日:2019-11-07
Applicant: 中科天玑数据科技股份有限公司 , 国家计算机网络与信息安全管理中心
IPC: G06F16/9538 , G06F16/951
Abstract: 本发明提供了一种基于多源数据的舆情话题传播路径分析系统,包括:多源数据采集模块,用于对舆情话题进行多源数据采集,获取至少一项来源信息;传播路径分析模块,用于根据来源信息的类型采用不同的单源传播路径建立方案,得到单源传播路径,多个单源传播路径相互关联,得到交叉传播路径;传播主路径分析模块,用于分析各个节点的转发关系和转发量,得到舆情话题的关键传播节点,保留根节点与关键传播节点、关键传播节点之间的传播路径,删掉无关路径,得到传播主路径;路径显示模块,用于显示路径信息。本发明还提供了一种基于多源数据的舆情话题传播路径分析方法,帮助用户更加直观的了解舆情话题的传播情况。
-
公开(公告)号:CN116561335A
公开(公告)日:2023-08-08
申请号:CN202310403733.9
申请日:2023-04-14
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/36 , G06F16/901 , G06F16/35 , G06F40/211
Abstract: 本发明实施例涉及一种图谱构建方法、装置、电子设备及存储介质,所述方法包括:从预设的产业数据库中确定与目标产业匹配的产业数据;根据所述产业数据确定产业链图谱中各实体之间的上下位关系;获取所述目标产业的企业信息;根据所述上下位关系及所述企业信息,构建所述目标产业的产业链图谱。由此,可以实现准确确定产业链图谱中各实体之间的上下位关系,避免需要人工大量的查阅产业资料,简化操作流程,提升了产业链图谱生成的便利性,一定程度上解决了人工构建可能不全面的问题。
-
公开(公告)号:CN109977414B
公开(公告)日:2023-03-14
申请号:CN201910256768.8
申请日:2019-04-01
Applicant: 中科天玑数据科技股份有限公司 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种互联网金融平台用户评论主题分析系统及方法,涉及自然语言处理领域;分析系统包括数据采集模块、金融词向量学习模块、评论主题生成模块、用户评论分类模块和评论主题更新模块;分析方法所述方法利用金融论坛中平台用户印象聚类生成用户评论主题,基于用户评论主题对互联网金融平台相关用户评论进行分析,并定期对评论主题进行更新。本发明不需要进行长期人工干预,借助互联网中易于获取的用户知识实现稳定的互联网金融平台评论分析及主题提取,分析获得的评论主题较有代表性,从而可以通过分析结果帮助用户更直观了解该互联网金融平台。
-
公开(公告)号:CN114861661A
公开(公告)日:2022-08-05
申请号:CN202110077227.6
申请日:2021-01-20
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/295 , G06N3/04 , G06N3/08 , G06Q40/00
Abstract: 本申请涉及一种实体识别方法、装置、设备及存储介质。该方法包括获取非法集资线索数据;确定与非法集资线索数据对应的字向量序列;利用预先训练得到的BiLSTM‑CRF模型对字向量序列进行推理,得到与非法集资线索数据对应的标签序列;从标签序列中提取属于实体标签的目标标签,并将目标标签对应的数据作为非法集资线索数据中的非法集资线索实体。可见,采用本申请的技术方案实现了对非法集资线索实体的自动识别,不仅识别效率高,且可以做到实时识别。
-
-
-
-
-
-
-
-
-