-
公开(公告)号:CN116561244A
公开(公告)日:2023-08-08
申请号:CN202310403811.5
申请日:2023-04-14
Applicant: 国家计算机网络与信息安全管理中心 , 长城计算机软件与系统有限公司
IPC: G06F16/31 , G06F16/35 , G06F40/289 , G06F16/36 , G06F18/214 , G06F18/24 , G06F40/30 , G06N3/0499 , G06N3/0895
Abstract: 本发明实施例涉及一种目标关系的识别方法及装置,所述方法包括:获取目标关系对应的训练数据集和检测数据集;根据上下句预测和掩码预测对联合模型进行模型预训练,得到训练好的联合抽取预训练模型;将所述训练数据集输入到所述联合抽取预训练模型中进行模型训练,得到训练好的联合抽取模型;将所述检测数据集输入到所述联合抽取模型中进行数据抽取处理,得到检测抽取结果;根据所述检测抽取结果确定所述检测数据集对应目标关系的识别结果。通过将检测数据集输入到训练好的联合抽取模型中,实现数据抽取,得到检测抽取结果,将在抽取到的检测抽取结果进行判断分析,确定所述检测数据集的识别结果;由本方案,可以实现企业关系、资本谱系或实体关系的快速识别的技术效果。
-
公开(公告)号:CN115827871A
公开(公告)日:2023-03-21
申请号:CN202211690035.3
申请日:2022-12-27
Applicant: 国家计算机网络与信息安全管理中心 , 长城计算机软件与系统有限公司
IPC: G06F16/35 , G06N3/08 , G06F18/241 , G06N3/0464
Abstract: 本发明提供了一种互联网企业分类的方法和装置,其中该方法包括:S1:获取互联网企业的多维度数据,并对所述多维度数据预处理以生成长文本数据;S2:将所述长文本数据输入基于Transformer编码器的Bert网络模型进行处理;S3:将经过处理后的数据送入分类器来对所述互联网企业进行分类。本发明的方案基于在Transformer架构的深度神经网络中进行自动特征组合学习,能够对互联网企业准确进行行业分类,并能够极大提升互联网企业行业分类的准确率。本发明的方案能够快速将海量企业多维度信息进行识别,无需人工干预。本发明的方案基于大语料预训练模型加下游任务微调的方案能灵活应用在不同场景中海量企业的快速分类。
-
公开(公告)号:CN108092918A
公开(公告)日:2018-05-29
申请号:CN201711288661.9
申请日:2017-12-07
Applicant: 长城计算机软件与系统有限公司
IPC: H04L12/863 , H04L12/865 , H04L29/08 , G06F9/54 , G06F17/30
Abstract: 本发明实施例涉及一种消息传输方法和系统,属于数据处理技术领域。其中,该方法包括:将系统数据信息存储至数据库的第一事务中;在第一事务中,根据从数据库中调用的主键生成规则生成与系统数据信息对应的消息ID;根据消息ID和系统数据信息生成待处理消息;将待处理消息添加至分发队列中;根据预设的处理规则对分发队列中的待处理消息分别进行分发处理和/或路由处理。通过本实施例提供的技术方案,一方面,避免了现有技术中数据不一致的技术弊端;另一方面,实现了高效且精准的对消息进行传输的技术效果。
-
-