-
公开(公告)号:CN115861836A
公开(公告)日:2023-03-28
申请号:CN202211480121.1
申请日:2022-11-24
申请人: 安徽大学
IPC分类号: G06V20/13 , G06V20/10 , G06V10/764 , G06V10/771 , G06V10/80 , G06V10/70
摘要: 本发明涉及一种基于多时相Sentinel‑2数据的大豆种植区提取方法,包括:获取Sentinel‑2影像数据和辅助数据,进行预处理;将研究区的影像内的非农作物像元进行剔除,得到研究区的植被总体分布;生成所有特征的集合,并将数据融合在一起,进行掩膜;进行特征优选,筛选出各个分类器对应的最佳特征子集,选出最佳分类器;通过获取的最佳分类器和该分类器对应的最佳特征子集,组成大豆最佳提取模型,并对大豆最佳提取模型的大豆提取效果进行评估,并得到该研究区内的大豆最佳制图效果。本发明提高了精度,减少错分漏分的概率;丰富了光谱特征,还提取了部分地物是光谱难以区分的,以用作辅助数据;极大的减少了工作量,减少了特征冗余以及噪声,提高了工作效率。
-
公开(公告)号:CN117893816A
公开(公告)日:2024-04-16
申请号:CN202410071215.6
申请日:2024-01-18
申请人: 安徽大学
IPC分类号: G06V10/764 , G06V10/44 , G06V10/52 , G06V10/58 , G06V10/77 , G06V10/80 , G06V10/82 , G06V20/10 , G06N3/045 , G06N3/0464
摘要: 本发明涉及一种分层次残差光谱空间卷积网络的高光谱图像分类方法,包括:获取高光谱图像数据立方体,分割为一组相互重叠的3D斑块P;构建分层次残差光谱空间卷积网络;将3D斑块P输入分层次残差光谱空间卷积网络,得到光谱维的三维光谱空间特征;对光谱维的三维光谱空间特征进行分层次特征注意处理,得到分层次的特征映射;对分层次的特征映射进行光谱空间特征学习,得到空间维的三维光谱空间特征;对空间维的三维光谱空间特征进行分类处理,得到每一类地物的概率分布。本发明在提取各类地物微小特征上发挥着极其重要的作用,有效解决了图像块之间远近距离依赖关系,高效捕捉浅层空谱特征和深层空谱特征,并且降低注意力机制的冗余。
-
公开(公告)号:CN117611893A
公开(公告)日:2024-02-27
申请号:CN202311577453.6
申请日:2023-11-24
申请人: 安徽大学
IPC分类号: G06V10/764 , G06V10/774 , G06V20/10
摘要: 本发明涉及一种基于降冗余特征优选策略的大豆种植区遥感提取方法,与现有技术相比解决了多维遥感特征执行分类时可能出现的信息冗余、数据臃肿和执行效率低的缺陷。本发明包括以下步骤:Sentinel‑1、Sentinel‑2以及Planet影像的获取及预处理;利用决策树规则集剔除非农田地物;进行ReliefF特征重要性评估;进行特征最大相关最小冗余排序;构建ReliefF‑mMRM‑RF分类模型;大豆种植区分布图的生成。本发明利用ReliefF算法对候选特征进行特征重要性评估,能够从众多特征中初步筛选出对大豆分类更有利的特征。
-
公开(公告)号:CN117893816B
公开(公告)日:2024-07-02
申请号:CN202410071215.6
申请日:2024-01-18
申请人: 安徽大学
IPC分类号: G06V10/764 , G06V10/44 , G06V10/52 , G06V10/58 , G06V10/77 , G06V10/80 , G06V10/82 , G06V20/10 , G06N3/045 , G06N3/0464
摘要: 本发明涉及一种分层次残差光谱空间卷积网络的高光谱图像分类方法,包括:获取高光谱图像数据立方体,分割为一组相互重叠的3D斑块P;构建分层次残差光谱空间卷积网络;将3D斑块P输入分层次残差光谱空间卷积网络,得到光谱维的三维光谱空间特征;对光谱维的三维光谱空间特征进行分层次特征注意处理,得到分层次的特征映射;对分层次的特征映射进行光谱空间特征学习,得到空间维的三维光谱空间特征;对空间维的三维光谱空间特征进行分类处理,得到每一类地物的概率分布。本发明在提取各类地物微小特征上发挥着极其重要的作用,有效解决了图像块之间远近距离依赖关系,高效捕捉浅层空谱特征和深层空谱特征,并且降低注意力机制的冗余。
-
-
-