-
公开(公告)号:CN116486235A
公开(公告)日:2023-07-25
申请号:CN202310528342.X
申请日:2023-05-11
IPC分类号: G06V10/82 , G06V10/774 , G06N3/04 , G06V10/764 , G06N3/094
摘要: 本发明涉及图像处理技术领域,本发明公开了基于稀疏矩阵和惩罚项的对抗样本生成方法及系统,包括获取图像,将所述图像输入模型,得到对每个类别的分类得分,并利用正确类别的得分,计算稀疏矩阵;利用所述稀疏矩阵设置扰动大小,并利用模型损失函数的梯度信息设置扰动,采用基于梯度的对抗样本生成算法,得到对抗样本。可以减少扰动的L0范数。
-
公开(公告)号:CN116306830A
公开(公告)日:2023-06-23
申请号:CN202310091475.5
申请日:2023-02-03
摘要: 本发明提出基于特征和标签平滑的多步梯度对抗样本生成方法及系统,属于人工智能安全领域。包括:获取被攻击图像;基于Grad‑CAM++算法获得被攻击图像的重要特征区域;以被攻击图像为中心,选取被攻击图像邻域内N张图像,计算邻域内N张图像的损失函数梯度信息;利用正态分布函数对邻域内N张图像的损失函数梯度信息进行加权求和,对被攻击图像的重要特征区域生成扰动;对被攻击图像添加扰动,生成添加扰动后的图像;判定添加扰动后的图像是否攻击成功或达到最大迭代次数,若攻击成功或达到最大迭代次数,则生成对抗样本。本发明对特征区域进行攻击,降低了对抗样本L0范数,对多组梯度信息进行加权求和处理,降低对替代模型的拟合程度,增加黑盒攻击成功率。
-
公开(公告)号:CN115879569B
公开(公告)日:2023-05-23
申请号:CN202310214205.9
申请日:2023-03-08
IPC分类号: G06N20/00 , G06F18/25 , G16Y40/10 , G06N3/0455 , G06N3/084
摘要: 本发明提出了一种IoT观测数据的在线学习方法及系统,涉及数据处理技术领域,根据获取的初始时序观测数据,初始化在线深度学习模型;实时获取传感器生成的时序观测数据,根据时序观测数据形成输入数据流;在线深度学习模型处理输入数据流,生成最终预测结果;在处理输入数据流的过程中,对输入数据流进行即时学习,实时动态更新在线深度学习模型;即时学习,是基于数据流的均值和方差,学习数据分布,构造准正态分布,重构新的样本,实现变分注意力网络,基于分布差异、重构差异和推理差异,进行模型的动态调整;本发明学习不同隐藏层之间的隐藏信息,提高模型推理的准确性,同时通过在线学习,对不同隐藏层间的参数进行动态调整。
-
公开(公告)号:CN116069481A
公开(公告)日:2023-05-05
申请号:CN202310354096.0
申请日:2023-04-06
摘要: 本发明属于图形处理器资源调度领域,提供了一种共享GPU资源的容器调度系统及调度方法,针对GPU资源由系统外部在各应用平台进行复用,将导致服务器的反复初始化及迁移,造成人工损耗以及时间的浪费的问题,本发明考虑从计算任务移植方面进行GPU资源的共享,在GPU资源池上构建容器系统,通过将各个平台的任务容器化后调度到提供的资源池GPU节点上,实现异构平台间GPU资源共享,提高整体平台的GPU资源利用率可满足云计算、大数据、人工智能和高性能计算场景平台的快速灵活部署实施。
-
公开(公告)号:CN115834248A
公开(公告)日:2023-03-21
申请号:CN202310063509.X
申请日:2023-02-06
摘要: 本发明属于数据处理相关技术领域,提出了面向信息物理系统的攻击和异常数据流检测方法及装置,包括:获取信息物理系统中实时数据流并将所获取的数据流转换为数据对象集;对所述数据对象集进行预处理后输入至训练好的反向传播网络中,得到数据对象集所对应的数据标签;根据数据对象集所对应的数据标签判断当前数据是否被攻击或攻击类型,对可能存在的威胁进行快速检测。
-
公开(公告)号:CN115374792A
公开(公告)日:2022-11-22
申请号:CN202211116359.6
申请日:2022-09-14
申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC分类号: G06F40/30 , G06F40/289 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本发明公开了联合预训练和图神经网络的政策文本标注方法及系统;其中所述方法包括:获取待标注的政策文本,对待标注的政策文本进行预处理;对预处理后的政策文本输入到训练后的政策文本标注模型中,输出政策文本的标注结果;其中,训练后的政策文本标注模型,其工作原理包括:对于处理后的政策文本提取单词向量和句子向量;基于预处理后的政策文本构建文本级图结构,获取文本级图结构对应的邻接矩阵;基于单词向量和句子向量,提取出政策文本的语义特征;基于单词向量和邻接矩阵,提取出政策文本的结构特征;基于语义特征和结构特征,确定政策文本标注结果。
-
公开(公告)号:CN115086070B
公开(公告)日:2022-11-15
申请号:CN202210849921.X
申请日:2022-07-20
申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
摘要: 本发明涉及基于特定计算模型的计算机系统技术领域,本发明公开了工业互联网入侵检测方法及系统,包括:获取工业互联网中各个设备之间传输的网络数据;将获取的网络数据,输入到训练后的入侵检测模型中,模型输出入侵检测结果;其中,所述训练后的入侵检测模型,将网络数据映射到高维特征空间中,判断网络数据样本是否落入最小超球体内部,如果落入最小超球体内部,则表示当前网络数据非入侵数据;如果落入最小超球体外部,则表示当前网络数据为入侵数据。提高了工业互联网入侵检测的准确率。
-
公开(公告)号:CN114968374A
公开(公告)日:2022-08-30
申请号:CN202210849632.X
申请日:2022-07-19
申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
摘要: 本发明涉及一种基于新一代神威超级计算机的多层循环进程级和线程级协同自动优化方法,包括:将应用程序中的多层循环程序段和硬件架构相互对应,实现各层循环到硬件架构上的代码级映射;根据硬件架构层次不同,分别进行进程级和线程级的并行优化,其中,进程级优化即节点内通信优化和节点间的通信优化,使得各个进程在各自通信域中进行集中通信,减少程序优化过程中各个进程之间的通信;线程级优化即核组内主从传输优化。本发明提高了运行效率。
-
公开(公告)号:CN112906382A
公开(公告)日:2021-06-04
申请号:CN202110160984.X
申请日:2021-02-05
申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC分类号: G06F40/284 , G06N3/08
摘要: 本发明公开了基于图神经网络的政策文本多标签标注方法及系统,包括:获取待标注的政策文本;对待标注的政策文本进行预处理,对预处理后的政策文本进行分词;将分词得到的单词和预先得到的加权单词向量,输入到训练后的全连接神经网络中,输出待标注政策文本的多标签。高效的标签标注过程,利用廉价的计算资源,减少大量人工成本。相较于人工,实现更加精准的标签标注,不会因为文件信息量的长短而产生标签标注的错漏。及时性的政策文件多标签标注,快速进行所需政策文件的标签标注。减少了主观差异性,不会因为不同的工人的主观判断不同而造成大量的标注标签的差异性。
-
公开(公告)号:CN118484321B
公开(公告)日:2024-10-18
申请号:CN202410946509.9
申请日:2024-07-16
申请人: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省公安厅
IPC分类号: G06F9/54 , G06N5/01 , G06F18/23213 , G06F18/2431
摘要: 本发明涉及计算机存储技术领域,提供了一种基于组级学习的缓存学习方法及系统。该方法包括,获取组级特征和子组级特征;当缓存需要进行淘汰时,根据待预测组的组级特征,采用已训练的组的梯度提升树模型,得到该组的预测效用值;根据组内子组的子组级特征,采用已训练的子组的梯度提升树模型,得到该子组的预测效用值;分别将组的预测效用值和子组的预测效用值按照数值大小进行排序;从效用值最低的组开始,选择与该组写入时间最接近的N‑1个组,构成一个包含N个组的淘汰候选集合;从N个组的淘汰候选集合,选择保留效用值高于设定值的若干个子组,其余淘汰出缓存。本发明能够更准确地预测数据对象组的效用,且减少不必要的缓存淘汰。
-
-
-
-
-
-
-
-
-