-
公开(公告)号:CN116786151A
公开(公告)日:2023-09-22
申请号:CN202310756871.5
申请日:2023-06-26
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种双金属氮化物催化剂及其制备方法和应用,所述催化剂以Ni、Co、N为催化剂成分,由表面被直径约3‑5μm的纳米花密集覆盖,纳米花相互堆叠,横向尺寸为数百纳米,厚度为2‑10nm。其制备方法为一步水热和管式炉煅烧得到NiCoN,公开了一种基于NiCoN的MgH2基储氢材料的制备方法:在氩气条件下,将NiCoN与MgH2混合后进行正反转球磨。所得基于NiCoN的MgH2基储氢材料作为储氢材料的应用,NiCoN的摻杂量为6wt%,初始脱氢温度为160‑175℃;在285℃下脱氢量为4.5‑5.0wt%;在75℃条件下的吸氢量为2.5‑2.9wt%;10次循环后的保持率为96‑98%;脱氢反应的活化能降低到56.5kJ/mol。
-
公开(公告)号:CN115504467B
公开(公告)日:2023-09-22
申请号:CN202211257893.9
申请日:2022-10-14
Applicant: 桂林电子科技大学
IPC: C01B32/318 , C01B32/348 , H01G11/34 , H01G11/44 , H01G11/86
Abstract: 本发明公开了一种基于含氯有机物和碱溶液预处理的多孔碳材料,以含氯有机物为碳源,采用碱溶液预处理的方法获得氮硫双掺杂前驱体,再经煅烧即可制得多孔碳材料;所述含氯有机物为聚氯乙烯,所述氮硫双掺杂前驱体中,以含氮化合物为氮源,含硫化合物为硫源;所述含氮化合物为DMF溶液,含硫化合物为硫脲。其制备方法包括以下步骤:1,含氯有机物的碱溶液预处理;2,前驱体的煅烧。作为超级电容器电极材料的应用,当电流密度为0.5A g‑1时,比电容的值在290‑300F g‑1。本发明具有以下优点:1、实现“白色污染”的回收再利用;2、同时实现脱氯和氮硫掺杂;3、通过二次造孔对孔结构进行调节;4、DMF溶液既起到溶剂的作用,又起氮源的作用。
-
公开(公告)号:CN116482125A
公开(公告)日:2023-07-25
申请号:CN202310487938.X
申请日:2023-05-04
Applicant: 桂林电子科技大学
IPC: G01N21/956 , G01N21/898 , G01N21/88 , G08B7/06 , G06T7/00 , G06T7/62 , G06N3/0464 , G06N3/08 , D06H1/00
Abstract: 本发明公开了一种基于机器视觉的布匹缺陷检测处理方法,包括以下步骤:步骤1,缺陷检测;步骤2,大面积缺陷停机判断;步骤3,缺陷回收;步骤4,模板补充;步骤5,布匹分段评分;步骤6,针对性裁剪划分;至此,则整体流程完成。具有以下技术效果:1、提升布匹生产环节中布匹缺陷检测处理的效率;2、实现缺陷布匹后续处理流程的标准化;3、促进布匹生产过程中的含缺陷布匹的高价值化回收利用。改变现有的实际生产,解决在布匹缺陷复查环节中,布匹的分段和针对性裁剪依赖人工判别,以及标准化程度较低的问题;实现布匹生产智能化。
-
公开(公告)号:CN116282236A
公开(公告)日:2023-06-23
申请号:CN202211680431.8
申请日:2022-12-27
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于PBA‑刻蚀‑煅烧硫化法的镍钴双金属硫化物,以六水合硝酸镍、钴氰化钾、二水合柠檬酸三钠为原料,首先,通过静置陈化法合成Ni‑Co‑PBA,然后,再经过氨水刻蚀处理后获得Ni‑Co‑Etch,最后,通过煅烧硫化即可。其微观形貌呈纳米立方结构,表面粗糙且中心位置向内凹陷,结构疏松,存在大量微孔,粒径尺寸为150‑250nm。其制备方法包括以下步骤:1,Ni‑Co‑PBA的制备;2,Ni‑Co‑PBA的刻蚀;3,Ni‑Co‑Etch的硫化处理。作为超级电容器电极材料的应用,在三电极体系中,比电容为1800‑1900F g‑1;在两电极体系中,功率密度为800‑850W kg‑1时,能量密度为60‑62Wh kg‑1;在10000圈循环后,循环稳定性保持为初始比电容的75‑85%。
-
公开(公告)号:CN111777069B
公开(公告)日:2022-12-23
申请号:CN202010695464.4
申请日:2020-07-20
Applicant: 桂林电子科技大学
IPC: H01G11/30
Abstract: 本发明公开了一种结构稳定的MXene复合材料,由Ti3C2 Mxene、MoS2和Cu2O构成;其中,Ti3C2 MXene为基体材料,微观形貌为类手风琴状结构,作用是提供多层结构;MoS2的微观结构为纳米片结构,负载于Ti3C2 MXene的表面,作用是提供额外赝电容;Cu2O的微观结构为立方晶体结构,嵌入Ti3C2 MXene多层结构的间隙中,作用是稳定Ti3C2 MXene的多层结构。以Ti3AlC2、钼酸铵、可溶性硫化物、硫酸铜和氢氧化钠为起始原料,经刻蚀、水热和静置沉淀自组装制得。其制备方法包括以下步骤:1)Ti3C2 MXene的制备;2)Ti3C2 MXene‑MoS2的制备;3)Ti3C2 MXene‑MoS2‑Cu2O的制备。作为超级电容器电极材料的应用,在0‑0.55 V范围内充放电,在放电电流密度为1 A g‑1时,比电容为1400‑1500 F g‑1;在3000圈循环后的循环稳定性为92%。
-
公开(公告)号:CN112341785B
公开(公告)日:2022-11-29
申请号:CN202011414562.2
申请日:2020-12-07
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种聚乙二醇/聚乙烯亚胺复合固‑固相变材料,由聚乙二醇、硅烷偶联剂、聚乙烯亚胺,通过化学接枝反应制得;相变过程为固‑固相变,相变温度为31‑58℃,相变焓值为103‑151 J/g;在80‑120℃条件下,保温1‑2小时仍然保持稳定的固态,且没有小分子泄露。其制备过程如下:1)KH560‑PEG预聚物的制备;2)复合固‑固相变材料的制备,其中,制备过程中使用的溶剂均为水,且均在空气条件下进行。本发明具有以下优点:1、提供的新型固化剂成功解决相变过程中的液体泄漏问题,同时保持高相变焓值;2、提供的新型交联剂无需特殊气氛和有机溶剂,简化了实验条件,且无需催化剂,使得生产成本得到了降低。因此,本发明具有广阔的应用前景。
-
公开(公告)号:CN115274310A
公开(公告)日:2022-11-01
申请号:CN202210956639.1
申请日:2022-08-10
Applicant: 桂林电子科技大学
Abstract: 本发明提供了一种多面体结构钴硫化物负载NiGa‑LDH电极材料,以硝酸钴和2‑甲基咪唑为原料合成ZIF‑67,再用硫代乙酰胺对ZIF‑67进行硫化,将产物与硝酸镍、硝酸镓和尿素进行水热反应,即可得到微观形貌为多面体结构的钴硫化物负载镍镓双金属氢氧化物的电极材料;其由ZIF‑67经水热反应硫化后的钴硫化物多面体和在其表面原位生长的片状结构的镍镓双金属氢氧化物构成。其制备方法包括以下步骤:1,多面体结构ZIF‑67的制备;2,多面体结构钴硫化物Co3S4的制备;3,镍镓双金属氢氧化物NiGa‑LDH的原位制备和负载。作为超级电容器的应用,在0‑0.5 V范围内充放电,在放电电流密度为1 A/g时,比电容为1300‑1400 F/g;8 A/g相对于1 A/g下的电容保持率达到52%。
-
公开(公告)号:CN112409028B
公开(公告)日:2022-10-11
申请号:CN202011171824.7
申请日:2020-10-28
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种CC‑NiO‑CuCoS复合材料,由CC、NiO和CuCo2S4构成;其中,CC为基体材料,微观形貌为纤维状结构,作用是提供基底使NiO纳米片不堆积和导电基底利于电子的超高速输运;NiO的微观结构为纳米片结构,负载于CC的表面,作用是提供额外赝电容;CuCo2S4的微观结构为纳米颗粒结构,附着于CC和NiO纳米片表面,作用是稳定NiO的片状结构和包覆部分裸露的CC。以CC、六水合硝酸镍、氟化铵、尿素、一水合乙酸铜、四水合乙酸钴、硫脲为起始原料,经两步水热制备而得。其制备方法包括以下步骤:1)CC的清洗与活化;2)CC‑NiO复合材料的制备;3)CC‑NiO‑CuCo2S4复合材料的制备。作为超级电容器电极材料的应用,比电容为840 F g‑1;在3000圈循环后的循环稳定性为100%。
-
公开(公告)号:CN110217756B
公开(公告)日:2022-09-20
申请号:CN201910573879.1
申请日:2019-06-28
Applicant: 桂林电子科技大学
IPC: C01B3/08
Abstract: 本发明公开了一种碳负载铋的铝基复合制氢材料。首先以一定的量之比,让络合剂和铋盐发生络合反应、生成金属铋的络合产物经热处理制得碳负载铋(C@Bi)的复合材料;然后,以一定质量比,将Al粉与C@Bi材料进行球磨制成。其制备方法包括以下步骤:1)C@Bi复合材料的制备;2)碳负载铋的铝基复合制氢材料的制备。该材料作为水解制氢材料的应用,即单位质量产氢量为1150‑1200 mL/g、产氢速率为3800‑5800 mL/g min及产氢率为94‑100%。具体原理为利用Bi元素与络合剂之间螯合作用,实现Bi原子在有机物内的均匀分布;保证了有机物在碳化形成碳材料后,能对Bi原子形成有效的包覆,避免了Bi原子之间的冷焊、团聚;并且C@Bi复合材料中的碳材料在水解过程中发挥电子传输的重要作用。
-
公开(公告)号:CN114974916A
公开(公告)日:2022-08-30
申请号:CN202210776159.7
申请日:2022-07-04
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种纤维状MXene负载NiCoS复合材料,以四水合乙酸镍、乙酸钴、均苯三甲酸、1,4‑二氮杂双环[2,2,2]辛烷和十二烷基硫酸钠为原料,经水热反应制得NiCo‑MOFs;以Ti3AlC2、氟化锂和浓盐酸为原料,经刻蚀处理和震荡处理得到纤维状MXene;最后,以NiCo‑MOFs为前驱体,纤维状MXene为基体,加入硫代乙酰胺,经第二次水热反应,在纤维状MXene表面均匀负载颗粒状NiCoS复合材料即可制得;少层片状MXene具有微米的片状结构;纤维状MXene为直径为10‑40 nm的纤维状结构;颗粒状NiCoS的直径为5‑30nm。其制备方法包括以下步骤:1,NiCo‑MOFs的制备;2,纤维状MXene的制备;3,NiCoS@MXene的制备。作为超级电容器电极材料的应用,比电容为1300‑1500 F g‑1;能量密度高达63.3 W h kg‑1;10000圈循环后的循环稳定性保持为原始的73%。
-
-
-
-
-
-
-
-
-