-
公开(公告)号:CN110148762B
公开(公告)日:2022-05-31
申请号:CN201910482806.1
申请日:2019-06-26
Applicant: 桂林电子科技大学
Abstract: 本发明提供一种氮、氟和过渡金属共掺杂石墨烯结构的碳材料,以三聚氰胺、聚四氟乙烯、金属盐为原料,经混合、研磨均匀后,采用一步碳化法制备获得氮、氟和过渡金属共掺杂碳材料;所得碳材料呈现石墨烯或类石墨烯结构;氮、氟和金属元素分布均匀,具有优异的氧还原和氧析出性能。其一步碳化制备方法包括以下步骤:1)原料的混合;2)一步碳化法。本发明具有优异的氧还原和氧析出性能。同时,也可以通过调整氮、氟和过渡金属之间的协同效应,提高该类材料的氧还原和氧析出性能。本发明一步碳化法重复性好,工艺简单、易操作。在燃料电池和金属‑空气电池电极催化领域和功能碳材料方向具有广阔的应用前景。
-
公开(公告)号:CN112490018B
公开(公告)日:2022-05-24
申请号:CN202011425106.8
申请日:2020-12-09
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于二氧化硅金属硫化物复合材料,采用两步水热法,在模板剂二氧化硅外表面生长二硫化锰、二硫化钴的纳米花状结构,同时通过硫化反应,二氧化硅被氢氧根刻蚀,从而使一部分二氧化硅从硫化物离子的水解中释放出来,将内部二氧化硅模板刻蚀出一定的孔洞,便于离子迁移即可制得基于二氧化硅的分层纳米金属硫化物复合材料。其制备方法包括以下步骤:1复合金属氧化物前驱体的制备;2基于二氧化硅金属硫化物复合材料的制备。作为超级电容器电极材料的应用,在0‑0.55 V范围内充电/放电,在放电电流密度为1 A/g时,比电容为1150‑1160 F/g。具有优良的材料稳定性能,和优良的离子传输能力。
-
公开(公告)号:CN114477082A
公开(公告)日:2022-05-13
申请号:CN202111620801.4
申请日:2021-12-28
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种纳米Ni‑Nb‑O掺杂氢化镁的储氢材料,由氢化镁和纳米Ni‑Nb‑O混合机械球磨制得;所述纳米Ni‑Nb‑O先通过可溶性铌源进行溶剂热法制备前驱体,再通过煅烧法进行制备;所述纳米Ni‑Nb‑O的微观形貌是由50‑100 nm的纳米颗粒团聚成的大颗粒,比表面积为16.05‑19.38 m2/g,孔径分布为1‑2 nm。其制备方法包括以下步骤:1,可溶性铌源的准备;2,纳米Ni‑Nb‑O前驱体的制备;3,纳米Ni‑Nb‑O的制备;4,纳米Ni‑Nb‑O掺杂氢化镁的储氢材料的制备。作为储氢领域的应用,初始放氢温度降至205‑210℃,放氢量达到6.95‑7.11 wt%;300℃等温放氢量达到6.57‑6.71 wt%;50℃等温吸氢量达到1.45‑1.68 wt%;循环保持率达到85.1‑89.6%。
-
公开(公告)号:CN114471663A
公开(公告)日:2022-05-13
申请号:CN202210189321.5
申请日:2022-03-01
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种Co‑Cr‑B/NGO复合纳米材料,通过氮掺杂石墨烯、可溶性铬盐和可溶性钴盐进行超声复合、搅拌、加入硼氢化钠溶液原位还原、冷冻干燥制得;所得材料的比表面积为60‑120 m2·g‑1;微孔尺寸为0.4‑1.0 nm;具有磁性,能被磁铁吸引。其制备方法包括以下步骤:1)前驱体的准备;2)Co‑Cr‑B/NGO复合纳米材料的制备。作为水解制氢材料的应用,放氢速率为2000‑3200 mol·mL‑1·g‑1,产氢率为100%,活化能Ea为32‑40 kJ·mol‑1;通过磁性回收循环利用5次后,产氢速率保持在900‑2975 mol·mL‑1·g‑1,即保持初次的产氢速率的45‑85%。因此,本发明不仅制备方法快速、简单、节能、环保而且具有良好的催化活性,在硼氢化钠水解制氢的应用领域中具有很好的发展前景。
-
公开(公告)号:CN111785526B
公开(公告)日:2022-04-26
申请号:CN202010522101.0
申请日:2020-06-10
Applicant: 桂林电子科技大学
Abstract: 本发明公开了聚吡咯包覆Ni‑Co‑S纳米针阵列复合材料,以乙酸镍、乙酸钴、尿素、硫脲为原料,制备NF/NiCo2S4纳米针阵列材料,再以聚吡咯为导电聚合物,通过黏结剂和固化剂,制得聚吡咯包覆Ni‑Co‑S纳米针阵列复合材料,其中,纳米针状结构具有壳‑核结构,核结构为NiCo2S4,壳结构为聚吡咯。其制备方法包括以下步骤:1)NF/NiCo2O4纳米针阵列材料的制备;2)NF/NiCo2S4纳米针阵列材料的制备;3)聚吡咯包覆Ni‑Co‑S纳米针阵列复合材料的制备。作为超级电容器电极材料的应用,窗口电压为0‑0.5V,在放电电流密度为1A/g时,比电容为1800‑1900F/g。泡沫镍载体表面生长的纳米针阵列结构规整有序,比表面积大,利于电子的传输;采用直接滴覆的方法实现导电聚合物的包覆,有效提高电化学性能。
-
公开(公告)号:CN109437165B
公开(公告)日:2022-04-22
申请号:CN201811590067.X
申请日:2018-12-25
Applicant: 桂林电子科技大学
IPC: C01B32/184
Abstract: 本发明公开了一种氟、氮共掺杂三维石墨烯材料,以聚四氟乙烯和三聚氰胺作为前驱体,经混合、研磨均匀,然后一步碳化法制备获得氟、氮共掺杂三维石墨烯材料,所得三维石墨烯氟、氮元素分布均匀;其比表面积为1200—1400 m2 g‑1,总孔体积为2.5—2.9 cm3 g‑1;可以通过改变碳化温度大幅调控材料的比表面积在50—1600 m2 g‑1之间,调控总孔体积在0.2—3.2 cm3 g‑1之间。其一步碳化制备方法包括以下步骤:1,原料的混合;2,一步碳化法。材料中三维石墨烯网格均匀,氟、氮元素分布均匀,重复性好,碳化温度适中,一步碳化合成,工艺简单易操作。本发明材料在超级电容器领域和碳功能材料方向具有广阔的应用前景。
-
公开(公告)号:CN111799095B
公开(公告)日:2022-03-15
申请号:CN202010540361.0
申请日:2020-06-15
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种空心MXenes基金属氧化物复合材料,成分为V2CTx MXenes、还原氧化石墨烯和金属氧化物。V2CTx MXenes通过基底材料经刻蚀剂、扩层剂和离子液体处理所得;还原氧化石墨烯为中间层材料,起连接、抑制堆叠和诱导生长的作用;金属氧化物NiMoO4的形貌为花瓣褶皱状结构,提供赝电容;复合材料的微观形貌具有碳壳“包埋”的空心结构。其制备方法的关键技术为:采用非恒定离心条件和离子液体调控微观形貌。作为超级电容器的应用,在‑0.2‑0.35V范围内充放电,在放电电流密度为1 A/g时,比电容为1000‑1100 F/g;在10 A/g的电流密度下经过3000次循环以后比电容性能仍可达到原来的88‑89%。且具有优异的电化学特性和化学稳定性。
-
公开(公告)号:CN108975325B
公开(公告)日:2022-01-07
申请号:CN201811056226.8
申请日:2018-09-11
Applicant: 桂林电子科技大学
IPC: C01B32/318 , C01B32/348 , H01G11/34
Abstract: 本发明公开了一种三维网状结构的自掺氮多孔碳材料,由壳聚糖,琼脂,戊二醛,经混合搅拌,冷冻干燥,活化处理,碳化,洗涤,干燥制得,具有三维网状结构,其比表面积为1800~2200 m2g‑1。其制备方法包括:1)自掺氮凝胶的制备和干燥;2)自掺氮凝胶的活化和碳化;3)三维网状结构的自掺氮多孔碳材料的制备。作为超级电容器电极材料的应用,电流密度为20~0.5 A/g,比电容达到205.0~300.0 F/g。相较于现有技术合成工艺复杂、合成时间长等技术问题,本发明利用壳聚糖的二维片层结构结合琼脂的孔道结构,通过交联形成三维结构并利用冷冻干燥技术进行保护,获得高循环稳定性、提升导电性和比电容,简化合成工艺,缩减合成时间,在超级电容器领域具有广阔的应用前景。
-
公开(公告)号:CN113871217A
公开(公告)日:2021-12-31
申请号:CN202111179993.X
申请日:2021-10-11
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种MOFs衍生物PBA@Co‑Ni‑S复合材料,采用室温沉淀法,形成了一种尺寸均匀的纳米立方体,之后进行静置吸附法在立方体表面负载MOF纳米片,最后以溶剂热法硫化来活化MOF纳米片来实现快速可逆的法拉第反应,从而提高EC的电化学性能。Fe‑Co‑PBA提供主要形貌,结构较稳定;后续在Fe‑Co‑PBA表面进行MOF的包覆,纳米片的形貌提高了整体材料的比表面积;之后进行硫化处理,进一步调控了外层MOF的电子结构,提高了性能。其制备方法包括以下步骤:1 Fe‑Co‑PBA的制备;2 Fe‑Co‑PBA外层负载MOF纳米片;3采用溶剂热法进行硫化处理。作为超级电容器电极材料的应用,在‑0.1‑0.45V范围内充放电,在放电电流密度为1 A/g时,比电容为1200‑1300 F/g。具有优良的材料稳定性能和优良的离子传输能力。
-
公开(公告)号:CN113422078A
公开(公告)日:2021-09-21
申请号:CN202110731107.3
申请日:2021-06-30
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种铁‑氮活性位点的蜂窝状多孔碳材料,通过一次高温煅烧的方法,由ZIF‑8、Fe(NO3)3∙9H2O和2,6‑二氨基吡啶制得,所制备的材料具有蜂窝状多孔结构,Fe及Fe3C纳米颗粒存在于多孔碳中;为介孔材料,其孔径分布在3‑5 nm之间,其比表面积为500‑510 m2/g‑1。其制备方法包括以下步骤:1)ZIF‑8的制备;2)前驱体的制备;3)铁‑氮活性位点的蜂窝状多孔碳材料的制备。作为氧化原电催化剂,在0.1 M KOH碱性条件下,起始电位为1.01 V;半波电位为0.92 V;3万秒后,电流保持为初始值得89%;在加入3 M甲醇的条件下后,电流仅下降5.3%,具备优异的抗甲醇性能。因此,本发明具有分级孔道结构及提高氧还原电催化性能,在燃料电池及锌空气电池领域具有广阔的应用前景。
-
-
-
-
-
-
-
-
-