一种梳齿式CMUTs流体密度传感器及其制备方法

    公开(公告)号:CN108982291B

    公开(公告)日:2020-05-22

    申请号:CN201810745339.2

    申请日:2018-07-09

    Abstract: 本发明公开了一种梳齿式CMUTs流体密度传感器及其制备方法,梳齿式超声传感器包括低单晶硅衬底,该衬底上有二氧化硅支柱层,支柱中心刻蚀形成有空腔,空腔上端面用SOI片键合形成密封层,通过抛光工艺将键合晶圆的SOI片硅衬底减薄至梳齿电极厚度,同时SOI片二氧化硅埋层形成二氧化硅绝缘层,通过重掺杂和DRIE工艺将键合晶圆顶端刻蚀出梳齿电极结构以及密封支柱层,再通过二次键合形成二氧化硅保护层,并保证梳齿电极结构处于真空域内。采用梳齿交流电极和梳齿直流电极激振CMUTs薄膜结构,通过对称布置的梳齿电极产生的径向拉压运动而形成的薄膜结构层的弯曲振动,因此相较于传统上、下电极直接加载交流电而产生振动的CMUTs结构,具有更高的品质因子。

    一种面内双轴压阻加速度传感器芯片及其制备方法

    公开(公告)号:CN110371921A

    公开(公告)日:2019-10-25

    申请号:CN201910644481.2

    申请日:2019-07-17

    Abstract: 一种面内双轴压阻加速度传感器芯片及其制备方法,芯片采用SOI硅片制成,包括芯片外框架,芯片外框架每一侧中部设有固定岛,支撑梁为“L”型结构,其较长段的一端通过固定岛固定于芯片外框架,另外较短段依次与延伸梁和质量块相连,敏感压阻微梁设置于延伸梁末端与固定岛之间的间隙处;所有八个质量块通过铰链梁连接处正方形;敏感压阻微梁上的压敏电阻通过金属引线和焊盘连接构成惠斯通全桥电路;延伸梁作为连接敏感压阻微梁和支撑梁与质量块的中间结构,将质量块运动状态的改变传递给敏感压阻微梁;本发明将支撑元件与敏感元件进行了分离,提高了压阻式加速度传感器的动态性能和适用范围,制备方法简单,可靠性高。

    一种基于面内谐振的MEMS流体黏度传感器芯片及其制备方法

    公开(公告)号:CN107271332B

    公开(公告)日:2019-10-11

    申请号:CN201710538627.6

    申请日:2017-07-04

    Abstract: 本发明公开了一种基于面内谐振的MEMS流体黏度传感器芯片及其制备方法,包括硅基底、四个弹性固支梁和中间的振子,两根导线分别布置在振子两侧的固支梁上。芯片底部外加磁铁用于提供恒定磁场,磁感线方向垂直于芯片平面,将其中一根导线通入一定频率的正弦交变电流,则这根导线所在的固支梁受交变洛伦兹力作用做面内振动,从而带动振子和另外一侧固支梁做受迫振动,则另外一根导线切割磁感线而产生感应电动势。将H型硅微双端固支梁结构浸入被测流体中,改变正弦交变电流的频率使得固支梁发生谐振,根据感应电动势的输出幅值大小可获得固支梁在被测流体中的谐振频率。根据在不同流体中H型双端固支梁谐振频率和品质因子的改变来实现流体黏度的测量。

    基于可动栅极式场效应晶体管的微力传感器及其制备方法

    公开(公告)号:CN107381497B

    公开(公告)日:2019-05-21

    申请号:CN201710527246.8

    申请日:2017-06-30

    Abstract: 一种基于可动栅极式场效应晶体管的微力传感器及其制备方法,结构包括由四根直梁支撑的中间质量块,中间质量块前端设置探针,中间质量块前后布置有平衡、工作栅极阵列,平衡、工作栅极阵列相对中间质量块的中心偏移,中间质量块、直梁、探针与SiO2绝缘层不接触,p型Si基底部分区域形成源、漏极,源、漏极之间的区域形成导电沟道,部分区域形成P+电极;制备方法先在P型Si基底制备好源极、漏极、导电沟道、P+电极并热氧生成SiO2绝缘层并进行刻蚀图形化,然后与另一块多晶硅键合,对多晶硅部分区域进行硼离子重掺杂形成工作栅极阵列,前部刻蚀出探针的图形,再刻蚀完成中间质量块,直梁的全部图形化,本发明微力传感器能够用于nN量级微力的测量。

    一种组合式薄膜pMUTs及其制备方法

    公开(公告)号:CN109231150A

    公开(公告)日:2019-01-18

    申请号:CN201811037084.0

    申请日:2018-09-06

    Abstract: 本发明提供了一种组合式薄膜pMUTs及其制备方法,组合式薄膜结构由圆形薄膜以及环绕在圆形薄膜周向,并与之同心的环形薄膜组成,其整体结构从上至下依次包括上电极、振动薄膜压电驱动层、下电极、振动薄膜结构层、薄膜支撑结构以及基底结构;用于超声波发射工作模式时,通过对圆形薄膜以及环形薄膜以一定的相位差进行激励,造成圆形薄膜-流体介质-环形薄膜之间的耦合作用,大幅提高单元超声发射功率;用于超声波接收工作模式时,圆形薄膜和环形薄膜均发生振动,产生可探测的电信号,同时通过圆形薄膜与环形薄膜结构在流体介质中的谐振频率偏差,实现超声的宽带宽接收性能。本发明提出的组合式薄膜结构pMUTs,具有高发射功率和宽带宽接收性能。

    一种具有T形空腔结构的空气耦合CMUT及其制备方法

    公开(公告)号:CN109174595A

    公开(公告)日:2019-01-11

    申请号:CN201811033954.7

    申请日:2018-09-05

    Abstract: 本发明公开了一种具有T形空腔结构的空气耦合CMUT及其制备方法,其振动薄膜的固定于支柱表面的区域设置环形应力释放凹槽;其空腔形状呈T形,即空腔中心区域上下电极间电极距离大于空腔周围靠近支柱区域上下电极间电极距离。本发明利用T形空腔设计来减小空腔周围区域上下电极间的电极距离,从而可在不影响薄膜最大振幅的条件下增大薄膜平均位移,进而增大输出声压,提高机电耦合系数及接收灵敏度。此外,通过薄膜固定端开设应力释放凹槽的方法可进一步减小薄膜固定区域对薄膜变形的束缚,增大薄膜变形,提高输出声压。

    一种梳齿式CMUTs流体密度传感器及其制备方法

    公开(公告)号:CN108982291A

    公开(公告)日:2018-12-11

    申请号:CN201810745339.2

    申请日:2018-07-09

    Abstract: 本发明公开了一种梳齿式CMUTs流体密度传感器及其制备方法,梳齿式超声传感器包括低单晶硅衬底,该衬底上有二氧化硅支柱层,支柱中心刻蚀形成有空腔,空腔上端面用SOI片键合形成密封层,通过抛光工艺将键合晶圆的SOI片硅衬底减薄至梳齿电极厚度,同时SOI片二氧化硅埋层形成二氧化硅绝缘层,通过重掺杂和DRIE工艺将键合晶圆顶端刻蚀出梳齿电极结构以及密封支柱层,再通过二次键合形成二氧化硅保护层,并保证梳齿电极结构处于真空域内。采用梳齿交流电极和梳齿直流电极激振CMUTs薄膜结构,通过对称布置的梳齿电极产生的径向拉压运动而形成的薄膜结构层的弯曲振动,因此相较于传统上、下电极直接加载交流电而产生振动的CMUTs结构,具有更高的品质因子。

    一种基于面内谐振的MEMS黏密度传感器芯片及其制备方法

    公开(公告)号:CN107601424A

    公开(公告)日:2018-01-19

    申请号:CN201710855225.9

    申请日:2017-09-20

    Abstract: 本发明公开了一种基于面内谐振的MEMS黏密度传感器芯片及其制备方法,包括硅基底和硅微谐振梁结构,其中硅微谐振梁结构包括中间的振子以及振子两侧的弹性连接梁和弹性固支梁,振子每侧两根相互垂直的连接梁组成T型梁结构,振子及其两侧的弹性固支梁和T型梁分别布有两根导线,两导线沿振子长度方向平行分布,分别用于通入一定频率的正弦交变电流和检测产生的感应电动势,根据硅微谐振梁谐振状态时感应电动势输出幅值的大小可获得硅微谐振梁在被测流体中的谐振频率,通过在不同流体中硅微谐振梁的谐振频率和品质因子来实现流体黏度和密度的测量。MEMS黏密度传感器芯片基于面内振动原理,使用电磁激励、电磁检测的方法实现流体黏度和密度的准确测量。

    一种高温CMUT压力传感器及其制备方法

    公开(公告)号:CN103196613B

    公开(公告)日:2016-02-24

    申请号:CN201310084858.6

    申请日:2013-03-15

    Abstract: 本发明公开了一种高温CMUT压力传感器及其制备方法,其整体结构从上至下依次为:第一碳化硅层、第一氮化硅层、第二碳化硅层、第二氮化硅层、和第三碳化硅层;第一氮化硅层、第二碳化硅层和第二氮化硅层周围部分和中间部分均被空腔在横向方向上隔开;通孔贯穿第三碳化硅层;所述第二氮化硅层中间部分覆盖在第三碳化硅层上侧和通孔的内表面;在通孔中的氮化硅层内表面上覆盖有电连接金属层与下电极形成电连接;有效减小了充电现象对传感器工作性能的影响;有效减小了高温环境中寄生电容及其对传感器检测灵敏度的影响;采用碳化硅层和氮化硅层交替的对称式结构设计能有效减小高温环境中温度应力对传感器测量精确度的影响。

    基于CMUT的海洋生化物质监测传感器及其制备与测量方法

    公开(公告)号:CN103454345B

    公开(公告)日:2016-01-13

    申请号:CN201310364961.6

    申请日:2013-08-20

    Abstract: 一种基于CMUT的海洋生化物质监测传感器及其制备与测量方法。其总体结构由上而下为:上薄板,上空腔、振动薄膜、下空腔、基座、敏感材料层、多孔下电极。所述上空腔和下空腔分别位于振动薄膜的上、下两侧,所述敏感材料层设置在所述基座下表面,所述下电极设置在所述敏感材料层的下表面,所述下电极设置有贯穿其厚度的通孔,所述振动薄膜同时作为上电极。本发明生化传感器可避免液体环境中流体阻尼对振动薄膜品质因子的影响,因而能实现高灵敏度生化物质测量。

Patent Agency Ranking