-
公开(公告)号:CN103398295A
公开(公告)日:2013-11-20
申请号:CN201310280048.8
申请日:2013-07-04
Applicant: 东北大学
Abstract: 一种管道漏磁信号数据压缩装置及方法,属于无损检测技术领域。采集管道漏磁信号,并将其转换为电信号,进行滤波放大后,进一步转换为数字信号;用基于自适应阈值的小波变换算法对步骤1输出的数字信号进行特征值提取,将一维漏磁信号转换为二维漏磁信号,对二维漏磁信号进行整数小波变换,得到小波系数矩阵,使漏磁信号的重要信息集中在小波变换系数的低频部分;将小波系数矩阵利用改进SPIHT算法进行有损压缩。与现有技术相比,本发明克服了体积有限的检测器对长距离输油管道漏磁信号无损压缩时的压缩比较低,而有损压缩失真度较高的不足。
-
公开(公告)号:CN114879699B
公开(公告)日:2024-12-06
申请号:CN202210670764.6
申请日:2022-06-15
Applicant: 东北大学
Abstract: 本发明提供一种针对埋地管道野外巡检机器人的自主导航系统及方法,所述系统包括上位机可视化数据处理模块、外部环境多元感知模块、多元传感器信息交互存储模块、底层驱动执行模块、电磁全息检测模块;首先建立巡检区域对应的地上地下电子地图,对所得电子地图进行初始化设置,根据电子地图中的路标节点信息建立巡检机器人运动规划策略并求解,并建立巡检机器人模型查看机器人位姿信息,巡检机器人在巡检结束后返航或前往下一巡检区域;本发明提出了针对野外埋地管道的地上、地下电子地图模型的建立方法,建立了基于该地图模型的野外巡检机器人的运动规划策略,实现了巡检机器人在野外针对埋地管道的“边巡‑边检‑边存‑边更新”工作方式。
-
公开(公告)号:CN115355394A
公开(公告)日:2022-11-18
申请号:CN202211015982.2
申请日:2022-08-24
Applicant: 东北大学
IPC: F16L55/32 , F16L55/40 , F16L101/30
Abstract: 本发明设计一种基于螺旋扫描的管道检测机器人及其检测方法,包括履带式车体,螺旋检测系统,控制机构和感知机构;螺旋检测系统包括检测臂升降平台和交叉型检测臂,控制机构调节检测臂升降平台的高度并带动交叉型检测臂进行螺旋扫描;螺旋线信号的处理和矫正通过一套螺旋信号反演算法完成;轴中心控制方法通过感知机构的信息采集和控制机构的反馈控制检测臂升降平台的高度实现;本发明针对现有传感器密布式的PIG型管道机器人的检测方式造成的缺陷信号漏检的问题进行设计,轴中心控制方法保证了机器人行进检测的稳定性,螺旋检测方式及其信号反演算法可以实现对管道的无遗漏全方位扫描。
-
公开(公告)号:CN109115868B
公开(公告)日:2022-03-25
申请号:CN201811147005.1
申请日:2018-09-29
Applicant: 东北大学
Abstract: 本发明提供一种基于脉冲涡流的缺陷深度检测装置及方法,涉及无损检测技术领域。具体方法如下:激励信号发生器产生周期脉冲信号,经过功率放大模块之后,加在激励线圈两端;检测线圈接收试件上方磁场信号,转换成模拟电压信号后输出给信号调理模块;信号调理模块对模拟电压信号进行滤波、放大后输出给A/D转换模块;A/D转换模块在采集触发模块控制下进行信号的模/数转换,转换后的数字信号送入特征参数辨识模块辨识得到特征参数,然后送入基于随机森林的缺陷深度检测模块,检测试件上缺陷的深度信息。本发明装置建立的脉冲涡流检测系统的物理模型,由于考虑了试件上感应涡流对特征参数的影响,提高了建模精度,减小了缺陷深度的检测误差。
-
公开(公告)号:CN109657996A
公开(公告)日:2019-04-19
申请号:CN201811587331.4
申请日:2018-12-25
Applicant: 东北大学
IPC: G06Q10/06 , G06F16/9038
Abstract: 本发明提供一种基于HACCP体系的食品追溯与查询分析系统及方法,涉及食品质量控制技术领域。该系统包括注册登录模块、信息录入模块及查询分析模块;注册登录模块为用户提供登录、注册及用户分类功能;信息录入模块为产品生产及销售相关方提供信息录入的功能;查询分析模块为产品购买方提供产品信息查询功能,并基于HACCP体系对食品供应链网络的关键节点进行分析,找出需要重点监测的关键节点,为产品生产与运输方提供参考。本发明还提供基于HACCP体系对食品供应链网络的关键节点进行分析的具体方法。本发明提供的食品追溯与查询分析系统及方法,可以更便捷的追溯问题产品来源,找出问题节点,召回问题产品以及为HACCP体系中关键控制点的确定提供决策支持。
-
公开(公告)号:CN109100416A
公开(公告)日:2018-12-28
申请号:CN201811105826.9
申请日:2018-09-21
Applicant: 东北大学
Abstract: 本发明提供一种基于正交多频电磁检测的铁磁性管道内壁缺陷检测装置,涉及管道缺陷检测技术领域。该装置由多频正弦激励信号发生模块给正交电磁检测探头提供激励信号,对管道进行磁化,霍尔传感器模块捕捉管道内磁场变化并输出多频电磁检测信号,经信号调理电路进行滤波、放大后进入A/D转换模块实现模数转换,再送入FPGA中央处理单元进行分频处理,最后送到缺陷异常判断模块和基于K-近邻算法的缺陷尺寸预测模块,进行异常状态数据剔除和缺陷尺寸预测。本发明能实现无接触检测,实现表面、近表面、通孔等不同深度缺陷的检测,实现轴向、周向缺陷尺寸的检测,可以通过检测信号的特征量较为准确的预测到缺陷的尺寸。
-
公开(公告)号:CN105444684B
公开(公告)日:2018-04-20
申请号:CN201510833650.9
申请日:2015-11-24
Applicant: 东北大学
IPC: G01B11/12
Abstract: 一种基于FPGA的管道测径仪多路位移脉冲优选装置与方法,属于管道检测技术领域。该装置包括管道测径仪本体、若干个里程轮,信号采集模块、光耦合隔离单元、FPGA中央处理单元。信号采集模块包括若干个凸透镜、若干个旋转编码器、若干个光敏元件。每个里程轮轴上装有一个凸透镜、一个旋转编码器、一个光敏元件,并且凸透镜、旋转编码器、光敏元件与里程轮同轴旋转,若干个光敏元件与光耦合隔离单元输入端相连,光耦合隔离单元的输出端与FPGA中央处理单元输入端相连。本发明利用FPGA并行处理机制,提高了位移脉冲信号的处理速度,有效区分了若干个里程轮的工作状态,解决了位移的累计误差问题,提高了位移测量的精确性。
-
公开(公告)号:CN105277853B
公开(公告)日:2018-04-20
申请号:CN201510765443.4
申请日:2015-11-11
Applicant: 东北大学
IPC: G01R31/08
Abstract: 一种基于二次脉冲的海底电缆故障定位装置及方法,属于电缆检测技术领域。包括二次脉冲模块、传感器模块、信号调理模块、A/D转换模块以及进一步包括分类模块、滤波模块、重构模块、特征值提取模块与故障诊断模块的中央处理单元;采集海底电缆故障反射信号,经模数转换后再经调压、滤波处理后提取其特征值;构建特征值—故障点距离拟合模型;利用特征值—故障点距离拟合模型和基于多特征值的测距方法计算故障点位置。本发明利用FPGA并行处理机制的优点,对电缆反射的高、低频信号采用了不同的滤波方法,提高了信号的处理速度;充分考虑反射信号的多个特征值在故障点定位中的作用,采用基于多特征值的测距方法,提高了故障点定位的精度。
-
公开(公告)号:CN104048164B
公开(公告)日:2016-09-28
申请号:CN201410268458.5
申请日:2014-06-16
Applicant: 东北大学
IPC: F17D5/02
Abstract: 一种管道内检测器里程测量装置及方法,属于管道检测技术领域,该装置安装在管道内检测器上,包括:磁场传感器单元、信号调理模块、A/D转换模块和中央处理单元;该方法包括:步骤1:采集与各路里程轮的磁场变化相对应的脉冲电信号;步骤2:对各路脉冲电信号分别进行滤波和放大处理;步骤3:对步骤2处理后的脉冲信号进行模数转换;步骤4:对步骤3模数转换后的数字脉冲信号进行二次滤波处理;步骤5:里程轮异常判断和管道转弯判断;步骤6:选择当前最优里程脉冲信号并输出;步骤7计算管道内检测器里程值。本发明保证了系统的检测速度、里程脉冲信号的稳定性,同时提高了系统的抗干扰性、保证了里程测量的测量精度和最优里程脉冲的输出。
-
公开(公告)号:CN103994334B
公开(公告)日:2016-09-14
申请号:CN201410240469.2
申请日:2014-05-30
Applicant: 东北大学
IPC: F17D5/02
Abstract: 本发明一种基于KPCA‑RBF曲线拟合的输油管道泄漏流量估计装置及方法,属于输油管道检测技术领域,利用KPCA核主元分析,对输油管道存在非线性关系的数据进行有效降维,大大减少主元变量个数;采用KPCA‑RBF神经网络曲线拟合的方式来进行泄漏流量的估计,避免求解高阶方程组,提高泄漏流量估计的准确度和精度;此外,将影响泄漏流量的信息作为系统输入,能有效适应复杂多变的环境,提高泄漏流量估计方法的实用性;本发明采用FPGA+DSP架构,相对于单FPGA或单DSP系统,FPGA+DSP系统具有更高的运算处理能力;FPGA+DSP架构同时具备FPGA实时性好和DSP开发难度低的优点,减少了开发周期和技术风险,并且更适用于实时数据处理,系统功能划分明确,大大提高系统整体性能指标。
-
-
-
-
-
-
-
-
-