-
公开(公告)号:CN104087505A
公开(公告)日:2014-10-08
申请号:CN201410320550.1
申请日:2014-07-08
Applicant: 东南大学
CPC classification number: C12Q1/6869 , C12Q2565/607 , C12Q2565/631 , C12Q2565/601
Abstract: 本发明涉及检测DNA脱氧核糖核苷酸碱基序列的纳米孔DNA测序传感器。该传感器包含电流检测单元,二硫化钼场效应管,原子力显微镜进给系统和阵列单元。将DNA通过化学修饰的方法键合在原子力显微镜探针上,通过原子力显微镜的进给控制系统,可以使得驱动DNA进出纳米孔的速度控制在一纳米每秒,这一速度完全满足DNA测序电流信号检测的带宽需求。在DNA过孔的过程中,因为纳米孔处于二硫化钼纳米带上,而二硫化钼纳米带在电流信号的检测过程中扮演着场效应管的角色,可以对DNA过孔的信号进行实时的放大,有效的提高信噪比。此外通过将原子力显微镜探针对应二硫化钼场效应管阵列化的方法可以同时并行的对待测DNA进行多通道并行实时测序,大大缩短了时间成本。
-
公开(公告)号:CN119177170A
公开(公告)日:2024-12-24
申请号:CN202411369845.8
申请日:2024-09-29
Applicant: 东南大学
Abstract: 本发明提出一种基于惯性微流控技术的循环肿瘤细胞分选与富集芯片,本发明设计的惯性微流控芯片由梯形截面分选芯片与富集所用浓缩芯片嵌套而成。浓缩芯片入口的一侧通过粘接分选芯片的内出口用于实现二者的垂直堆叠和上、下两芯片的连通。工作时,携带细胞的样本液体经由注射泵以所设定的流速通过预设流道,受微流体惯性效应和Dean涡旋共同作用,大部分细胞将汇聚至螺旋流道外侧并从外出口排出,循环肿瘤细胞则会集中在螺旋流道内侧,并通过内出口进入下一富集环节。分选后的循环肿瘤细胞经过三级正弦非对称蛇形流道在相同的物理效应下聚焦至流道中央,随后通过两侧支流道清除无细胞液体并最终从中间出口排出,完成富集过程。
-
公开(公告)号:CN114906800B
公开(公告)日:2024-07-09
申请号:CN202210355100.0
申请日:2022-04-06
Applicant: 东南大学
Abstract: 本发明涉及一种履带式纳米小车及其控制、制作方法,本发明设计的履带式纳米小车由两条履带式环状脱氧核糖核苷酸链通过纳米薄膜上的纳米孔首尾相接而成,在纳米孔位置各安装了可控制的纳米电极。本发明设计的履带式纳米小车可以通过调节纳米电极所连接电压源的方向与强度,进而控制纳米孔内的电渗流强度,从而利用电渗驱动环状脱氧核糖核苷酸绕双孔旋转,使纳米小车可以进行直行和转弯运动。本发明通过控制电极来控制履带式环状脱氧核糖核苷酸链的旋转速度,进而规划纳米小车的运动路径,从而达到将各种药品运输到所需位置的目的。
-
公开(公告)号:CN116131660A
公开(公告)日:2023-05-16
申请号:CN202310159496.6
申请日:2023-02-24
Applicant: 东南大学
Abstract: 本发明公开了一种电渗流驱动的纳米马达结构,涉及纳米机器人控制技术领域,解决了纳米马达系统控制不够精准的技术问题,其技术方案要点是电渗流系统中电渗流的形成是通过外加电场作用于被单层石墨烯膜分隔的电解质溶液,使得电解质溶液在两个带相反电荷的纳米孔之间形成的同向电渗流实现的;环状DNA传动系统的旋转运动是由电渗流驱动实现的,并将动力传递给纳米马达系统;纳米马达系统是环状单链DNA分子通过与转子的静电吸附和切向力传动的,并通过调节电场强度或纳米孔壁面的电荷密度实现精确控制。电渗流驱动环状单链DNA分子旋转并通过环状单链DNA分子将动力传递给碳纳米管马达,实现了纳米马达的简化操作和精确控制。
-
公开(公告)号:CN113580099B
公开(公告)日:2022-10-14
申请号:CN202110700953.9
申请日:2021-06-21
Applicant: 东南大学
IPC: B25J7/00 , B25J9/16 , B25J19/00 , C12N15/10 , B82Y30/00 , C23C16/40 , C23C16/455 , C23C14/35 , C23C14/10
Abstract: 本发明涉及一种编码式纳米机器人及其控制、制作方法,本发明可以通过编码调节纳米孔与纳米金电极所连接电压源的方向与强度,进而控制纳米孔内的电渗流强度,从而利用电渗驱动和电泳驱动联合或竞争驱动,对具有多自由度的编码式纳米机器人的运动方向以及运动速度进行精准的操控,有利于快速有效地对待测分子进行研究;该纳米机器人的两条脱氧核糖核酸链长度可调节,具有大范围的可调量程,可以基于两纳米孔之间的距离通过合成末端巯基化不同长度的脱氧核糖核酸链,即可控制编码式纳米机器人在捕获情况下的运动范围。
-
公开(公告)号:CN114906800A
公开(公告)日:2022-08-16
申请号:CN202210355100.0
申请日:2022-04-06
Applicant: 东南大学
Abstract: 本发明涉及一种履带式纳米小车及其控制、制作方法,本发明设计的履带式纳米小车由两条履带式环状脱氧核糖核苷酸链通过纳米薄膜上的纳米孔首尾相接而成,在纳米孔位置各安装了可控制的纳米电极。本发明设计的履带式纳米小车可以通过调节纳米电极所连接电压源的方向与强度,进而控制纳米孔内的电渗流强度,从而利用电渗驱动环状脱氧核糖核苷酸绕双孔旋转,使纳米小车可以进行直行和转弯运动。本发明通过控制电极来控制履带式环状脱氧核糖核苷酸链的旋转速度,进而规划纳米小车的运动路径,从而达到将各种药品运输到所需位置的目的。
-
公开(公告)号:CN113580099A
公开(公告)日:2021-11-02
申请号:CN202110700953.9
申请日:2021-06-21
Applicant: 东南大学
IPC: B25J7/00 , B25J9/16 , B25J19/00 , C12N15/10 , B82Y30/00 , C23C16/40 , C23C16/455 , C23C14/35 , C23C14/10
Abstract: 本发明涉及一种编码式纳米机器人及其控制、制作方法,本发明可以通过编码调节纳米孔与纳米金电极所连接电压源的方向与强度,进而控制纳米孔内的电渗流强度,从而利用电渗驱动和电泳驱动联合或竞争驱动,对具有多自由度的编码式纳米机器人的运动方向以及运动速度进行精准的操控,有利于快速有效地对待测分子进行研究;该纳米机器人的两条脱氧核糖核酸链长度可调节,具有大范围的可调量程,可以基于两纳米孔之间的距离通过合成末端巯基化不同长度的脱氧核糖核酸链,即可控制编码式纳米机器人在捕获情况下的运动范围。
-
公开(公告)号:CN113104129A
公开(公告)日:2021-07-13
申请号:CN202110270618.X
申请日:2021-03-12
Applicant: 东南大学
IPC: B62D57/032
Abstract: 本发明公开了一种DNA多足纳米移动装置及其驱动方法,涉及微纳机电系统应用领域,解决了纳米机器人的制作难度较高且对其运动控制的精准度不高的技术问题,其技术方案要点是通过改变纳米孔内外的电势,反复吞吐DNA足,实现纳米尺度运动的高精度控制;DNA多足纳米移动装置的运动由电势直接控制,避免了复杂环境对磁场的干扰,提高控制精度并降低使用成本。
-
公开(公告)号:CN111077185A
公开(公告)日:2020-04-28
申请号:CN201911214317.4
申请日:2019-12-02
Applicant: 东南大学
Abstract: 本发明涉及多自由度自组装纳米机器人及其制作控制方法,该纳米机器人由微纳米颗粒和四条脱氧核糖核酸链通过金-巯键或链霉亲和素和生物素强相互作用,自组装而成形成四足纳米机器人。通过在硅基材料上正方形的四个顶点分别沉积圆形金电极,同时在圆形金电极上加工四个纳米孔;该尺寸的纳米孔使得在外加电场的作用下每个纳米孔将仅能捕获一条脱氧核糖核酸链。由于纳米金电极与外接电压源相连,通过调控各个纳米孔上电压的方向和大小,可以调控纳米孔上电荷密度的电性和强度,从而控制通过纳米孔的电渗流方向和强度,并与脱氧核糖核酸链所受的电场力形成联合或竞争驱动,从而控制纳米机器人的运动速度和方向。
-
公开(公告)号:CN109465047A
公开(公告)日:2019-03-15
申请号:CN201811328020.6
申请日:2018-11-06
Applicant: 东南大学
IPC: B01L9/00
Abstract: 本发明公开了一种纳米孔检测芯片的便携式装夹装置,包括弹簧、推动杆、沿推动杆自由移动的左液池、橡胶垫圈、芯片夹和右液池,通过按动推动杆使左液池和右液池分开,将装有芯片的芯片夹插入两液池之间的空隙,去除对推动杆施加的外力时,右液池与左液池在弹簧的作用下共同夹紧芯片夹;位于芯片夹内侧的橡胶垫圈保证夹紧芯片时的密封连接,位于芯片夹外侧的橡胶垫圈保证和两液池的密封连接。本发明利用弹簧自发复原的特性,能够方便快捷、准确高效地实现两液池与芯片连接时的定位与夹紧,从而实现快速更换所需芯片。
-
-
-
-
-
-
-
-
-