一种补偿瞬变电磁信号负值的方法

    公开(公告)号:CN106814403B

    公开(公告)日:2019-01-04

    申请号:CN201710031598.4

    申请日:2017-01-17

    Abstract: 本发明提供一种补偿瞬变电磁信号负值的方法,其中,所述补偿瞬变电磁信号负值的方法至少包括如下步骤:根据瞬变电磁信号的测量数据曲线,选取负值段作为拟合段;对所述拟合段进行e指数拟合,以得到拟合数据;将所述测量数据与所述拟合数据作差,以补偿所述瞬变电磁信号负值。本发明的补偿瞬变电磁信号负值的方法,具有以下有益效果:采用本发明的方法,能够有效处理瞬变电磁信号的负值,从而得到较长时间的有效数据,有效提高地质探测深度。经过补偿后的瞬变电磁信号,就可以通过传统成熟的TEM数据处理解释方法对其进行解释,提高了电阻率解释的准确性。

    一种微弱涡流磁场测量装置及方法

    公开(公告)号:CN106950516A

    公开(公告)日:2017-07-14

    申请号:CN201710183694.0

    申请日:2017-03-24

    CPC classification number: G01R33/06 G01V3/40

    Abstract: 本发明提供一种微弱涡流磁场测量装置及方法,用于测量被测对象的涡流磁场,其中,该装置包括一屏蔽室,所述屏蔽室内设有一亥姆霍兹线圈、一被测对象托台和一磁传感器,所述屏蔽室外设有一数据同步源、一信号源、一功率放大器和一数据采集组件;其中,所述被测对象托台位于所述亥姆霍兹线圈的磁场均匀区,所述信号源和所述功率放大器依次串联在所述数据同步源与所述亥姆霍兹线圈之间;所述数据采集组件连接在所述数据同步源与所述磁传感器之间。本发明不仅提高涡流磁场的测量精度、简化涡流磁场的测量步骤,而且能整体对大尺寸系统的涡流磁场进行精确测量。

    瞬变电磁接收机
    13.
    发明授权

    公开(公告)号:CN104730584B

    公开(公告)日:2017-06-16

    申请号:CN201310713458.7

    申请日:2013-12-20

    Abstract: 本发明提供一种瞬变电磁接收机,包括:超导量子干涉器传感器;与所述超导量子干涉器传感器相连的同步信号处理单元,用于从所述超导量子干涉器传感器所输出的感应信号中提取同步信号;与所述超导量子干涉器传感器和同步信号处理单元相连的数据采集单元,用于基于所述同步信号来采集所述超导量子干涉器传感器所输出的感应信号。本发明无需建立与发射机相匹配的同步时钟,能够通过感应发射机所发射的瞬变的磁信号来确定同步信号,具有结构简单、精度高的优点。

    超导全张量磁梯度测控装置的同步精度的平行标定方法

    公开(公告)号:CN104457793B

    公开(公告)日:2017-06-16

    申请号:CN201410742699.9

    申请日:2014-12-08

    Abstract: 本发明涉及一种超导全张量磁梯度测控装置的同步精度的平行标定方法,其特征在于首先采用数字锁相环对GPS组合惯导秒脉冲信号PPS倍频产生重采样的时钟,然后利用计数器获得ADC采样时钟与重采样时钟的相位关系从而完成对原始信号的重采样;随后在接收到PPS信号时由串口读取此时GPS的精确授时时间,最后再与GPS组合惯导中存储的带有时间戳的位置和姿态信息融合后来实现同步。本发明提供十微秒级的同步测量精度,所述方法具有实现简单可操作性强,对成功研制超导全张量磁梯度测控装置意义重大。

    一种在超导瞬变电磁应用中的噪声抑制方法

    公开(公告)号:CN103955003B

    公开(公告)日:2017-04-19

    申请号:CN201410195796.0

    申请日:2014-05-09

    Abstract: 本发明涉及一种在超导瞬变电磁应用中的噪声抑制方法,其特征在于所述的噪声抑制方法是将经验模态分解方法和环境磁场参考测量相结合;具体是首先建立TEM接收系统和环境磁场参考测量系统,分别测量TEM信号和环境磁场信号,并采用EMD模块对这两类信号进行高频噪声滤除处理,接着在接收信号中去除环境参考部分相关的低频干扰,最后得到需要的TEM信号。所述的方法不仅能抑制高频噪声,而且在低频噪声抑制方面十分有效,而且通过DSP模块的实时信号处理操作,有利于提高信号处理速度和节省系统存储空间,对系统的应用起重要的推动作用,有效提高系统测量精度。

    大量程SQUID磁传感器的工作点跳变控制方法及系统

    公开(公告)号:CN105278396A

    公开(公告)日:2016-01-27

    申请号:CN201410352806.7

    申请日:2014-07-23

    Abstract: 本发明提供一种大量程SQUID磁传感器的工作点跳变控制方法及系统,该方法包括:当大量程SQUID磁传感器的FLL的输出电压幅度达到上限电压幅度时,输出一控制信号至FLL的复位控制端,使FLL开始复位;当大量程SQUID磁传感器的FLL的输出电压幅度达到下限电压幅度时,解除控制信号,使FLL自然进入锁定状态。本发明通过两个门限电压判断和状态控制方法,实现了最优化的复位控制,既确保了工作点的准确切换,避免了复位失败产生误计数,又优化了复位和重锁定的过程,实现了切换过程时间最短,避免了传统复位过零和重锁定过程产生的过冲暂态问题。

    一种SQUID磁传感器的失锁复位补偿装置及方法

    公开(公告)号:CN105203978A

    公开(公告)日:2015-12-30

    申请号:CN201410242689.9

    申请日:2014-06-03

    Abstract: 本发明提供一种SQUID磁传感器的失锁复位补偿装置及方法,该装置包括:参考SQUID磁传感器,包括第二SQUID器件,第二反馈线圈,及第二读出电路;第二SQUID器件与SQUID磁传感器共用一个信号输入线圈,与信号输入线圈的耦合度低于SQUID磁传感器中SQUID器件与信号输入线圈的耦合度;第二反馈线圈和第二读出电路将第二SQUID器件感应到的磁通转换成第二电压信号;失锁补偿模块根据失锁前后第一SQUID磁传感器的工作点相差整数个磁通量子Φ0的特性,利用第二电压信号的变化量获得第一SQUID磁传感器失锁前后工作点的偏移量,从而将失锁后第一SQUID磁传感器的工作点补偿到与失锁前一致。本发明实现了SQUID磁传感器在失锁复位前后的连续测量,实现了SQUID磁传感器既具有高灵敏度又具有大量程的特性。

    超导全张量磁梯度测控装置的同步精度的平行标定方法

    公开(公告)号:CN104457793A

    公开(公告)日:2015-03-25

    申请号:CN201410742699.9

    申请日:2014-12-08

    CPC classification number: G01C25/00 G01C25/005

    Abstract: 本发明涉及一种超导全张量磁梯度测控装置的同步精度的平行标定方法,其特征在于首先采用数字锁相环对GPS组合惯导秒脉冲信号PPS倍频产生重采样的时钟,然后利用计数器获得ADC采样时钟与重采样时钟的相位关系从而完成对原始信号的重采样;随后在接收到PPS信号时由串口读取此时GPS的精确授时时间,最后再与GPS组合惯导中存储的带有时间戳的位置和姿态信息融合后来实现同步。本发明提供十微秒级的同步测量精度,所述方法具有实现简单可操作性强,对成功研制超导全张量磁梯度测控装置意义重大。

    基于SBC构型的磁通量子计数直接读出电路与方法

    公开(公告)号:CN103792500A

    公开(公告)日:2014-05-14

    申请号:CN201210430981.4

    申请日:2012-11-01

    Abstract: 一种基于SBC构型的磁通量子计数的磁场直接读出电路,其特征在于SBC芯片(1)、放大器(2)、积分器(3)、反馈电阻(4)和反馈线圈(5)构成磁通锁定环路,磁通计数单元(6)进行逻辑判定、控制波形发生与整形后,通过放电开关对积分器(3)进行复位操作,实现磁通量子计数,磁通计数单元(6)的计数脉冲包括C+和C-,作为电路输出与积分器输出共同用于波形重构。所述的方法包括(a)利用SBC构型磁通-电流曲线非对称特性,增加磁通量子计数工作稳定性;(b)基于复位开关控制波形整形实现软开关,消除复位浪涌电流/电压。本发明基于SBC和软开关的读出电路构型简单,参数易调整、抗干扰能力强,适合运动平台下的多通道磁场测量与系统集成。

    一种基于超导磁传感器的数字化实时磁场补偿装置及方法

    公开(公告)号:CN103389478A

    公开(公告)日:2013-11-13

    申请号:CN201210427956.0

    申请日:2012-10-31

    Abstract: 本发明涉及一种超导磁传感器的数字化实时磁补偿装置及方法,其特征在于在传统磁通锁定环读出电路的基础上引入具有不同通带特性的两级负反馈,分别实现高灵敏度待测磁场信号的读取和低灵敏度待补偿磁场干扰的补偿,采用ADC、微处理器、DAC及其附属器件组成的数字电路构建磁补偿电路,并增加了可提高磁补偿装置可靠性的软启动和磁通锁定环直流偏置自动消除功能。其补偿方法特征在于通过ADC采集磁通锁定环的输出信号,然后由微处理器进行直流偏置消除、滤波、反转、积分,最后由DAC输出磁补偿反馈需要的信号。充分利用SQUID Feedback(反馈)线圈进行反馈,极大地简化了磁补偿装置的结构,提高了它的可维护性、可靠性和待补偿信号的提取能力。

Patent Agency Ranking