基于信誉反向拍卖的联邦学习激励方法、系统和存储介质

    公开(公告)号:CN116720593A

    公开(公告)日:2023-09-08

    申请号:CN202310604521.7

    申请日:2023-05-24

    Abstract: 本发明公开了基于信誉反向拍卖的联邦学习激励方法、系统和存储介质,属于联邦学习技术领域。本发明的基于信誉机制和反向拍卖的联邦学习激励方法,通过构建信誉评估模型、反向拍卖学习模型、联邦学习服务器,对若干客户端的信誉数据进行评估,进而筛选出一个或多个客户端作为候选客户端;然后对候选客户端的密封投标数据进行求解,筛选出一个或多个最佳客户端;并根据交互信息,对最佳客户端进行信誉评估,得到信誉激励值;再对最佳客户端的信誉数据进行更新,从而完成基于信誉机制和反向拍卖的联邦学习激励,能够有效保证整个激励机制的真实性和可靠性,同时能够激励更多具有高质量数据和高信誉值的客户端参与联邦学习。

    面向大规模产业链隐私计算的联邦学习模型训练方法

    公开(公告)号:CN114169412A

    公开(公告)日:2022-03-11

    申请号:CN202111397160.0

    申请日:2021-11-23

    Abstract: 本发明提供一种面向大规模产业链隐私计算的联邦学习模型训练方法。所述方法包括:由联邦学习中心服务器节点以非独立同分布为目标划分产业链业务训练数据集,并分发至多个联邦学习工人节点;联邦学习工人节点基于目标利润函数迭代训练本地模型;聚合服务器节点在聚合每个联邦学习工人节点发送的更新后的本地模型权重后,根据各个本地模型权重分布和整体本地模型权重分布,计算每个联邦学习工人节点对应的地动距离,并剔除超过预设距离阈值的联邦学习工人节点;由剩余的联邦学习工人节点继续进行模型训练。本发明在联邦学习模型训练过程中将分布差异过大的数据分布剔除,减少异质性数据带来的精度损失,提高了传统算法在产业链中的应用可靠性。

Patent Agency Ranking