-
公开(公告)号:CN116718938A
公开(公告)日:2023-09-08
申请号:CN202310665747.8
申请日:2023-06-07
Applicant: 吉林大学
IPC: G01R31/392 , G01R31/396 , G01R31/367
Abstract: 本发明属于电动汽车技术领域,涉及一种汽车电池寿命分布模型参数估计方法,包括下述步骤:1、采集汽车电池寿命数据,使用近似中位秩公式计算经验分布函数;2、将对数正态分布的分布函数进行逆正态变换,得到最小二乘支持向量机模型的初始数据集并进行线性检验;3、采用十倍交叉验证法对LSSVM内部参数进行优选;4、基于LSSVM进行寿命分布模型参数估计;5、假设检验;6、根据寿命分布模型进行可靠性指标计算;本发明考虑在小样本情况下,新方法对寿命分布模型参数估计的精度,与传统参数估计方法相比更为准确、更符合生产实际。
-
公开(公告)号:CN111291486B
公开(公告)日:2022-04-08
申请号:CN202010083290.6
申请日:2020-02-09
Applicant: 吉林大学
IPC: G06F30/20 , G06F30/17 , G06F119/02
Abstract: 本发明属于数控机床技术领域,涉及一种数控机床组件可靠性评估方法,包括下述步骤:1、划分系统组件,采集数控机床现场故障信息并进行故障分析;2、计算组件及机床系统等效故障间隔时间、等效试验截尾时间;3、应用Johnson法进行等效故障间隔时间的秩次修正,并实现组件与机床系统可靠度模型构建;4、构建系统串联可靠度模型,应用相关指数法验证基于等效样本法的组件可靠度建模合理性;本发明在修复如新假设下,应用等效样本法进行组件故障间隔时间计算,符合系统组件寿命定义,综合故障总时间法、等效样本法进行组件故障间隔时间修正,扩大样本量,符合抽样原理,与传统基于系统信息进行组件可靠性建模方法比,更符合工程实际。
-
公开(公告)号:CN109100145A
公开(公告)日:2018-12-28
申请号:CN201810945132.X
申请日:2018-08-20
Applicant: 吉林大学
IPC: G01M13/04
Abstract: 本发明公开了一种大功率电主轴用模拟加载与可靠性试验装置,电主轴通过夹持机构固定在地平铁上,切削力模拟加载机构通过四分量测力仪与地平铁固连,双膜片弹性联轴器一端与切削力模拟加载机构中的加载棒连接,另一端与测功机连接,测功机固连在地平铁上,本试验装置采用机械加载装置,轴向力和径向力分别通过轴向力加载弹簧、径向力加载弹簧间接作用在加载棒上,从而有效降低了电主轴端面跳动对加载切削力产生的波动误差;下V型铁可以在V型铁支架的滑槽内上下移动,当需要调节电主轴中心高度时只需要松开锁紧螺栓,通过旋转高度调节螺栓即实现调整功能,本装置结构简单,成本低廉,具有较好的可靠性。
-
公开(公告)号:CN105844050A
公开(公告)日:2016-08-10
申请号:CN201610223176.2
申请日:2016-04-12
Applicant: 吉林大学
IPC: G06F17/50
CPC classification number: G06F17/5036 , G06F17/5086 , G06F2217/76 , G06F2217/84
Abstract: 本发明属于数控机床可靠性分析技术领域,涉及一种基于时间相关的数控机床组件更换时间方法,克服现有技术忽略系统组件故障时间相关影响建立可靠性模型而导致组件更换时间模型及组件备件库存量计算存在偏差的缺陷,包括以下步骤:1、采集故障数据;2、用游程检验法检验故障数据的平稳性;3、用Johnson法对各组件的故障时间ti的故障顺序号进行修正;4、对数控机床组件的故障过程建模;5、计算更换失效率指标λ'R;6、计算数控机床系统各组件的更换寿命及一定时间内备件库存量。本发明既可实现组件更换时间计算,还可进行一定周期内组件备件量预测,为企业采购管理提供依据,减少了企业库存损失,提高了经济效益。
-
公开(公告)号:CN102981452B
公开(公告)日:2015-04-01
申请号:CN201210584059.0
申请日:2012-12-28
Applicant: 吉林大学
IPC: G05B19/18 , G05B19/406
Abstract: 本发明涉及一种数控机床三类功能部件的可靠性建模与可靠性评估方法,该方法包括下述步骤:根据数控机床可靠性现场试验数据绘制故障间隔时间的WPP图;如果WPP图趋向于一条直线,则对功能部件寿命进行二参数威布尔分布建模并对其可靠性进行评估;如果WPP图具有明显的拐点,则采用二重威布尔混合分布建模并对其参数进行估计;对二重威布尔混合模型进行可靠性评估。本发明基于运行状态的数控机床三类功能部件的可靠性现场试验数据进行功能部件的可靠性建模和评估,采用多重威布尔分布模型揭示这些功能部件产品寿命周期过程中故障分布规律,并进行综合参数估计,较好地解决了功能部件这类复杂系统的可靠性建模和评估问题。
-
公开(公告)号:CN118033408A
公开(公告)日:2024-05-14
申请号:CN202410380793.8
申请日:2024-03-31
Applicant: 吉林大学
IPC: G01R31/327 , G01M13/00
Abstract: 本发明涉及一种高压继电器小子样的寿命评估方法、系统、装置及介质,方法包括确定继电器故障间隔里程及截尾数据;基于平均秩次法的故障间隔里程数据秩次修正;经验分布函数值计算;基于全最小二乘法估计分布模型参数估计;线性相关检验与D检验;模型选优与寿命评估;本发明基于均方根误差和相对均方根误差的模型优选方法充分考虑了各类经验分布函数值计算方法和截尾数据对故障分布函数经验值估计的影响,为保证参数估计稳定性应用全最小二乘估计法估计参数,在相关性检验和D检验验证参数估计结果的有效性和合理性的同时,使用均方根误差和相对均方根误差判断方法识别最优模型,并进行寿命估计。
-
公开(公告)号:CN116305996A
公开(公告)日:2023-06-23
申请号:CN202310318827.6
申请日:2023-03-29
Applicant: 吉林大学
Abstract: 本发明属于设备视情维修技术领域,具体涉及一种针对两阶段退化设备的两阶段视情维修策略优化方法,包括以下步骤:步骤一、使用两阶段退化过程模型描述设备两阶段退化过程;步骤二、确定设备视情维修策略实施方法;步骤三、以设备长期运行下平均成本率为基础建立视情维修策略优化模型;步骤四、使用粒子群优化算法求解,得到视情维修策略实施方案。本发明提出的两阶段视情维修策略优化方法,针对两阶段退化设备,能够降低成本,提高设备可用度。
-
公开(公告)号:CN109522650B
公开(公告)日:2022-05-10
申请号:CN201811366311.4
申请日:2018-11-16
Applicant: 吉林大学
Abstract: 本发明属于电主轴可靠性分析技术领域,涉及一种无突发失效信息下电主轴寿命评估方法。克服现有技术根据退化信息建模时忽略突发失效及退化对突发失效的影响的缺陷,包括以下步骤:1、电主轴产品定时截尾可靠性试验及电主轴产品退化信息采集;2、指数分布产品可靠性建模;3、威布尔分布产品可靠性建模;4、结合退化信息的无突发失效信息下部分分布竞争风险可靠性建模;5、基于部分分布竞争风险可靠性模型进行电主轴寿命评估。本发明从竞争失效角度提出了一种基于单侧置信限建模基本失效率、以多性能退化量为协变量的部分分布竞争风险建模方法,对合理评价电主轴可靠性水平及完善电主轴可靠性技术体系具有重要意义。
-
公开(公告)号:CN112906250A
公开(公告)日:2021-06-04
申请号:CN202110380488.5
申请日:2021-04-09
Applicant: 吉林大学
IPC: G06F30/20 , G06F16/245 , G06F16/28 , G06N3/12
Abstract: 本发明属于复杂系统模块分类技术领域,涉及一种复杂系统模块分类方法,包括下述步骤:1、采集复杂系统现场故障数据;2、将复杂系统划分为N个单元,确定各单元的故障分布函数;3、对各单元故障相关性分析及计算;4、计算各单元故障的综合关联强度,建立单元间故障关联矩阵;5、关联矩阵变换,求强连通集合,得到初始聚类模块;6、建立模块分类量化数学模型,构建目标函数;7、使用分组遗传算法对目标函数进行优化,得到最佳模块划分。本发明复杂系统模块分类方法使用Copula函数量化故障关联单元之间的关联强弱,避免了人为因素造成的结果不准确,提高了故障关联单元关联强度的精确程度,使用聚合度耦合度作为量化指标,对模块内部以及模块之间的关系进行分析,通过构建目标函数并使用遗传算法优化,得到的最佳划分模块相对符合实际。
-
公开(公告)号:CN112883569A
公开(公告)日:2021-06-01
申请号:CN202110160418.9
申请日:2021-02-05
Applicant: 吉林大学
IPC: G06F30/20 , G06F17/16 , G06F16/901 , G06F16/2458
Abstract: 本发明属于数控机床技术领域,涉及一种数控机床故障传播扩散行为分析方法,包括下述步骤:1、通过故障相关性分析、矩阵转换与分解构建系统故障传播层级结构模型;2、考虑故障时间相关性的组件故障概率模型构建;3、引入超图理论思想计算组件间故障传播扩散系数;4、计算累积故障传播扩散系数;5、融入边介数计算系统组件故障影响度;6、分析故障传播扩散行为、识别关键故障节点、确定关键故障传播扩散路径;本发明考虑故障分步扩散的影响,从故障机理以及模型结构特征的角度分析数控机床故障传播扩散行为,与传统单视角分析方法相比更为准确、更符合生产实际。
-
-
-
-
-
-
-
-
-