量子教与学搜索机制的中继选择方法

    公开(公告)号:CN106385702A

    公开(公告)日:2017-02-08

    申请号:CN201610811066.8

    申请日:2016-09-08

    CPC classification number: Y02D70/34 Y02D70/39 H04W40/16 H04B7/15542 H04W40/22

    Abstract: 本发明涉及一种通过对中继选择的组合目标使用量子教与学搜索机制来实现的均衡考虑最大平均网络效益和公平性折中的量子教与学搜索机制的中继选择方法。本发明包括:(1)建立多用户中继系统模型,(2)初始化班级,(3)教阶段,(4)学阶段,(5)对于新的量子学员,根据前述映射规则将其映射为整数解,(6)从更新后的量子学员,(7)得到中继选择方案。本发明解决了整数规划的中继选择问题,并设计新颖的基于量子教与学算法的中继选择方法作为演进策略,所设计的方法具有收敛速度快,收敛精度高的优点。

    一种基于二维栅格划分的集群无人机多航迹规划方法

    公开(公告)号:CN107677273B

    公开(公告)日:2020-09-25

    申请号:CN201710810478.4

    申请日:2017-09-11

    Abstract: 本发明属于无人机多航迹规划技术领域,具体涉及一种基于二维栅格划分的集群无人机多航迹规划方法。步骤为:用栅格法将二维空间规划为若干正方形网格;建立无人机威胁约束模型;初始化量子蚁群,初始化量子信息素并将所有量子蚂蚁置于初始节点;所有量子蚂蚁根据禁忌搜索和量子信息素更新节点选择概率等机制完成路径搜索;根据最优路径的综合代价更新量子旋转角;使用模拟的量子旋转门更新量子信息素;将输出的最优路径存入航迹集合;判断航迹集合中的航迹个数是否到达最大航迹个数;将航迹集合中的航迹依长度排序供无人机选择。将传统蚁群算法的启发式搜索机制与量子计算和禁忌搜索相结合,提供一种获取多条选择路径的集群无人机航迹规划方法。

    量子教与学搜索机制的中继选择方法

    公开(公告)号:CN106385702B

    公开(公告)日:2019-08-06

    申请号:CN201610811066.8

    申请日:2016-09-08

    CPC classification number: Y02D70/34 Y02D70/39

    Abstract: 本发明涉及一种通过对中继选择的组合目标使用量子教与学搜索机制来实现的均衡考虑最大平均网络效益和公平性折中的量子教与学搜索机制的中继选择方法。本发明包括:(1)建立多用户中继系统模型,(2)初始化班级,(3)教阶段,(4)学阶段,(5)对于新的量子学员,根据前述映射规则将其映射为整数解,(6)从更新后的量子学员,(7)得到中继选择方案。本发明解决了整数规划的中继选择问题,并设计新颖的基于量子教与学算法的中继选择方法作为演进策略,所设计的方法具有收敛速度快,收敛精度高的优点。

    基于量子头脑风暴的异构传感器网络最佳目标覆盖方法

    公开(公告)号:CN107396375A

    公开(公告)日:2017-11-24

    申请号:CN201710606778.0

    申请日:2017-07-24

    CPC classification number: H04W16/18 H04W84/18

    Abstract: 本发明针对在求解目标覆盖中最佳等效工作传感器分布的问题时,现有方法的寻优结果差、收敛速度慢以及联合感知概率更高时失效的缺点,提出了一种新的异构传感器网络最佳目标覆盖方法。本发明解决了当前头脑风暴优化算法无法应用于离散问题的缺点,拓宽了头脑风暴算法的应用范围。仿真结果表明,与现有的经典目标覆盖方法相比,本发明的收敛速度与收敛精度更优,从而证明了本发明的有效性。在相同条件下,联合感知概率约束更严格时传统方法将会失效,而本方法则仍然可行。本发明将头脑风暴过程中的方案交流融合体现在新方案的产生方式中,比原有头脑风暴算法的方案交流更广泛,更接近真实的头脑风暴过程。

    基于量子蜘蛛群演化机制的平面天线阵列稀疏方法

    公开(公告)号:CN107302140A

    公开(公告)日:2017-10-27

    申请号:CN201710333471.8

    申请日:2017-05-12

    Abstract: 本发明提供的是一种基于量子蜘蛛群演化机制的平面天线阵列稀疏方法。1、建立平面天线阵列稀疏模型;2、设置系统参数;3、用适应度函数评价种群中每只蜘蛛编码位置的优劣,适应度函数值最优的位置记为整个种群的全局最优位置;4、划分种群中蜘蛛的性别;5、计算每只蜘蛛的重量;6、更新雌性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雌性蜘蛛量子位置;7、更新雄性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雄性蜘蛛量子位置;8更新各自历史最优位置;9:判断是否达到最大迭代次数。本发明解决了多约束平面天线阵列稀疏难题,满足了对平面稀疏阵列的各种要求。

    一种基于混沌多种群共生进化的双基地MIMO雷达跟踪方法

    公开(公告)号:CN106501801A

    公开(公告)日:2017-03-15

    申请号:CN201610859072.0

    申请日:2016-09-28

    CPC classification number: G01S13/68

    Abstract: 本发明涉及一种基于混沌多种群共生进化的双基地MIMO雷达跟踪方法。本发明包括获取信号采样数据,并获得分数低阶协方差;初始化搜索区间;利用Sine混沌反向学习策略初始化个体的位置和速度,并根据适应度值确定每个种群的最优个体位置和整个生态系统的最优个体位置;利用Sine混沌多种群共生进化机制更新生态系统中各种群个体的速度;判断生态系统中的所有个体在经过σ次迭代后是否能搜寻到更好的位置;判断是否达到最大迭代次数;更新2P个角度的搜索区间。本发明既可以解决高斯噪声环境下双基地MIMO雷达的动态方向跟踪问题,又可以解决冲击噪声环境下双基地MIMO雷达的动态方向跟踪问题。

    冲击噪声下基于免疫布谷鸟搜索的双基地MIMO雷达测向方法

    公开(公告)号:CN105954731A

    公开(公告)日:2016-09-21

    申请号:CN201610265227.8

    申请日:2016-04-26

    CPC classification number: G01S7/41 G01S13/003

    Abstract: 本发明提供的是一种冲击噪声下基于免疫布谷鸟搜索的双基地MIMO雷达测向方法。实现步骤如下:获取采样数据;无穷范数归一化处理,获得加权信号协方差矩阵;设定参数并初始化信仰空间;初始化鸟蛋,计算适应度并降序排列,搜寻最优鸟蛋;文化机制制备疫苗;利用Lévy飞行更新鸟蛋,计算适应度并用贪婪选择策略选择;通过重筑新巢更新鸟蛋,计算适应度并用贪婪选择策略选择;根据适应度值降序排列,对较差鸟蛋接种疫苗,计算适应度并以模拟退火机制选择;根据适应度值降序排列,找到并记录最优鸟蛋;判断是否达到最大迭代次数:若未达到继续迭代,否则输出DOD与DOA的估计值。该方法收敛速度快、估计精度高、去相干能力强、抗冲击噪声能力佳,有广泛的应用前景。

    基于量子蜘蛛群演化机制的平面天线阵列稀疏方法

    公开(公告)号:CN107302140B

    公开(公告)日:2020-01-17

    申请号:CN201710333471.8

    申请日:2017-05-12

    Abstract: 本发明提供的是一种基于量子蜘蛛群演化机制的平面天线阵列稀疏方法。1、建立平面天线阵列稀疏模型;2、设置系统参数;3、用适应度函数评价种群中每只蜘蛛编码位置的优劣,适应度函数值最优的位置记为整个种群的全局最优位置;4、划分种群中蜘蛛的性别;5、计算每只蜘蛛的重量;6、更新雌性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雌性蜘蛛量子位置;7、更新雄性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雄性蜘蛛量子位置;8更新各自历史最优位置;9:判断是否达到最大迭代次数。本发明解决了多约束平面天线阵列稀疏难题,满足了对平面稀疏阵列的各种要求。

    一种基于二维栅格划分的集群无人机多航迹规划方法

    公开(公告)号:CN107677273A

    公开(公告)日:2018-02-09

    申请号:CN201710810478.4

    申请日:2017-09-11

    Abstract: 本发明属于无人机多航迹规划技术领域,具体涉及一种基于二维栅格划分的集群无人机多航迹规划方法。步骤为:用栅格法将二维空间规划为若干正方形网格;建立无人机威胁约束模型;初始化量子蚁群,初始化量子信息素并将所有量子蚂蚁置于初始节点;所有量子蚂蚁根据禁忌搜索和量子信息素更新节点选择概率等机制完成路径搜索;根据最优路径的综合代价更新量子旋转角;使用模拟的量子旋转门更新量子信息素;将输出的最优路径存入航迹集合;判断航迹集合中的航迹个数是否到达最大航迹个数;将航迹集合中的航迹依长度排序供无人机选择。将传统蚁群算法的启发式搜索机制与量子计算和禁忌搜索相结合,提供一种获取多条选择路径的集群无人机航迹规划方法。

    一种信能协同传输的OFDM中继网络资源分配方法

    公开(公告)号:CN107592674B

    公开(公告)日:2020-12-22

    申请号:CN201710810434.1

    申请日:2017-09-11

    Abstract: 本发明属于无线通信技术领域,具体涉及一种信能协同传输的OFDM中继网络资源分配方法。步骤为:建立信能协同传输的OFDM中继网络资源分配方法模型;初始化量子蟑螂群的初始种群;构造食物浓度函数,获得全局最优量子位置;量子蟑螂根据两种量子演化规则进行量子旋转角更新,根据量子演化规则爬行获得新的量子位置;把每只量子蟑螂新产生的量子位置映射为位置,更新每只量子蟑螂记忆中的自身最优量子位置和全局最优量子位置;判断是否达到最大迭代次数,若没有达到最大迭代次数,迭代次数加1,返回到第四步继续迭代,否则进入到下一步骤;结束迭代,输出资源分配结果。本发明将量子计算与蟑螂搜索机制相结合,具有搜索速度快和全局搜索能力强的优点。

Patent Agency Ranking