一种基于语义图模型的智能供应商匹配方法

    公开(公告)号:CN114565429B

    公开(公告)日:2024-06-14

    申请号:CN202210163386.2

    申请日:2022-02-22

    Abstract: 本发明提出了一种基于语义图模型的智能供应商匹配方法,输入供应商和需求的结构化数据;构建供需描述模型,将供应商和需求的结构化数据转为图结构;根据节点类型的不同,计算需求与每个供应商同类型节点间相似度;结合极大熵原理,建立权重优化模型,对模型求解得到指标权重;依据指标权重,给节点和边分配权重;调用图匹配算法,计算图匹配度,通过入口节点的选取降低时间复杂度,然后过滤低于阈值的供应商,得到针对该需求的供应商排序集合;本发明可以让用户只需要输入计划采购的产品需求和企业要求,既能得到相匹配的供应商集合,匹配概念相似的产品,同时应用于在供应商集中寻找符合需求的实例,以及在需求集中寻找最符合供应的需求。

    一种基于语义图模型的智能供应商匹配方法

    公开(公告)号:CN114565429A

    公开(公告)日:2022-05-31

    申请号:CN202210163386.2

    申请日:2022-02-22

    Abstract: 本发明提出了一种基于语义图模型的智能供应商匹配方法,输入供应商和需求的结构化数据;构建供需描述模型,将供应商和需求的结构化数据转为图结构;根据节点类型的不同,计算需求与每个供应商同类型节点间相似度;结合极大熵原理,建立权重优化模型,对模型求解得到指标权重;依据指标权重,给节点和边分配权重;调用图匹配算法,计算图匹配度,通过入口节点的选取降低时间复杂度,然后过滤低于阈值的供应商,得到针对该需求的供应商排序集合;本发明可以让用户只需要输入计划采购的产品需求和企业要求,既能得到相匹配的供应商集合,匹配概念相似的产品,同时应用于在供应商集中寻找符合需求的实例,以及在需求集中寻找最符合供应的需求。

    一种满足差分隐私的不确定数据频繁项集挖掘方法

    公开(公告)号:CN110633285A

    公开(公告)日:2019-12-31

    申请号:CN201910917374.2

    申请日:2019-09-26

    Abstract: 本发明公开了一种满足差分隐私的不确定数据频繁项集挖掘方法,所述方法包括以下步骤:步骤1:计算频繁1-项集候选集,去掉非频繁项,使事务中项按支持度降序排列;步骤2:根据预处理后数据集生成UFP-tree树形结构的同时将隐私预算分配到UFP-tree树形结构节点中;步骤3:采用递归与枚举结合的方式从UFP-tree树形结构中挖掘频繁项集,挖掘过程中回收被剪枝节点的隐私预算;步骤4:采用指数机制从挖掘出的项集中选择k个,打分函数为项集的期望支持度,对未被选中的频繁项集的隐私预算再次回收并分配给选中的1-项集。本发明通过降低匿名率,关联属性共同置换,在保证隐私保护强度的同时,提高数据的可用性。

    一种基于位置服务的轨迹隐私保护方法

    公开(公告)号:CN110602145A

    公开(公告)日:2019-12-20

    申请号:CN201910940865.9

    申请日:2019-09-30

    Abstract: 本发明公开了一种基于位置服务的轨迹隐私保护方法。步骤1:根据用户的真实位置location生成模糊区域BA;步骤2:用模糊区域BA替代用户真实位置location,从多个匿名器中随机选择一个匿名服务器,向其发送查询请求(id,BA,t,query,k);步骤3:匿名服务器收到步骤2发送的请求信息后,在模糊区域BA内根据路网选择一个位置点Li;步骤4:匿名服务器根据步骤3中产生的Li生成匿名查询请求;步骤5:向位置服务提供商发送匿名查询请求。本发明基于多匿名器系统结构隐私保护模型进行实时轨迹隐私保护方法的研究,提出将位置模糊和K-匿名相结合的方法,以达到增强轨迹隐私保护同时保证数据可用性的目的。

    一种动态社交网络节点离开行为预测方法

    公开(公告)号:CN110472104A

    公开(公告)日:2019-11-19

    申请号:CN201910659963.5

    申请日:2019-07-22

    Abstract: 本发明属于社交网络分析技术领域,具体涉及一种动态社交网络节点离开行为预测方法。本发明在全局层面利用有影响力的节点对其他的影响来定义节点在全局上的活跃度,利用k-core分解有效地识别具有影响力的节点,并且可以保证这些点在自身邻域保持较好的聚集程度;在局部层面结合节点邻域的拓扑结构和节点自身属性(主要使用时间戳)定义节点在自身邻域上的活跃度,综合分析节点全局和局部的活跃度进行排序,达到预测节点离开行为的目的。

    基于Bert-LSTM的文本多特征分类方法及装置

    公开(公告)号:CN114547303B

    公开(公告)日:2024-10-29

    申请号:CN202210165299.0

    申请日:2022-02-18

    Abstract: 本发明公开了一种基于Bert‑LSTM的文本多特征分类方法及装置,属于文本分类技术领域,其中,该方法包括:确定待分类文本数据集,并划分为训练集和测试集;构建基于Bert‑LSTM的文本多特征分类模型;利用训练集对文本多特征分类模型进行训练,得到最优文本多特征分类模型;将待分类文本数据输入最优文本多特征分类模型中,计算待分类文本数据的得分,根据得分将其划分到预设对应类别中。该方法使用BERT以及双向长短期记忆网络等构建基于Bert‑LSTM的文本多特征分类模型,利用挖掘文本多方面的词特征信息和词义潜在语义表示特征信息,融入文本向量,模型在训练过程中充分利用多特征信息,提升了文本分类的性能。

    一种时空联合的交通流量预测方法及装置

    公开(公告)号:CN114529081B

    公开(公告)日:2024-06-11

    申请号:CN202210150863.1

    申请日:2022-02-18

    Abstract: 本发明公开了一种时空联合的交通流量预测方法及装置,属于交通流量预测技术领域,其中,该方法包括:获取各个监测点的监测数据,将数据按照时间周期性规律进行分类并建立数据集,根据数据集构建监测站点无向图,同时将数据集划分训练集、测试集和验证集;基于监测站点无向图,构建时空联合的交通流量预测模型;利用训练集对时空联合的交通流量预测模型进行训练,得到最优时空联合的交通流量预测模型;将验证集输入到最优时空联合的交通流量预测模型中,计算未来交通流量预测值。该方法通过对时空注意力进行解耦,将数据进行更加细粒性的特征划分,充分考虑到每个监测点和每个时刻的特征,更高效的提取数据中的空间相关性和时间。

    一种基于船舶数值虚拟试验的报告自动生成方法

    公开(公告)号:CN110991156B

    公开(公告)日:2023-05-23

    申请号:CN201911142359.1

    申请日:2019-11-20

    Abstract: 本发明是一种基于船舶数值虚拟试验的报告自动生成方法。本发明本发明主要包括:框架设计、数据处理、后处理、数据替换和框架集成。本发明提出的基于船舶数值虚拟试验的报告自动生成方法,可以将在网页进行虚拟试验时所生成的json文件或相关的数据文件通过智能抽取,自动将其转换成对应的图像、表格、文本,并生成试验报告。这种试验报告自动生成的方法不但可以准确的表达数据之间的关系,还可以展现出各种试验结果。使试验结果具有更好的通用性和一致性,并且提高了生成试验报告的效率。

Patent Agency Ranking