密集行人检测方法
    11.
    发明公开

    公开(公告)号:CN114202774A

    公开(公告)日:2022-03-18

    申请号:CN202111512063.1

    申请日:2021-12-07

    摘要: 一种密集行人检测方法。在网络训练阶段,搭建卷积神经网络,训练编码器解码器及检测头部预测正确的行人包围框;并根据预测结果,为每个行人分配一个最佳的预测候选框;固定密度估计头部外的其他网络参数,使用每个行人唯一的预测候选框生成密度目标,训练密度估计头部;最后放开网络所有参数,联合训练整个网络。在测试应用阶段,在进行后处理时,每选定一个确定保留的行人框,则在这张预测密度图上减去对应位置的高斯激活图,对于那些与该被保留行人重叠率大于阈值的行人框,利用更新后的密度图对这些行人框进行二次判断。本发明在密集场景下,解决了通用的非极大值抑制方法会误删的正确预测的包围框的问题,同时也不影响非密集场景的表现。

    一种基于多尺度特征融合的行人重识别方法

    公开(公告)号:CN114202740A

    公开(公告)日:2022-03-18

    申请号:CN202111483359.5

    申请日:2021-12-07

    摘要: 一种基于多尺度特征融合的行人重识别方法,1)构建基于多尺度融合的模型,并预训练主干网络暨多尺度特征提取器。2)利用多尺度特征提取器生成图像的多尺度特征。3)采用基于Transformer的特征校准模型融合两个不同尺度的特征。4)利用深监督融合从浅层特征到深层特征不断融合不同层级的特征。5)用交叉熵损失和三元组损失监督融合过程。6)将目标测试集图像输入训练好的模型提取特征,根据特征相似度进行排序得到行人重识别的结果,进而实现行人重识别。本发明采用卷积神经网络提取多尺度特征,使用Transformer从全局的角度融合多尺度信息,使得特征同时具有细节和语义信息,有效的提高了行人重识别的准确率。

    一种基于多视角图像的3D人体自监督重建方法

    公开(公告)号:CN114998515B

    公开(公告)日:2024-08-30

    申请号:CN202210558080.7

    申请日:2022-05-19

    摘要: 本发明提供了一种基于多视角图像的3D人体自监督重建方法,涉及三维人体重建技术领域,所述方法包括如下步骤:获取多视角图像,建立三维空间;将多视角图像、多视角图像对应的SMPL参数、相机参数输入至特征提取网络ResUnet34中,输出多视角特征图;通过双线性插值采样得到顶点在多视角特征图的特征;利用稀疏卷机网络SpareConvNet将所述结构化隐式编码扩散到周围的空间中;根据所述几何编码和外观编码得到通用型神经辐射场;使用体素渲染的方法给定一个新的视角相机参数,对所述通用型神经辐射场进行渲染,得到新视角相机参数下的2D图像。本发明通过利用稀疏的多视角对人体进行重建,然后渲染到目标视角下的图像,实现了2D图像到2D图像的自监督,避免了对3D真值的依赖。

    基于自适应匹配的视频显著性检测方法、装置及存储介质

    公开(公告)号:CN115115970A

    公开(公告)日:2022-09-27

    申请号:CN202210557195.4

    申请日:2022-05-19

    摘要: 本发明提供一种基于自适应匹配的视频显著性检测方法、装置及存储介质。方法包括:S1、将待检测视频的第一帧图像数据输入分割网络进行处理;S2、建立一个记忆模块存储参考特征,用第一帧前景特征进行初始化;S3、将下一帧图像数据输入特征提取网络,将当前帧特征与参考特征进行相关性匹配,基于相关性匹配图与前一帧的显著性预测图获取相关性匹配特征,将相关性特征、当前帧的8倍下采样特征以及前一帧的前景特征融合后送入所述预测网络,从而得到当前帧的显著性预测图;S4、根据当前帧前景特征与参考特征的相关性匹配结果更新记忆模块的参考特征;S5、持续输入视频帧,重复上述S3‑S4直到得到所有视频帧的显著性预测图。本发明有效地利用视频整体的时序信息,并且不会随着视频帧数的增多而增加大量计算量。

    一种基于YOLOv5的智能机器人冰壶检测方法

    公开(公告)号:CN115100111A

    公开(公告)日:2022-09-23

    申请号:CN202210549759.X

    申请日:2022-05-17

    摘要: 本发明提供一种基于YOLOv5的智能机器人冰壶检测方法,涉及计算机视觉技术领域。本发明方法,包括如下步骤:获取冰壶比赛现场图像;使用标注软件对所述冰壶比赛现场图像进行标注,得到标注后的图像;将所述图像特征图输入至YOLOv5预测网络进行前背景预测,输出不同采样倍数对应的分类预测分数和回归定位系数;将所述预测分数及边框回归值反向映射至原始图像,并在原始图像上打印,得到检测结果图。本发明针对冰壶机器人比赛的数据特点,设计轻量化的目标检测网络,并克服数据分布单一、拍摄光线较暗等困难,设计了不同的数据增强方式,重新设计损失函数。在满足高识别和定位精度的同时实现了高帧率的检测速度。

    一种基于yolov5的遥感图像检测方法、装置及存储介质

    公开(公告)号:CN114998756A

    公开(公告)日:2022-09-02

    申请号:CN202210541629.1

    申请日:2022-05-17

    摘要: 本发明提供一种基于yolov5的遥感图像检测方法、装置及存储介质。方法包括:S1、获取统一尺寸的遥感图像构成遥感图像数据集,获取每幅遥感图像的检测目标标注结果图像,从而获得遥感图像样本集,所述遥感图像样本集中的样本包括遥感图像和与遥感图像匹配的检测目标标注结果图像;对所述遥感图像样本集中的样本按照预设比例随机划分为训练集和测试集;S2、基于训练集和测试集中的样本数据对改进的yolov5模型的进行模型训练,所述改进的yolov5模型包括特征提取模块、CBAM模块、特征融合模块以及分类输出模块;S3、基于训练完成的改进的yolov5模型对遥感图像进行目标检测。本发明采用改进的yolov5模型能够更好的实现特征融合,给出精准的检测分类结果。

    一种基于多原型和迭代增强的单样本图像分割方法及装置

    公开(公告)号:CN114996495A

    公开(公告)日:2022-09-02

    申请号:CN202210551149.3

    申请日:2022-05-18

    摘要: 本发明提供一种基于多原型和迭代增强的单样本图像分割方法及装置。方法包括:分别获取支持图像和查询图像,基于同一特征提取网络获取支持特征和查询特征;基于支持特征的前景部分生成若干支持原型;计算任意支持原型与查询特征的余弦相似度生成相应的相似度图,将各支持原型根据引导表放置到对应位置,生成引导特征;同时,对所有相似度图进行累加操作生成指引查询前景位置的概率图;将所述查询特征、引导特征以及概率图连接后,进行基于多尺度增强,解码后生成查询分割图。本发明采用输出迭代来增强支持特征的指导信息,利用产生的分割图通过加法和乘法计算修正前面进行指导的概率图,使其重新进行更为准确的引导,生成更为精确的分割结果。

    基于自适应匹配的视频显著性检测方法、装置及存储介质

    公开(公告)号:CN115115970B

    公开(公告)日:2024-09-13

    申请号:CN202210557195.4

    申请日:2022-05-19

    摘要: 本发明提供一种基于自适应匹配的视频显著性检测方法、装置及存储介质。方法包括:S1、将待检测视频的第一帧图像数据输入分割网络进行处理;S2、建立一个记忆模块存储参考特征,用第一帧前景特征进行初始化;S3、将下一帧图像数据输入特征提取网络,将当前帧特征与参考特征进行相关性匹配,基于相关性匹配图与前一帧的显著性预测图获取相关性匹配特征,将相关性特征、当前帧的8倍下采样特征以及前一帧的前景特征融合后送入所述预测网络,从而得到当前帧的显著性预测图;S4、根据当前帧前景特征与参考特征的相关性匹配结果更新记忆模块的参考特征;S5、持续输入视频帧,重复上述S3‑S4直到得到所有视频帧的显著性预测图。本发明有效地利用视频整体的时序信息,并且不会随着视频帧数的增多而增加大量计算量。

    一种基于图像修复的图像3D化方法

    公开(公告)号:CN115063303A

    公开(公告)日:2022-09-16

    申请号:CN202210551793.0

    申请日:2022-05-18

    摘要: 本发明提供一种基于图像修复的图像3D化方法,包括:获取待处理图像,通过预先训练的深度提取模型获取图像深度;基于预设的深度边缘值获取初级背景边缘图,再对所述初级背景边缘图像进行滤波和连通域检测处理获取精确背景边缘图;根据预设的3D效果确定所述精确背景边缘图中需要修复的图像范围,并由所述待处理图像中获取修复处理所用的内容素材;将所述待处理图像、精确背景边缘图、需要修复的背景图像范围以及内容素材输入预先训练的图像修复模型中,从而生成修复的背景图像;将前景图像与修复的背景图像结合,按照预设的3D效果输出转换视频。本发明能够更广泛地应用于实际场景中,鲁棒性强,同时在前背景复杂的图像上也能取得良好的处理效果。