-
公开(公告)号:CN118585247A
公开(公告)日:2024-09-03
申请号:CN202410689368.7
申请日:2024-05-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F9/30
Abstract: 本发明涉及计算机技术领域,提供了一种缓存淘汰与多处理器指令集向机器指令转换方法及系统。缓存淘汰方法,包括:接收目标机器指令存储请求;若待请求的数据不在预设的缓存中,则判断缓存是否已满,若未满,则直接将目标机器指令存储至缓存中;否则,采用评分函数计算缓存中每个缓存块的评分,淘汰评分最低的缓存块;其中,所述评分函数为:待评分缓存块被访问的总次数除以当前时间戳与该缓存块最后一次被访问的时间戳的差。
-
公开(公告)号:CN118114040A
公开(公告)日:2024-05-31
申请号:CN202410089465.2
申请日:2024-01-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/214 , G06F18/25 , G06F18/211 , G06F18/2433 , G06N3/094 , G06N3/0455 , G06N3/045 , G06N3/042
Abstract: 本发明提出了一种对抗样本生成方法及系统,涉及工业控制系统对抗样本攻击研究技术领域,采集工业控制系统正常运行状态下的工控时序数据;将工控时序数据输入到训练好的时序数据预测模型中,生成初始对抗样本;利用数据类型规则检查器和不变量规则检查器对初始对抗样本进行优化,得到最终的对抗性样本;时序数据预测模型采用金字塔注意力结构充分挖掘时间序列数据的变化规律,结合CBAM注意力模块,对时间特征和空间特征添加注意力机制使其专注于重要特征。本发明采用时序数据预测模型,生成初始对抗样本,并通过不变量规则检查器和数据类型检查器来优化对抗性样本,利用深度学习模型和规则检查器的优势来提高对抗性样本的质量和可转移性。
-
公开(公告)号:CN117714562A
公开(公告)日:2024-03-15
申请号:CN202410041976.7
申请日:2024-01-11
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明涉及一种网络通信协议语法信息的自动化提取方法及系统,包括:对所有的协议解析文件进行预处理,包括提取协议名称、提取取协议解析器并与协议名称关联、提取协议解析器之间的层次关系;对用户选择的待解析协议进行处理,包括提取待解析协议的所有字段信息、扩充主解析函数的内容、提取所有的数据包类型及其组成字段信息、拼接每个数据包类型的分段以生成完整的数据包类型。本发明通过深入解析Wireshark的网络通信协议解析文件,从中提取出协议语法信息,并以结构化的方式存储。相比于其他网络通信协议语法信息提取方法,本发明具有广泛适应性,自动化程度高和效率高,且同时具有很高的准确率,能够有效地节约人工、时间成本。
-
公开(公告)号:CN116436770A
公开(公告)日:2023-07-14
申请号:CN202310443248.4
申请日:2023-04-18
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04L41/0677 , H04L43/08 , H04L43/10
Abstract: 本发明提出基于混合带内网络遥测的灰色故障检测定位方法及系统,涉及故障检测领域。包括:服务器收集被动INT探测包的逐跳遥测信息,对是否存在故障进行一次检测,向虚拟SDN网络的控制器发送存在故障路径的二次检测指令;控制器向服务器发送主动INT探测包,对一次检测中存在故障的路径进行二次检测;源服务器重新路由真正存在故障的路径信息的数据流量;控制器为所有真正存在故障的路径信息设置优先级,根据优先级进行路径之间的比较,得到故障位置;控制器将故障位置反馈给服务器,服务器查找所有与故障位置相关的路径并提前老化。本发明将主动带内网络遥测和被动带内网络遥测进行整合,弥补单一遥测方法的不足,提高网络遥测的效率和可靠性。
-
公开(公告)号:CN116208567A
公开(公告)日:2023-06-02
申请号:CN202310126810.0
申请日:2023-02-15
Applicant: 山东海量信息技术研究院 , 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及网络通信技术领域,尤其涉及一种跨域数据中心SDN网络资源的流量调度的方法和系统,方法包括:将跨域数据中心的计算能力和边缘服务器的网络性能能耗加入到多目标优化模型NSGA‑II算法,并分别为跨域数据中心的计算能力和边缘服务器的网络性能能耗建立相应的目标函数,得到流量调度优化目标模型;分别为SDN网络资源的每个SDN网络特征建立相应的目标函数和约束条件,并添加到流量调度优化目标模型中;采用带精英策略的非支配遗传算法对流量调度优化数学模型进行求解,得到用于对SDN网络资源进行流量调度的流量调度方案,实现与网络流量动态化相适应的网络资源及时调整技术,节约数据中心内部的流量带宽成本。
-
公开(公告)号:CN116094792A
公开(公告)日:2023-05-09
申请号:CN202211731395.3
申请日:2022-12-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC: H04L9/40 , G06N3/08 , G06N3/0464
Abstract: 本发明涉及基于时空特征和注意力机制的加密恶意流识别方法及装置,其方法包括将原始数据流进行数据预处理,得到初始数据流;根据初始数据流建立流量轨迹拓扑图;从流量轨迹图中提取关键节点特征,得到关键节点特征集;利用关键节点特征集建立节点级空间注意特征图;从节点级空间注意特征图中提取空间特征,得到空间特征集;从空间特征集中提取空间特征集的时间特征,得到时间特征集;将空间特征集与时间特征集融合,得到空间时间特征集;对空间时间特征集进行权重分配,得到模型训练特征集;训练深度学习模型,得到加密恶意流识别模型,并用加密恶意流识别模型识别加密恶意数据流。本发明能够更全面地把握流量特征,提高加密恶意流量的检出率。
-
公开(公告)号:CN112597495B
公开(公告)日:2021-07-30
申请号:CN202011532274.7
申请日:2020-12-22
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种恶意代码检测方法、系统、设备及存储介质。该方法包括;(1)训练阶段:利用已知软件样本训练多模态深度神经网络模型;(2)检测阶段:利用训练阶段训练好的多模态深度神经网络模型对未知软件样本进行检测。本发明可以将任意不同大小的软件样本转换为相同大小的灰度图像,便于应用于卷积神经网络;本发明同时使用了API函数调用序列、指令序列、字节流三个典型特征,克服了单一特征检测的局限,本发明多模态深度学习将静态特征与动态特征进行融合决策,能获得更全面且准确的恶意代码检测结果。
-
公开(公告)号:CN112861364A
公开(公告)日:2021-05-28
申请号:CN202110201190.3
申请日:2021-02-23
Applicant: 哈尔滨工业大学(威海) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F30/20 , G06K9/62 , G06F119/02
Abstract: 本发明涉及一种基于状态时延转换图二次标注的工控系统设备行为建模方法及装置,包括:(1)状态数据预处理;对状态数据执行离散变量二元化和连续变量二元化操作,生成多组二元状态集合;(2)状态时延转换图构建;对每个二元状态集合构建与之相对应的状态时延转换图;(3)基于环发现的初级标注;采用状态转换边和环的标注流程,进行初级标注;(4)基于时延特征聚类的二次标注;输出为行为模型中的各参数。本发明实现设备状态转换及相应持续时间的描述,本发明将实时水分配系统中过程设备实时产生的状态数据输入行为模型中,可以有效发现过程设备当前状态是否符合行为模型中描述的数据关系及转换关系,实现异常检测。
-
-
公开(公告)号:CN117439817A
公开(公告)日:2024-01-23
申请号:CN202311753061.0
申请日:2023-12-20
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明公开一种工业控制系统入侵响应方法、系统、设备及介质,涉及工业控制系统技术领域,包括:确定异常路径;以最小化网络层安全策略成本、攻击收益和服务影响为多目标优化函数,在候选策略空间中采用改进的MOEA/D算法选择最优网络层安全策略;根据所检测到的异常节点确定待执行的物理层安全策略,从而在异常路径下执行最优网络层安全策略和物理层安全策略。解决工控网络层安全策略选择时现有多目标优化算法难以找到帕累托最优解的问题,以及缺少物理层策略选择方法的问题。
-
-
-
-
-
-
-
-
-