-
公开(公告)号:CN118869241A
公开(公告)日:2024-10-29
申请号:CN202410809122.9
申请日:2024-06-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明涉及一种基于溯源图的入侵检测方法及系统,通过获取待监测系统的安全活动信息,转换为溯源图;随机选取溯源图中的部分节点和对应的邻居节点,确定所选取节点和每个邻居节点之间的注意力系数,利用得到的注意力系数,将邻居节点的特征加权聚合到所选取的每个节点中,通过跳跃连接将原始节点特征与聚合后的特征进行整合,得到聚合更新后的节点特征表示;基于训练完毕的检测模型,利用节点的概率关系,得到低置信度样本,利用得到的低置信度样本重新训练检测模型,迭代生成新模型,直到不产生低置信度样本为止,整合所有迭代后的模型,得到训练完毕的整体模型,并根据设定的等待时间,得到入侵检测的结果。
-
公开(公告)号:CN117669651B
公开(公告)日:2024-05-14
申请号:CN202410133906.4
申请日:2024-01-31
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N3/0442 , G06N3/0475 , G06N3/088 , G06N3/09 , G06N3/094
Abstract: 本发明涉及基于ARMA模型的对抗样本黑盒攻击防御方法及系统,属于对抗样本攻击防御技术领域,数据预处理,训练异常检测模型,独立训练代理模型;对测试集进行对抗样本攻击,包括:对离散类型特征添加扰动;评估对抗样本的可迁移性;误差优化混合再训练的防御;使用训练误差对对抗样本误差进行优化;评估对抗样本防御方法的性能;利用USAD优化模型对工业控制系统的行为数据进行异常检测,输出检测结果。本发明有效解决了对抗样本不符合特征约束、对抗样本符合特征约束但忽略了不同特征之间的复杂依赖性、不易在现实环境中执行的白盒攻击、部分防御方法无法使模型有效对对抗样本进行准确分类和单独使用误差优化方法无法提高模型性能的问题。
-
公开(公告)号:CN112597495A
公开(公告)日:2021-04-02
申请号:CN202011532274.7
申请日:2020-12-22
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种恶意代码检测方法、系统、设备及存储介质。该方法包括;(1)训练阶段:利用已知软件样本训练多模态深度神经网络模型;(2)检测阶段:利用训练阶段训练好的多模态深度神经网络模型对未知软件样本进行检测。本发明可以将任意不同大小的软件样本转换为相同大小的灰度图像,便于应用于卷积神经网络;本发明同时使用了API函数调用序列、指令序列、字节流三个典型特征,克服了单一特征检测的局限,本发明多模态深度学习将静态特征与动态特征进行融合决策,能获得更全面且准确的恶意代码检测结果。
-
公开(公告)号:CN109033828A
公开(公告)日:2018-12-18
申请号:CN201810827278.4
申请日:2018-07-25
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明的基于计算机内存分析技术的木马检测方法,包括行为监控、恶意代码检测、磁盘信息综合分析、综合关联分析、检测结果呈现;行为监控包括进程操作、注册表操作、文件操作和网络数据监控,恶意代码检测包括动态链接库检测、恶意进程、隐藏进程检测、驱动检测,磁盘信息综合分析包括注册表启动项、文件扫描、PE文件解析。本发明的木马检测方法,对于存在加密保护的恶意代码,其在内存中运行时的状态是解密状态,使用本技术检测此类恶意代码无需进行解密,检测结果更为可靠,能有效防止rootkit攻击对木马检测结果造成的影响。
-
公开(公告)号:CN105893107A
公开(公告)日:2016-08-24
申请号:CN201610276405.7
申请日:2016-04-29
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F9/45 , G06F12/10 , G06F12/0802 , G06F21/31 , H04L9/32
CPC classification number: G06F8/53 , G06F12/0802 , G06F12/10 , G06F21/31 , H04L9/3226
Abstract: 本发明的从64位Windows操作系统的内存镜像文件中获取已登录用户密码明文的方法,包括:a).获取系统版本信息;b).获取lsass.exe进程的CR3寄存器、进程环境块中PEB结构变量的值;c).将动态链接库lsasrv.dll和tspkg.dll的执行样本转储出来;d).获取密钥相关数据;e).从lsasrv.dll中获取用户信息;f).从tspkg.dll的转储文件中获取登录用户主凭证;g).获取密码明文。本发明的获取已登录用户密码明文的方法准确、高效,分析效果不受密码复杂度的影响,是从物理内存镜像文件中获取用户登录信息的重要手段,获取的已登录用户密码明文是计算机在线取证中的一种重要证据。
-
公开(公告)号:CN119067225A
公开(公告)日:2024-12-03
申请号:CN202411569749.8
申请日:2024-11-06
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N5/045 , G06N3/0455 , G06N3/045 , G06N3/048 , G06N3/084
Abstract: 本发明涉及基于生成式反事实样本差异性的工控异常解释方法及系统,属于工业控制系统异常检测研究技术领域,包括:根据工控异常检测模型预测异常得分结果,通过异常得分结果以及多传感器时间序列数据集,获取工控混合数据集,并进行预处理;将原始时间序列数据集作为输入,工控异常检测模型输出的异常得分作为条件,输入到条件变分自编码器进行训练;收集工控异常检测模型对数据集进行预测时输出的异常阈值,通过改变条件变分自编码器中阈值大小生成反事实样本;通过比较反事实样本与原始收集的多传感器时间序列样本来获得特征重要性分数。本发明提高了工控系统中异常检测和解释的实用性,为系统管理员和操作人员提供了更有力的决策支持工具。
-
公开(公告)号:CN118917315A
公开(公告)日:2024-11-08
申请号:CN202411127569.4
申请日:2024-08-16
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F40/295 , G06N3/045 , G06N3/0464 , G06N3/0442 , G06F40/30 , G06F40/253 , G06N3/048 , G06F16/35
Abstract: 本发明涉及基于Bert与深度学习模型的威胁情报实体检测方法,包括:首先,利用预训练的BERT模型捕捉文本的基本语义信息,并构建语法结构图;然后,将语法结构图被送入图注意力网络处理,分析实体间的复杂依赖关系;同时,将BERT模型输出的CLS向量与通过Text‑CNN处理得到的全局向量进行拼接,形成包含全局上下文信息和局部细节特征的HCV;此外,获得单词时序上下文信息以及实体单词之间的重要性关联;最后,将来自不同模块的向量进行融合,放入条件随机场层进行实体的识别,获得威胁实体的输出。本发明在处理网络安全领域专业术语和复杂语境时,表现出更优异的性能。
-
公开(公告)号:CN118761063A
公开(公告)日:2024-10-11
申请号:CN202411251863.6
申请日:2024-09-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06N3/0455 , G06N3/082 , G06N3/042
Abstract: 本公开提供了一种基于图表示和稀疏Transformer的高阶漏洞检测方法及系统,涉及信息安全检测技术领域,包括:获取模块程序源代码的字符流数据;对所述字符流数据进行词法分析,将全局变量或用户控制的输入的变量持久化存储的变量信息保存到数据表中;生成每个源代码的代码属性图,通过查找数据表持久化存储的变量信息,生成程序之间的持久化存储数据流关系;将持久化存储数据流关系输入GNN模块中学习图中节点的信息,得到节点的嵌入向量;将节点的嵌入向量再输入到具有稀疏注意力Transformer模块中,利用基于阈值的剪枝句子修剪算法在Transformer中逐层修剪句子,并进行注意力稀疏化,自适应地删除不相关句子,将高阶漏洞转化为低阶漏洞。
-
公开(公告)号:CN114595448B
公开(公告)日:2022-09-27
申请号:CN202210247513.7
申请日:2022-03-14
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于相关性分析和三维卷积的工控异常检测方法、系统、设备及存储介质,该方法以工控系统传感器和执行器数据作为目标数据。计算相邻时间采集到的目标数据之间的相关性,以确定最长序列长度,进一步根据最长序列长度确定RGB图的大小,计算观测数据的相关性并与序列长度列表对比得到粗粒度异常序列;根据序列长度列表得到不同长度的序列作为输入,利用改进的三维卷积神经网络从时空两个维度学习数据特征,深度解析数据关键信息点,从细粒度分析异常数据。本发明从粗粒度和细粒度两阶段分析工控数据,可以有效检测工控过程中的异常数据,实现异常检测准确率的提升。
-
公开(公告)号:CN113472520B
公开(公告)日:2022-06-03
申请号:CN202110904643.9
申请日:2021-08-07
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种ModbusTCP协议安全增强方法及系统,本发明在ModbusTCP协议中使用HMAC算法为工控系统通信数据同时提供身份认证和完整性保护,采用加解密速度比非对称加密算法更快的SM4分组密码算法为工控系统通信数据提供机密性,采用时间戳加随机数并结合随机数集合表更细粒度的防止重放攻击;本发明在保证了可用性的前提下,全面提高了使用ModbusTCP协议的工业控制系统安全性。
-
-
-
-
-
-
-
-
-