-
公开(公告)号:CN117766035A
公开(公告)日:2024-03-26
申请号:CN202410018749.2
申请日:2024-01-05
申请人: 桂林电子科技大学
摘要: 本发明公开了一种基于非平衡分子动力学NEMD计算镁铝尖晶石导热性能的方法,包括:1)建立初始模型;2)用非平衡分子动力学NEMD进行热导模拟,设置初始参数;3)设置模拟的势函数;4)模型结构优化得到稳定的晶体结构;5)设置冷源、热源和传热区;6)模型在nve系综下进行弛豫;7)数据后处理。种方法能降低试错成本和时间周期、能分析尺寸效应、温度、反位缺陷、晶界因素对尖晶石热导率的影响,同时采用多种不同的热流设置方式,使模拟计算更可靠、更全面、更具有说服力,能将不同方式得到的结果与实验测量对比,能提高计算结果的准确性。
-
公开(公告)号:CN115410831B
公开(公告)日:2024-03-19
申请号:CN202211112489.2
申请日:2022-09-14
申请人: 桂林电子科技大学
摘要: 本发明公开了一种NiMo‑LDH@Co‑ZIF‑67多孔核壳结构复合材料,以六水硝酸钴和二甲基咪唑为起始原料制备Co‑ZIF‑67,再以六水硝酸镍、二水钼酸钠、Co‑ZIF‑67和尿素为原料,经一步水热法制得NiMo‑LDH@Co‑ZIF‑67多孔核壳结构复合材料;Co‑ZIF‑67为椭圆片状空心结构的核结构;NiMo‑LDH@Co‑ZIF‑67为多孔核壳结构的壳结构。其比表面积为180‑210 m2 g‑1,孔径分布为3‑4 nm。其制备方法包括:1,Co‑ZIF‑67的制备;2,NiMo‑LDH@Co‑ZIF‑67多孔核壳结构复合材料的制备。作为超级电容器电极材料,在0‑0.5 V,电流密度为1 A g‑1时充放电,比电容为1500‑2000 F g‑1;在电流密度为10 A g‑1,5000圈循环,保留初始比电容的85‑90%。
-
公开(公告)号:CN117690731A
公开(公告)日:2024-03-12
申请号:CN202311719611.7
申请日:2023-12-14
申请人: 桂林电子科技大学
摘要: 本发明公开了一种Co‑Mo‑O/Co‑O/NF多层复合结构材料,以泡沫镍为基底,通过溶剂共沉淀法及退火处理在其表面负载Co3O4,即可得到Co‑O/NF,再经过水热法和分解处理在Co3O4的表面负载CoMoO4,即可得到Co‑Mo‑O/Co‑O/NF;所述Co‑O/NF的微观形貌为片状结构;所述Co‑Mo‑O/Co‑O/NF的微观形貌为多层复合结构,其中,Co3O4为内层,CoMoO4为外层。其制备方法包括以下步骤:1,Co‑O/NF的制备;2,Co‑Mo‑O/Co‑O/NF的制备。作为超级电容器电极材料的应用,在0‑0.55V的电压窗口范围内进行充放电,在电流密度为1‑2mA cm‑2时,比电容为2‑4F cm‑2;在电流密度为5‑15A g‑1时,经过3000‑5000圈循环后保留初始比电容的60‑80%。
-
公开(公告)号:CN114974916B
公开(公告)日:2024-01-30
申请号:CN202210776159.7
申请日:2022-07-04
申请人: 桂林电子科技大学
摘要: 本发明公开了一种纤维状MXene负载NiCoS复合材料,以四水合乙酸镍、乙酸钴、均苯三甲酸、1,4‑二氮杂双环[2,2,2]辛烷和十二烷基硫酸钠为原料,经水热反应制得NiCo‑MOFs;以Ti3AlC2、氟化锂和浓盐酸为原料,经刻蚀处理和震荡处理得到纤维状MXene;最后,以NiCo‑MOFs为前驱体,纤维状MXene为基体,加入硫代乙酰胺,经第二次水热反应,在纤维状MXene表面均匀负载颗粒状NiCoS复合材料即可制得;少层片状MXene具有微米的片状结构;纤维状MXene为直径为10‑40 nm的纤维状结构;颗粒状NiCoS的直径为5‑30nm。其制备方法包括以下步骤:1,NiCo‑MOFs的制备;2,纤维状MXene的制备;3,NiCoS@MXene的制备。作为超级电容器电极材料的应用,比电容为1300‑1500 F g‑1;能量密度高达63.3 W h kg‑1;10000圈循环后的循环稳定性保持为原始的73%。
-
公开(公告)号:CN117181264A
公开(公告)日:2023-12-08
申请号:CN202311154842.8
申请日:2023-09-08
申请人: 桂林电子科技大学
摘要: 本发明公开了一种磷化钴/氮掺杂多孔碳负载钌催化剂,由磷化钴/氮掺杂多孔碳CoP‑NC和Ru元素组成;CoP‑NC由ZIF‑67和次磷酸钠NaH2PO2混合后,经多段煅烧同时实现碳化和磷化所得;ZIF‑67由六水合硝酸钴、二甲基咪唑、甲醇化学合成所得;Ru元素由三氯化钌水合物还原负载所得;ZIF‑67为钴源、氮源,次磷酸钠为磷源,三氯化钌水合物为钌源。其制备方法包括以下步骤:1,ZIF‑67的制备;2,CoP‑NC的制备;3,Ru/CoP‑NC的制备。作为氨硼烷水解制氢方面的催化应用氢时间为,析氢转换频率为20‑60s,催化放氢的活化能为200‑400molH2·Eamol=30Ru‑‑1·40kJmin·‑1mol,水解放‑1;在25℃条件下,5次循环后,保持50‑60%的初始催化活性。
-
公开(公告)号:CN116768151A
公开(公告)日:2023-09-19
申请号:CN202310756099.7
申请日:2023-06-26
申请人: 桂林电子科技大学
IPC分类号: C01B3/00 , C01G23/047 , C01B21/082 , C01B6/24
摘要: 本发明公开了一种石墨相氮化碳基二氧化钛掺杂氢化锂铝储氢材料,以双氰胺和硫酸氧钛为原料,双氰胺为碳源和氮源,硫酸氧钛为钛源;在研磨混合后进行煅烧,之后,以TiO2@g‑C3N4的掺杂量为3‑10wt%,与氢化锂铝进行球磨;其中,g‑C3N4的微观形貌为多孔结构,TiO2的微观形貌为纳米颗粒结构,TiO2纳米颗粒的粒径为8‑9nm,TiO2@g‑C3N4的微观形貌为TiO2均匀负载在g‑C3N4表面。其制备方法包括:1,原料的预处理;2,石墨相氮化碳基二氧化钛的制备;3,石墨相氮化碳基二氧化钛掺杂氢化锂铝储氢材料的制备。作为储氢材料的应用,初始放氢温度为72‑82.3℃,放氢量为6.6‑7.3wt%,放氢率为69.8‑71.7%。具有降低工艺难度,降低生产成本,提高产物一致性的优点。
-
公开(公告)号:CN116618330A
公开(公告)日:2023-08-22
申请号:CN202310658570.9
申请日:2023-06-05
申请人: 桂林电子科技大学
摘要: 本发明公开了一种基于机器视觉的布匹缺陷检测处理装置,由检测模块、处理模块、外部框架和上位机组成;检测模块由工业相机、相机滑台、底层传送带、电机驱动模块组成;处理模块由含缺陷布匹回收库、模板补充库、正常布匹回收库、布匹补充传送带、缺陷回收传送带、变轨装置组成;外部框架由不锈钢框架组成,作为整体的支撑件,以保证结构的稳定性;上位机由控制软件、检测评分方法、检测处理方法组成。装置的使用方法包括以下步骤:1,装置的初始化;2,工业相机的自动空间定位;3,待检测布匹的自动化运输;4,布匹的检测和评分;5,已评分布匹的处理;6,装置处理信息的返回。
-
公开(公告)号:CN116593472A
公开(公告)日:2023-08-15
申请号:CN202310492221.4
申请日:2023-05-04
申请人: 桂林电子科技大学
IPC分类号: G01N21/88 , G01N21/956 , G01N21/898 , G06T7/00 , G06V10/26 , G06V10/764 , G06V10/82 , G06N20/00
摘要: 本发明公开了一种基于机器视觉的布匹缺陷检测评分方法,通过以下6个步骤实现:1、图像采集;2、缺陷检测;3、缺陷标注;4、缺陷分析;5、综合评分;6、返回评分及后续处理。相对于现有技术,本发明解决了以下问题:1、解决了图像采集过程中细节丢失问题严重的问题,即使用彩色工业相机进行视频流图像采集和后处理;2、解决了现有缺陷标注难以实时且易重复标注的问题,即通过人工智能技术实现缺陷自动化的非重复标注;3、解决了传统布匹缺陷评估受评估者的主观因素影响过大的问题,提出了基于布匹缺陷种类、大小、横纵走向、缺陷置信度的综合评分标准,并设置可接受的正常布匹评分阈值,使缺陷评分标准化。
-
公开(公告)号:CN116532142A
公开(公告)日:2023-08-04
申请号:CN202310470658.8
申请日:2023-04-27
申请人: 桂林电子科技大学
IPC分类号: B01J27/24 , B01J27/185 , B01J23/46 , B01J35/00 , B01J37/08 , B01J37/00 , B01J37/28 , B01J37/16 , B01J37/02 , C01B3/06
摘要: 本发明公开了一种磷化钴/氮共掺杂碳纳米管负载钌催化材料,由磷化钴/氮掺杂碳纳米管Co2P/N‑CNTs和Ru组成;N‑CNTs由CoZn‑ZIFs煅烧碳化实现对CNTs的氮掺杂所得;Co2P由CoZn‑ZIFs作为自我牺牲模板和次磷酸钠的磷化所得,CoZn‑ZIFs以CNTs为载体,由聚乙烯吡咯烷酮、六水合硝酸钴、六水合硝酸锌在CNTs表面自生长所得;Ru由三氯化钌水合物还原负载所得。CoZn‑ZIFs为钴源、锌源和氮源,锌元素在煅烧过程中挥发;次磷酸钠为磷源,三氯化钌水合物为钌源。其制备方法包括以下步骤:1,CoZn‑ZIFs/CNTs的制备;2,Co/N‑CNTs的制备;3,Co2P/N‑CNTs的制备;4,Ru/Co2P/N‑CNTs的制备。作为氨硼烷水解制氢方面的催化应用,析氢转换频率为100‑300 molH2·molRu–1·min–1,水解放氢时间为20‑60 s,催化放氢的活化能为Ea=30‑35 kJ·mol–1;5次循环后,保持40‑45%的初始催化活性。
-
公开(公告)号:CN114308040B
公开(公告)日:2023-07-25
申请号:CN202210014407.4
申请日:2022-01-07
申请人: 桂林电子科技大学
摘要: 本发明公开了一种具有片层结构的CoB‑LDH‑CNT纳米材料,以Co,Ni‑MOF‑CNT衍生的LDH‑CNT为载体,经化学还原法负载Co‑B纳米粒子,所得材料具有磁性,具有三维片层结构。其制备方法包括以下步骤:1、Co,Ni‑MOF‑CNT的制备;2、LDH‑CNT的制备;3、CoB‑LDH‑CNT纳米材料的制备。作为硼氢化钠水解制氢催化剂的应用,在303 K下提供的最大产氢速率为5167.72 mL∙min‑1∙g‑1,放氢量为理论值的100%,催化放氢的活化能为Ea=29.93 kJ∙mol‑1;在303K下,10次回收/重复使用后,保留初始催化活性的70.2%。具有以下优点:MOF与碳材料复合增强了负载粒子的附着力;控制微观形貌为片层花状结构,增大了比表面积、稳定性,增加活性位点;通过磁性提高循环性能。
-
-
-
-
-
-
-
-
-