参数学习有限时间收敛的高超声速飞行器控制方法

    公开(公告)号:CN107390531B

    公开(公告)日:2019-10-18

    申请号:CN201710789197.5

    申请日:2017-09-05

    IPC分类号: G05B13/04

    摘要: 本发明公开了一种参数学习有限时间收敛的高超声速飞行器控制方法,用于解决现有高超声速飞行器控制方法实用性差的技术问题。技术方案是通过构造一阶滤波器与辅助信号获取建模误差信息,结合跟踪误差与辅助信号设计神经网络自适应律,针对高超声速飞行器模型中的未知非线性函数估计设计了RBF神经网络方法,将有限时间学习的思想引入神经网络权重更新律设计中,相比传统的神经网络方法,本发明通过构造一阶滤波器与辅助信号将建模误差信息引入权重更新律,能保证参数学习误差有限时间收敛,从而保证学习的快速性。由于采用神经网络学习对不确定性进行估计,无需进行模型线性参数化表达,可实现不确定高超声速飞行器控制,便于实际工程应用。

    高超声速飞行器神经网络复合学习非反步控制方法

    公开(公告)号:CN107479384B

    公开(公告)日:2019-10-22

    申请号:CN201710789245.0

    申请日:2017-09-05

    IPC分类号: G05B13/04

    摘要: 本发明公开了一种高超声速飞行器神经网络复合学习非反步控制方法,用于解决现有高超声速飞行器控制方法实用性差的技术问题。技术方案是对姿态子系统严格反馈形式进行变换,得到输出反馈形式,用高增益观测器对于新定义变量进行估计,为后续控制器设计提供基础;控制器考虑系统的集总不确定性,仅需一个神经网络进行逼近,控制器设计简单,便于工程实现;针对控制增益函数未知情形,基于参数线性化表达方式设计控制器;引入系统建模误差,构建神经网络权值复合更新律和参数自适应复合更新律,实现高超声速飞行器的快速跟踪。本发明基于高增益观测器实现了未知状态的有效估计,不需要反复设计虚拟控制量,简化了控制器设计,易于实现,实用性好。