一种智能混合群体优化滤波跟踪方法

    公开(公告)号:CN108898625A

    公开(公告)日:2018-11-27

    申请号:CN201810670576.7

    申请日:2018-06-26

    Applicant: 长安大学

    CPC classification number: G06T7/277 G06T2207/20076

    Abstract: 本发明公开了一种智能混合群体优化滤波方法法,首先按照权值对粒子进行分层;然后根据不同层粒子的数目,对不同层粒子进行相应的选择不同的运动方式;接着对粒子状态进行估计,将条件均值或具有极大后验概率密度的状态作为系统状态的估计值;然后对粒子状态进行更新,生成合适的建议分布,从而准确地估计目标在当前时刻的位置;最后对粒子状态进行预测,预测的目的是为了下一时刻能更准确的估计目标的状态,即是设计合适的先验分布函数。本发明方法能够更加准确地估计非线性系统中的后验状态,在复杂多变的场景环境中,表现出更高的跟踪准确性。

    一种无人机插值飞蛾扑焰低空突防方法

    公开(公告)号:CN109558934A

    公开(公告)日:2019-04-02

    申请号:CN201811418898.9

    申请日:2018-11-26

    Applicant: 长安大学

    Abstract: 本发明公开了一种无人机插值飞蛾扑焰低空突防方法,首先始化飞蛾种群M,根据M计算出适应度值OM;其次,求出飞蛾与其对应火焰的距离;接着,使用插值预测算法根据飞蛾的历史位置对每一个飞蛾的下一个位置进行预测;最后,使用飞蛾扑焰算法和插值预测算法不断交替更新飞蛾最优位置,直到达到规定的迭代次数为止,最终所得到的最优位置就是全局最优解。本发明实现了更高的探索性,有着更出色的效果,能够保证全局最优解。同时,由于飞蛾扑焰方法与别的智能群体方法完全不同,所以插值飞蛾扑焰方法也与一般的插值智能群体方法设计思路完全不同,是一种创新的方法。

    一种无人机遥感山区公路图像融合滤波方法

    公开(公告)号:CN109345475A

    公开(公告)日:2019-02-15

    申请号:CN201811094769.9

    申请日:2018-09-19

    Applicant: 长安大学

    Abstract: 本发明公开了一种无人机遥感山区公路图像滤波方法,获取无人机遥感山区公路图像;用小波函数对步骤1中获得的遥感图像进行两层小波分解;设置阈值向量,分别对水平、垂直、对角三个方向的高频系数进行软阈值滤波,其中垂直方向滤波两次,其他方向滤波一次;对滤波后的图像进行小波重构;对上一步获得的图像进行小波一层分解,并用改进Kuwahara滤波器对高频系数其进行滤波;重构滤波之后的图像,得到最终图像。本发明在小波变换的基础上,采用改进Kuwahara滤波器进行滤波,能够将图像中的高斯噪声滤除干净,并且具有很好的边缘细节信息保护性能。

Patent Agency Ranking