一种含有离子液体交联剂的高电导率半互穿聚合物电解质

    公开(公告)号:CN114497726B

    公开(公告)日:2024-03-12

    申请号:CN202210087571.8

    申请日:2022-01-25

    IPC分类号: H01M10/0565 H01M10/0525

    摘要: 本发明提供一种含有离子液体交联剂的高电导率半互穿聚合物电解质,其特征在于以离子液体作为交联剂将可聚合的离子液体单体通过热引发原位聚合方式形成网络,与一种可提供骨架支撑的线性高分子聚合物相结合最终形成半互穿网络结构聚离子液体基电解质膜。通过一步法原位制备该电解质,形成聚离子液体交联网络,提供离子传输通道,操作简单,并且表现出较高的离子电导率,在室温下有着良好的循环性能。与传统聚合物电解质相比,使用离子液体作为交联剂提供更加有效的离子传输通道,为开发聚合物电解质提供一种新思路,具有良好的应用前景。

    一种用于合成丙烯酸甲酯的催化剂制备方法

    公开(公告)号:CN117482988A

    公开(公告)日:2024-02-02

    申请号:CN202310728428.7

    申请日:2023-06-19

    摘要: 本发明公开了一种合成丙烯酸甲酯的分子筛催化剂制备方法。催化剂主要有两部分组成,一部分为具有表面酸性的微孔Beta分子筛,另一部分为具有表面碱性的金属氧化物。以微孔分子筛为基准,按氧化物计,活性组分金属氧化物负载量为2.5wt.%‑20wt.%。分子筛作为酸性载体本身提供了较多的中强酸位点活化甲醛并且比表面积大可以提供更多与金属相互作用的活性位点,其中酸性的硅羟基位点可以在浸渍的过程中与金属相互作用,形成Si‑O‑M(金属)活性物种,金属的引入增加了新的碱性位点有利于乙酸甲酯的转化,调节了催化剂的酸性位点分布进一步增加了对丙烯酸甲酯的选择性。因此具有优异的催化活性、选择性。

    一种用于合成戊二胺的赖氨酸脱羧酶突变体

    公开(公告)号:CN115125229B

    公开(公告)日:2023-11-14

    申请号:CN202110320357.8

    申请日:2021-03-25

    摘要: 本发明涉及一种用于合成戊二胺的赖氨酸脱羧酶突变体,其氨基酸序列由SEQ ID NO.1所示序列突变而来,在如下的任意一组氨基酸残基发生突变形成二硫键:91位/445位、128位/163位、233位/628位、250位/395位。本发明提供了所述赖氨酸脱羧酶突变体的基因和蛋白序列、构建的表达载体和基因工程菌株并在生物基戊二胺合成中的应用。通过构建表达载体和基因工程菌,诱导表达赖氨酸脱羧酶,并合成生物基戊二胺。本发明开发的赖氨酸脱羧酶突变体在pH 8条件下中拥有最高催化活性,且在pH 8缓冲液中放置312h剩余活性仍大于50%,半衰期长达330h,具有优良的耐碱性,有利于高效合成高浓度戊二胺,有工业化应用前景。

    用于离子液体低温电解铝的电解装置

    公开(公告)号:CN116732576A

    公开(公告)日:2023-09-12

    申请号:CN202310843694.4

    申请日:2023-07-11

    IPC分类号: C25C3/06 C25C3/08 C25C3/22

    摘要: 本发明公开了一种用于离子液体低温电解铝的电解装置,其特征在于整个装置包括储液箱、旋流电解槽、氯气吸收塔、升降系统和管路阀门,所述旋流电解槽为密封结构,其上端和下端分别设有排气管路和进出液管路,可实现电解过程气氛控制。本发明通过采用旋流电解槽可实现阴极产物的高效析出以及阳极气体的收集,取得了良好的应用效果。

    一种金属离子液体前驱体调控低配位单原子催化剂制备方法及应用

    公开(公告)号:CN116641067A

    公开(公告)日:2023-08-25

    申请号:CN202310482976.6

    申请日:2023-04-28

    IPC分类号: C25B1/23 C25B1/50 C25B11/091

    摘要: 本发明公开一种金属离子液体前驱体调控低配位单原子催化剂制备方法及应用,该方法首先将金属源MCl2(M为Ni、Co、Zn、Sn、Mn)和氮源咪唑基氯盐([Cnmim][Cl],n=2,4)聚合得金属离子液体1‑烷基‑3‑甲基咪唑四氯化金属盐([Cnmim]2[MCl4])作为前驱体,在前驱体中金属已通过M‑Cl配位实现分散,相较于普通金属源更利于制备单原子催化剂,且传统调控M‑N3‑C低配位单原子催化剂制备仅局限于高温热解(≥900℃)驱动N‑C片段的挥发来实现。本发明将金属离子液体前驱体与碳材料按一定质量比充分掺杂均匀,经冷冻干燥后在600℃下热解即可直接获得M‑N3‑C低配位的单原子催化剂。通过金属离子液体对阳离子中部分N原子成键饱和性的改变,降低其在热解过程与金属原子的配位率,从而能够在较温和的热解温度下定向调控获得M‑N3‑C低配位的单原子催化剂,具有方法简便、条件温和且定向性好等特点。相比于非金属离子液体前驱体制备的M‑N4‑C配位的单原子催化剂,该M‑N3‑C低配位的单原子催化剂由于其更低的反应能垒以及更强反应中间体吸附等特点,在CO2电化学还原反应中表现出工业级的电流密度以及CO选择性。