-
公开(公告)号:CN110479037A
公开(公告)日:2019-11-22
申请号:CN201910786256.2
申请日:2019-08-23
Applicant: 中国科学院过程工程研究所
IPC: B01D53/14 , C07D301/32 , C07D303/04
Abstract: 本发明提供了一种复合吸收剂及其用于环氧乙烷分离纯化的方法,所述吸收剂包括离子液体和碳酸乙烯酯,所述离子液体的结构如式I所示。本发明所述复合吸收剂中含有特定结构的离子液体,使得将所述吸收剂用于环氧乙烷分离纯化时,不仅对环氧乙烷具有较高的吸收能力而且可以显著增加环氧乙烷吸收分离的选择性,同时还能有效降低吸收剂的蒸汽压,减少解吸过程中溶剂的损失,具有工艺流程简单、操作弹性高、能耗低、吸收效果显著等特点,工业应用前景较好。
-
公开(公告)号:CN110437201A
公开(公告)日:2019-11-12
申请号:CN201910785196.2
申请日:2019-08-23
Applicant: 中国科学院过程工程研究所
IPC: C07D317/38 , C07D303/04 , C07D301/32 , B01J31/02
Abstract: 本发明提供了一种复合吸收剂及其用于环氧乙烷吸收转化耦合联产碳酸乙烯酯的方法。所述复合吸收剂包括离子液体和碳酸乙烯酯,所述离子液体的结构如式I、式Ⅱ或式Ⅲ所示。本发明将上述复合吸收剂用来吸收环氧乙烷和二氧化碳,在吸收的过程中离子液体还作为催化剂,将环氧乙烷和二氧化碳反应生产碳酸乙烯酯,吸收的同时实现预转化,降低了能耗,具有较好的工业应用价值。本发明还将上述复合吸收剂用于环氧乙烷吸收转化耦合联产碳酸乙烯酯,将吸收和转化直接耦合,实现了一步生产碳酸乙烯酯,不仅操作简单,设备造价低,而且减少了汽提过程,降低了能耗,实现了经济高效和节能环保的要求。
-
公开(公告)号:CN115504954B
公开(公告)日:2024-07-26
申请号:CN202211280968.5
申请日:2022-10-19
Applicant: 惠州市绿色能源与新材料研究院 , 中国科学院过程工程研究所
IPC: C07D317/36 , C07D317/38 , B01J31/02
Abstract: 本发明提供了一种高离子密度聚离子液体催化剂的制备及其催化CO2和环氧化合物制备环状碳酸酯的方法,本方法以两种咪唑基单体按一定比例共聚,反应在离子液体用量很少的条件下,能够在短时间内实现CO2与环氧化合物的高效转化,且具有稳定性好易分离的优点。该催化剂催化反应得到产物环状碳酸酯收率可达98%。该催化过程具有以下优势,通过高离子密度聚离子液体的设计使得CO2高效转化,同时易于分离,具有较好的应用前景。
-
公开(公告)号:CN115960071A
公开(公告)日:2023-04-14
申请号:CN202310009166.9
申请日:2023-01-04
Applicant: 郑州中科新兴产业技术研究院 , 中国科学院过程工程研究所 , 惠州市绿色能源与新材料研究院
IPC: C07D317/36 , B01J19/00 , B01J31/02
Abstract: 本发明属于绿色、清洁催化技术领域,涉及一种温和条件下低共熔离子液体在微通道反应器中合成环状碳酸酯的方法。该方法将低共熔离子液体作为催化剂,采用微通道反应器,将环氧化物和二氧化碳进行反应,合成环状碳酸酯,其中低共熔离子液体由卤素阴离子类离子液体为氢键受体,多元醇为氢键供体组成。本发明将低共熔离子液体加入到环氧化物与环状碳酸酯体系中,利用低共熔离子液体极性可调、活性高的优点,解决了传统离子液体在环氧化物中溶解性低、活性低的问题。并且,结合微通道反应器传质传热效率高的优点,成功突破了环加成反应速率和气液传质速率限制,实现了温和条件下高效合成环状碳酸酯,其收率为94.23%,选择性大于99%。
-
公开(公告)号:CN115504954A
公开(公告)日:2022-12-23
申请号:CN202211280968.5
申请日:2022-10-19
Applicant: 惠州市绿色能源与新材料研究院 , 中国科学院过程工程研究所
IPC: C07D317/36 , C07D317/38 , B01J31/02
Abstract: 本发明提供了一种高离子密度聚离子液体催化剂的制备及其催化CO2和环氧化合物制备环状碳酸酯的方法,本方法以两种咪唑基单体按一定比例共聚,反应在离子液体用量很少的条件下,能够在短时间内实现CO2与环氧化合物的高效转化,且具有稳定性好易分离的优点。该催化剂催化反应得到产物环状碳酸酯收率可达98%。该催化过程具有以下优势,通过高离子密度聚离子液体的设计使得CO2高效转化,同时易于分离,具有较好的应用前景。
-
公开(公告)号:CN112844473A
公开(公告)日:2021-05-28
申请号:CN202110067738.X
申请日:2021-01-19
Applicant: 中科院过程工程研究所南京绿色制造产业创新研究院 , 中国科学院过程工程研究所
IPC: B01J31/02 , C07D317/36
Abstract: 本发明提供了一种氧化铝负载聚离子液体催化剂及其制备方法和应用,所述催化剂的结构如式I所示,其中,R选自C1‑C10烷基、C1‑C10醇基、C1‑C10羧基或C1‑C10氨基中任意一种,X‑选自四氟硼酸根、六氟磷酸根、硫酸氢根、硫酸根、对甲基苯磺酸根、磷酸二氢根、硝酸根、双(三氟甲烷磺酰)亚胺根、三氟甲磺酸根、氢氧根、F‑、Cl‑、Br‑中任意一种,n为100‑5000的整数。本发明提供的氧化铝负载聚离子液体催化剂成本低,多活性位点协同催化,能够实现环状碳酸酯的高转化率和选择性。
-
公开(公告)号:CN112569871A
公开(公告)日:2021-03-30
申请号:CN202011322744.7
申请日:2020-11-23
Applicant: 中国科学院过程工程研究所
IPC: B01J8/06 , C07D317/38
Abstract: 本发明提供了一种用于CO2羰基化反应的气液均布的列管式反应器,涉及气液两相混合反应。所述结构包括气液相进料分布系统、填料系统、反应系统和撤热系统。所述进料分布系统安装于反应器进料段,所述填料系统位于反应器填料段,所述反应系统设于反应器反应管催化剂床层段,所述撤热系统设于列管式反应器壳层。本发明中使用的列管式反应器,原料环氧乙烷与CO2经进料段进行气液分布后,均匀进入每根管中,在填料系统进行气液两相的混合和二次分布;随后进入反应段开始反应,同时撤热系统开始撤热,保证反应管内温升小于5℃。本发明中使用的列管式反应器进料系统,利用正压气源产生负压进而产生吸附作用,从而实现气相和液相均匀分布的一种新型、高效的进料方式,可解决大规模生产中各反应管内环氧乙烷和CO2分布不均,导致环氧乙烷反应不完全,产生安全风险的问题。同时,可推广应用于石油化工、生物化工等强放热、气液分布要求高的其他反应体系。
-
公开(公告)号:CN116375677B
公开(公告)日:2024-10-25
申请号:CN202310295425.9
申请日:2023-03-24
Applicant: 惠州市绿色能源与新材料研究院 , 中国科学院过程工程研究所
IPC: C07D317/38 , C07D317/36 , C07D317/46 , B01J31/02
Abstract: 本发明涉及一种复合材料负载杂环季鏻离子液体催化制备环状碳酸酯的方法,其特征在于使用有机或无机复合材料为载体,对杂原子或杂环取代的季鏻类离子液体进行负载,用于催化CO2与环氧化合物合成环状碳酸酯的反应。该催化剂可以在最优反应条件下高效催化CO2转化为环状碳酸酯,收率可达99%。相比于传统非均相催化剂,该类催化剂具有更好的催化效果,制备方法简单,循环性能好,使用寿命长且具有简单易分离的优点,具有工业应用前景。
-
公开(公告)号:CN114062040A
公开(公告)日:2022-02-18
申请号:CN202111328571.4
申请日:2021-11-10
Applicant: 惠州市绿色能源与新材料研究院 , 中国科学院过程工程研究所
IPC: G01N1/14
Abstract: 本发明提供了一种液体储存及定量取样装置及其方法和用途,所述液体储存及定量取样装置包括切换阀以及分别独立接入所述切换阀的储料组件、定量环和下游组件,通过切换所述切换阀连通所述储料组件和定量环,所述储料组件内的液体样品流入所述定量环进行取样,或连通所述定量环和下游装置,所述定量环内的液体样品流入所述下游装置进行检测分析;所述储料组件的底部连通有吸收液储罐,所述储料组件和吸收液储罐之间设置有第一爆破片。本发明通过切换阀和定量环的配合,能够在高压下更精准、快捷地取样,提高自动化程度。通过吸收液储罐、爆破片和安全阀的配合,以及结合外部夹套冷凝和内部惰性气体气封,有效提高液体储存和取样的安全性。
-
公开(公告)号:CN111471033B
公开(公告)日:2021-04-20
申请号:CN202010354215.9
申请日:2020-04-29
Applicant: 中国科学院过程工程研究所
IPC: C07D317/36 , C07D317/38 , B01J10/02
Abstract: 本发明提供一种集吸收分离与催化反应于一体的制备环状碳酸酯的装置,所述装置通过采用含三种功能化基团的离子液体膜将反应器分隔为隔离的腔体,能够使不同腔体中的环氧烷烃和二氧化碳被吸附至离子液体膜上进行反应生成环状碳酸酯,简化了环状碳酸酯的生产流程,且有利于环状碳酸酯与环氧烷烃的分离;利用所述装置制备环状碳酸酯的方法,集环氧烷烃原料吸收、高效反应和产物易分离于一体,克服了环氧烷烃分离能耗高、以水作吸收剂时产生副产物的问题,具有能耗低和不需要分离催化剂等优点。
-
-
-
-
-
-
-
-
-