一种石墨烯/聚吡咯颗粒复合凝胶薄膜及其制备方法

    公开(公告)号:CN110628056B

    公开(公告)日:2022-05-24

    申请号:CN201810648868.0

    申请日:2018-06-22

    Abstract: 本发明公开一种石墨烯/聚吡咯颗粒复合凝胶薄膜及其制备方法,该制备方法包括如下步骤:S1:将吡咯与盐酸溶液混合,形成凝胶池溶液;S2:将氧化石墨烯与高氧化价态金属氧化物颗粒分散液混合均匀,形成氧化石墨烯/高氧化价态金属氧化物混合分散液;S3:将所述混合分散液通过喷口挤入凝胶池溶液,生成氧化石墨烯/聚吡咯颗粒复合水凝胶薄膜;S4:将所述氧化石墨烯/聚吡咯颗粒复合水凝胶薄膜加入还原性溶液中,生成石墨烯/聚吡咯颗粒复合水凝胶薄膜;S5:将所述石墨烯/聚吡咯颗粒复合水凝胶薄膜进行干燥处理,得到石墨烯/聚吡咯颗粒复合凝胶薄膜。用此种方法制备的石墨烯/聚吡咯颗粒复合薄膜中的聚吡咯颗粒分布均匀。

    一种微波法制备超小氧化物与碳复合的锂电池负极材料的方法

    公开(公告)号:CN113666411A

    公开(公告)日:2021-11-19

    申请号:CN202010414319.4

    申请日:2020-05-15

    Abstract: 一种微波法制备超小氧化物与碳复合的锂电池负极材料的制备方法。本发明属于锂离子电池负极材料的制备领域。本发明为解决现有锂离子电池容量及导电性等综合性能不高,且制备工艺较复杂,成本较高的技术问题。本发明方法如下:一、配置盐溶液使金属离子渗入金属‑有机框架材料(MOF);利用抽滤将渗离子的MOF材料与溶液分离,烘干得到渗离子的MOF材料;二、将渗离子的MOF材料和石墨烯使混合后研磨,然后微波短时间加热;三、产物经过洗涤除杂后得到超小氧化物与碳复合的锂电池负极材料。本发明产品的纳米颗粒尺寸为2~10nm,在低氧化物负载下就可具有高容量表现。

    一种短切SiC纤维的复合涂层、SiBCN陶瓷复合材料及制备方法

    公开(公告)号:CN110483070B

    公开(公告)日:2021-11-09

    申请号:CN201910872252.6

    申请日:2019-09-16

    Abstract: 本发明提供了一种短切SiC纤维的复合涂层、SiBCN陶瓷复合材料及制备方法,涉及陶瓷复合材料领域,短切SiC纤维的复合涂层的制备方法,包括以下步骤:SiC纤维预处理步骤:将SiC纤维进行热处理、分散酸洗和过滤干燥,从而得到预处理后的纤维;非晶C涂层的制备步骤:称取银粉,将所述银粉压制成银片,将所述银片放置具有双层结构的石墨坩埚内,并裁剪所需孔大小的石墨纸,用所述石墨纸将石墨坩埚的上下两层隔开,然后将SiC纤维放置在所述石墨纸中间;将装有所述银片、石墨纸和SiC纤维的石墨坩埚放置在热压炉中进行热处理,得到非晶C涂层改性的SiC纤维。本发明所述的短切SiC纤维的复合涂层的制备方法,周期短、产率高、安全环保,适于工业化生产。

    一种针对霍尔电推进器通道材料抗溅射性能的评价方法

    公开(公告)号:CN110006776B

    公开(公告)日:2021-08-24

    申请号:CN201910298067.0

    申请日:2019-04-12

    Abstract: 一种针对霍尔电推进器通道材料抗溅射性能的评价方法,本发明涉及陶瓷材料抗溅射性能的评价方法。解决现有缺少对霍尔电推进器通道材料抗溅射性能的筛选与评价方法的问题。方法:一、将霍尔电推进器通道所用的陶瓷材料加工,得到试样;二、将试样置于靶台上,设定离子束流与试样法向夹角、离子源与试样的距离及靶台转速;三、抽真空,通入气体工质,调整气体工质;四、启动离子源,依次设定离子能量、阳极电压及加速电压,设定离子束流及电子束流,进行溅射试验,得到溅射后的试样;五、计算溅射速率v及溅射产额Y,分析溅射后的试样表面粗糙度、价键组成、元素含量及表面形貌。本发明用于针对霍尔电推进器通道材料抗溅射性能的评价。

    无有机沉积相3D打印氮氧化硅墨水的制备方法及其应用

    公开(公告)号:CN109761623B

    公开(公告)日:2021-07-13

    申请号:CN201910202328.4

    申请日:2019-03-15

    Abstract: 无有机沉积相3D打印氮氧化硅墨水的制备方法及其应用,涉及一种3D打印氮氧化硅墨水的制备方法及其应用。为了现有3D打印墨水中含有大量有机沉积相导致的排胶后在陶瓷坯体内部会留下气孔、变形或开裂等缺陷的问题。制备:将氮化硅、二氧化硅和烧结助剂混合,球磨、干燥和筛选得到混合粉体,然后加入四乙二醇二甲醚和正己醇,机械搅拌,即完成。上述无有机沉积相3D打印氮氧化硅墨水在3D打印制备陶瓷构件中的应用。本发明无有机沉积相3D打印氮氧化硅墨水中的四二乙醇二甲醚和正己醇仅需通过养护和干燥便能去除,不需要排胶处理,避免了陶瓷坯体排胶后坯体内部缺陷的产生。本发明适用于制备3D打印氮氧化硅墨水和应用。

    锶长石基复合陶瓷透波材料及其制备方法

    公开(公告)号:CN109650864B

    公开(公告)日:2021-06-25

    申请号:CN201910099482.3

    申请日:2019-01-31

    Abstract: 本发明公开一种锶长石基复合陶瓷透波材料及其制备方法,涉及陶瓷基复合材料的制备技术领域,所述锶长石基复合陶瓷透波材料的制备方法包括:S1:称取h‑BN粉、SrCO3粉、Al2O3粉和SiO2粉并混合,得到第一粉体;S2:将所述第一粉体进行球磨,得到第二粉体;S3:将所述第二粉体压制成生坯,得到预制生坯;S4:对所述预制生坯进行无压烧结,得到锶长石基复合陶瓷透波材料。本发明提供的锶长石基复合陶瓷透波材料的制备方法,通过原位合成反应来将h‑BN引入锶长石中,使得制备的锶长石基复合陶瓷透波材料不仅具有良好的力学及可加工性能,同时,还具有良好的介电和耐热冲击性能。

    金属表面复合涂层的制备方法及改性金属材料

    公开(公告)号:CN111321440B

    公开(公告)日:2021-06-18

    申请号:CN202010320808.3

    申请日:2020-04-22

    Abstract: 本发明提供了一种金属表面复合涂层的制备方法及改性金属材料。所述金属表面复合涂层的制备方法包括:配置包含有低表面能有机纳米粉体的复合电解液;控制所述复合电解液的温度为60‑90℃,在400V‑1000V的脉冲电压下,在所述复合电解液中利用强脉冲高频放电反应及辅助交联固化在所述金属基体表面形成复合涂层,所述复合涂层包括陶瓷层和聚合物层。本发明通过在电解液中添加低表面能有机纳米粉体,在强脉冲电压及高温电解液的微区环境下,通过活化诱导、静电吸附、辅助交联、化学镶嵌的协同作用,将低表面能有机纳米粉体一步沉积于金属基体表面,制备出具有分级微纳米结构的大厚度涂层,实现低表面能的有机聚合物在陶瓷层表面的全覆盖,大幅提高金属基体的耐蚀性。

    一种氮化硅陶瓷基片的制备方法

    公开(公告)号:CN112573936A

    公开(公告)日:2021-03-30

    申请号:CN202011474068.5

    申请日:2020-12-14

    Abstract: 本发明提供了一种氮化硅陶瓷基片的制备方法,包括如下步骤:步骤S1、将α‑Si3N4粉末、β‑Si3N4晶须、h‑BN粉末、烧结助剂和粘结剂通过辊压成型,制备得到β‑Si3N4晶须定向排列的片状坯体;步骤S2、将所述片状坯体经过脱脂处理后,得到脱脂坯体;步骤S3、将所述脱脂坯体进行气压烧结,使α‑Si3N4在所述β‑Si3N4晶须的诱导下发生相变并促进β‑Si3N4晶粒的取向生长,制备得到β‑Si3N4棒状晶粒定向排列的氮化硅陶瓷基片。本发明解决了现有的氮化硅陶瓷基片中氮化硅棒状晶粒杂乱排布,导致氮化硅陶瓷基片材料的散热性能不佳的问题。

    一种多元BCN系高熵陶瓷粉体及其制备方法

    公开(公告)号:CN111960827A

    公开(公告)日:2020-11-20

    申请号:CN202010876714.4

    申请日:2020-08-27

    Abstract: 本发明提供了一种多元BCN系高熵陶瓷粉体及其制备方法,涉及陶瓷粉体材料技术领域,所述多元BCN系高熵陶瓷粉体的制备方法,包括:将非金属陶瓷粉体与过渡金属均匀混合后经高能球磨后得到多元BCN系高熵陶瓷粉体。与现有技术比较,本发明一种多元BCN系高熵陶瓷粉体制备方法操作简单,可在常温下制备出具有单相面心立方结构的高熵陶瓷粉体,避免了其他制备工艺需要高温处理的步骤,且晶粒尺寸在5-20nm,粉体纯度高,同时具有较高的热稳定性,其中四元、五元高熵陶瓷粉体在1300℃保温30min仍可保持晶粒细小的单相固溶体结构。

Patent Agency Ranking