-
公开(公告)号:CN103900566A
公开(公告)日:2014-07-02
申请号:CN201410080777.3
申请日:2014-03-06
Applicant: 哈尔滨工程大学
IPC: G01C21/16
CPC classification number: G01C21/16 , G01C21/203
Abstract: 本发明属于惯性导航技术领域,涉及一种可用于提高惯性导航系统的精度的消除地球自转角速度对旋转调制型捷联惯导系统精度影响的方法。本发明包括:建立一个旋转机构;获得初始捷联姿态矩阵获得初始时刻地心惯性坐标系与导航坐标系之间的方向余弦矩阵;可测量出IMU坐标系与惯性系之间的姿态角θ1、θ2和θ3;使IMU坐标系与地心惯性系重合;控制IMU绕着地心惯性坐标系的zi轴和yi轴按系统旋转方案转动;最终给出载体的导航参数信息。本发明避免在导航解算时地球自转角速度分量与器件误差耦合引起系统导航误差,从而系统精度不受地球自转角速度分量的影响。
-
公开(公告)号:CN102589568B
公开(公告)日:2014-06-11
申请号:CN201210011114.7
申请日:2012-01-14
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明的目的在于提供车辆捷联惯性导航系统的三轴陀螺常值漂移快速测量方法,包括以下步骤:确定车辆的初始位置,采集陀螺和加速度计输出的数据;进行解析式粗对准;使车辆捷联惯性导航系统的水平回路工作在二阶水平对准过程,方位回路工作在罗经对准过程中,采集车辆捷联惯性导航系统测量的导航坐标系下速度,上一步结束时刻车辆捷联惯性导航系统测量得到的捷联姿态矩阵T1,得到测量中间量和启动车辆并操纵车辆转弯,制动车辆,熄灭车辆发动机,保持车辆静止状态,再一次上述步骤,结束时刻,车辆捷联惯性导航系统测量得到的捷联姿态矩阵T2,得到测量中间量利用上述值得到三轴陀螺常值漂移的测量值。本发明可操作性强,简单方便。
-
公开(公告)号:CN103575298A
公开(公告)日:2014-02-12
申请号:CN201310563483.1
申请日:2013-11-14
Applicant: 哈尔滨工程大学
CPC classification number: G01C25/005 , G01C21/20
Abstract: 本发明公开了一种基于自调节的UKF失准角初始对准方法,包括:(1)根据惯导初始对准的误差特性,列写出滤波的状态方程与量测方程;(2)设置滤波初值x0和P0;(3)确定调节参数的最优值(4)在的条件下,根据所述非线性误差模型确定滤波状态的均值和协方差Pk|k;(5)在的条件下,根据所述非线性误差模型确定滤波状态的预测均值xk+1|k和协方差Pk+1|k,并使用xk+1|k和Pk+1|k对所述失准角进行对准。本发明能够有效的估计出载体系与导航系之间的失准角误差,为导航定位提供可靠的精度。
-
公开(公告)号:CN103411610A
公开(公告)日:2013-11-27
申请号:CN201310321534.X
申请日:2013-07-29
Applicant: 哈尔滨工程大学
IPC: G01C21/16
Abstract: 本发明公开了一种惯性导航系统极区模式横地理纬度初始值的测量方法,包括以下步骤:采集惯性导航系统正常模式输出的经度信息和地理纬度信息;利用惯性导航系统所在位置的地理纬度,测量地心纬度信息;利用惯性导航系统输出的经度、地心纬度,测量横地心纬度;利用惯性导航系统输出的经度、地心纬度、横地心纬度,测量横经度;根据得到的横地心纬度、横经度,测量横地理纬度。本发明提出的横地理纬度测量方法,是以椭球模型描述地球时,利用正常模式下的位置参数测量极区模式所需的横纬度信息,测量精度高,可以满足高精度的惯性导航极区导航需要,填补了横坐标系下横地理纬度测量方法的空白。
-
公开(公告)号:CN103389096A
公开(公告)日:2013-11-13
申请号:CN201310322323.8
申请日:2013-07-29
Applicant: 哈尔滨工程大学
IPC: G01C21/20
Abstract: 本发明公开了一种惯性导航系统横子午线曲率半径的测量方法,包括以下步骤:采集惯性导航系统极区模式输出的位置数据;测量横地心纬度;测量惯导系统所在横经线与横赤道面的交点与地心的距离;测量惯性导航系统与横赤道面的距离;测量横子午面曲率半径。本发明基于地球椭球模型下,利用惯性导航系统极区模式输出的位置即可测量得到横子午面曲率半径,从原理上减小了地球模型不准确造成的测量误差,提高了导航精度,同时,测量方法简单方便,便于实际应用。本发明填补了横坐标系下地球的横子午面曲率半径测量方法的空白,解决了横坐标系参考框架下惯性导航系统机械编排的计算问题,从而解决了惯性导航系统极区导航问题。
-
-
公开(公告)号:CN103281054A
公开(公告)日:2013-09-04
申请号:CN201310169920.1
申请日:2013-05-10
Applicant: 哈尔滨工程大学
IPC: H03H21/00
Abstract: 本发明公开了一种带噪声统计估值器的自适应滤波方法,目的是解决在系统噪声和量测噪声的统计信息未知或者时变情况下,常规卡尔曼滤波精度下降甚至发散的问题。针对噪声统计特性未知或者时变的情况,首先基于极大后验估计理论推导次优极大后验噪声统计估值器,然后利用一步最优平滑器得到改进的卡尔曼滤波器,最后经过无偏性检验得到无偏次优极大后验噪声统计估值器。在SINS/GPS组合导航系统中进行的仿真结果表明:本发明设计的自适应滤波器不仅可以准确的估计出噪声的统计信息,而且显著提高了滤波精度,并改善了系统鲁棒性。
-
公开(公告)号:CN103256943A
公开(公告)日:2013-08-21
申请号:CN201310156770.0
申请日:2013-04-26
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明提供的是一种在单轴旋转捷联惯导系统中对刻度因数误差进行补偿的方法。对于单轴四位置旋转方案下的光纤捷联惯导系统,在其采集陀螺仪输出和加速度计输出的基础上,利用罗经回路原理,完成捷联惯导系统的对准过程;建立新的刻度因数误差模型,并建立含刻度因数误差的状态变量的卡尔曼滤波状态方程及以速度误差为观测量的量测方程;对刻度因数误差进行估计并补偿,消除刻度因数误差的影响。本发明对于单轴四位置旋转方案下的高精度捷联惯导系统来说,克服了在有刻度因数误差的情况下,陀螺漂移估计不准的缺点,在不提高惯性器件精度的条件下,提高了对准精度;与普通模型相比,克服了刻度因数误差不能补偿的缺点,在不增加系统成本的条件下,可以较高幅度的提高系统的精度。
-
公开(公告)号:CN101943585B
公开(公告)日:2013-07-31
申请号:CN201010215400.6
申请日:2010-07-02
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明提供的是一种基于CCD星敏感器的标定方法。(1)采集CCD星敏感器的输出:CCD星敏感器的坐标系相对于i系之间的姿态信息(2)采集当地位置信息,得到地球坐标系e系相对于导航坐标系n系的转换矩阵(3)求解e系相对于i系之间的转换矩阵(4)通过(1)、(2)、(3)步骤中所给出的信息,解算得到姿态矩阵;(5)将步骤(4)中得到的姿态矩阵经过换算得到失准角,将其作为观测方程,代入卡尔曼滤波器进行滤波估计;(6)通过步骤(5)估计出陀螺的常值漂移和加速度计零偏。本发明的方法,短时间内可以达到稳定的标定结果。不需要进行任何机动措施,便可以估计出陀螺常值漂移和加速度计零偏。
-
公开(公告)号:CN103217174A
公开(公告)日:2013-07-24
申请号:CN201310122010.8
申请日:2013-04-10
Applicant: 哈尔滨工程大学
Abstract: 本发明是涉及的是一种捷联惯导系统的初始对准方法,具体涉及一种在仅利用GPS辅助设备的条件下基于低精度微机电系统的捷联惯导系统初始对准的方法。本发明包括:获取载体坐标系到水平坐标系的方向余弦矩阵;建立低精度微机电系统的捷联惯导系统粗对准卡尔曼滤波状态方程;建立低精度微机电系统的捷联惯导系统粗对准的卡尔曼滤波量测方程;对载体姿态进行第一次修正;建立捷联惯导系统精对准的卡尔曼滤波状态方程和量测方程;进行第二次卡尔曼滤波;对载体姿态进行第二次修正,得到微机电系统的捷联惯导系统的准确捷联矩阵。本发明利用两次卡尔曼滤波估计出低精度MEMS捷联惯导系统误差的方法,完成了系统的初始对准,使应用更便捷。
-
-
-
-
-
-
-
-
-