多目标量子蝙蝠演进机制的小波数字水印生成方法

    公开(公告)号:CN107256529B

    公开(公告)日:2020-07-28

    申请号:CN201710342909.9

    申请日:2017-05-16

    Abstract: 本发明提供的是一种多目标量子蝙蝠演进机制的小波数字水印生成方法。建立设计模型,确定对应于多目标量子蝙蝠演进机制的关键参数。构造多目标小波数字水印系统最大值求解问题的多目标函数,量子蝙蝠根据目标函数值进行非支配量子位置排序和拥挤度计算,将非支配量子位置排序等级为1且拥挤度大的量子位置放入精英量子位置集。使用多目标量子蝙蝠演进机制更新量子蝙蝠的速度和量子位置,选择非支配量子位置,更新精英量子位置集。从最终的Pareto前端量子位置集中选择量子位置并映射为位置作为多目标小波数字水印的一种设计方案。本发明的实时性好且应用范围广泛,能够解决需要综合考虑不同指标要求的多目标小波数字水印设计这一技术难题。

    一种量子大爆炸的单基地MIMO雷达测向方法

    公开(公告)号:CN107290732B

    公开(公告)日:2020-05-22

    申请号:CN201710562238.7

    申请日:2017-07-11

    Abstract: 本发明提供了一种量子大爆炸的单基地MIMO雷达测向方法。(1)建立收发共置的窄带单基地MIMO雷达系统测向模型;(2)确定量子大爆炸算法中所有量子碎片,将量子碎片均匀分配到两个子集合;(3)计算每个量子碎片的适应度,确定第1个量子碎片集合的初始最优量子位置,第2个量子碎片集合的初始最优解量子质心和均匀解量子质心;(4)更新每个量子碎片的量子位置;(5)将每个量子碎片的量子位置映射到定义区间的位置,并计算适应度值;(6)更新全局最优量子位置;(7)输出全局最优量子位置,并将其映射为位置,位置对应所要估计的波达方向。本发明能够在冲击噪声等复杂环境下实现快速高精度的测向,测向性能优秀。

    基于演化BP神经网络的通信信号调制方式识别方法

    公开(公告)号:CN110120926A

    公开(公告)日:2019-08-13

    申请号:CN201910388349.X

    申请日:2019-05-10

    Abstract: 本发明提供一种基于演化BP神经网络的通信信号调制方式识别方法,对获取的到已知不同调制方式的通信信号进行预处理和特征提取,提取结果作为神经网络的输入特征参量。利用复合搜寻模式的猫群演化机制以识别率为目标函数对BP神经网络初始的权值和阈值进行优化,获得最优参数作为之后进行识别的神经网络初始参数,之后利用输入特征参量和最优初始参数对BP神经网络进行训练,得到具有最优系统参数的BP神经网络。获取未知调制方式的通信信号,利用具有最优系统参数的BP神经网络对未知调制方式的通信信号进行识别得到识别结果。该方法与传统BP神经网络进行调制识别相比在相同信噪比下具有更高的识别率,尽可能的避免了训练过程中陷入局部最优解的情况。

    量子回溯搜索优化的CCFD-Massive MIMO系统功率分配方法

    公开(公告)号:CN108880734A

    公开(公告)日:2018-11-23

    申请号:CN201810531057.2

    申请日:2018-05-29

    Abstract: 本发明提供一种量子回溯搜索优化的CCFD‑Massive MIMO系统功率分配方法,包括:建立系统模型;初始化量子种群及系统参数,经映射规则,得到量子个体的映射态;计算量子个体的适应值,将量子种群中适应值最大的量子个体记为全局最优解;通过进化和交叉策略生成新的量子个体;根据映射规则得到新生成的量子个体的映射态,计算适应值,经贪婪选择,更新量子种群及全局最优解;如果迭代次数小于预先设定的最大迭代次数,返回第四步;否则,终止迭代,输出全局最优解,得到最佳功率分配方案。本发明有效提高了频谱利用率,充分考虑了基站和用户的自干扰、互干扰,很大程度上提高了系统的保密容量,为复杂系统的功率分配问题提供了一种新的解决方法。

    一种多鸽群信息交互的单快拍测向方法

    公开(公告)号:CN108614235A

    公开(公告)日:2018-10-02

    申请号:CN201810510981.2

    申请日:2018-05-25

    Abstract: 本发明提供一种多鸽群信息交互的单快拍测向方法,建立均匀线阵单快拍采样信号模型;获得单快拍极大似然方程;初始化鸽群,并将其划分为三个子鸽群;计算鸽群中鸽子位置的适应度值,确定每个子种群的局部最优位置和整个鸽群的全局最优位置;更新基本鸽群的速度和位置,产生混沌权重;反向鸽群中的鸽子根据跳转操作更新位置;更新鸽子位置;确定子鸽群中鸽子的局部最优位置和整个鸽群的全局最优位置;更新信仰空间;最终输出的鸽群全局最优位置即为来波方向估计值。本发明实现了仅对单个快拍的数据进行处理从而得到对阵列接收信号的波达方向估计,降低了DOA估计的运算量,同时提高了系统的实时性,实现了对目标来波的高精度测向。

    基于文化蚁群搜索机制的多无人机航迹规划方法

    公开(公告)号:CN107622327A

    公开(公告)日:2018-01-23

    申请号:CN201710833308.8

    申请日:2017-09-15

    Abstract: 本发明提供的是一种基于文化蚁群搜索机制的多无人机航迹规划方法。1、根据栅格法对规范空间进行网格划分。2、建立多无人机航迹规划模型,包括无人机个数、起点终点和威胁模型。3、初始化起点和终点。4、初始化蚁群算法,包括初始化蚁群,计算启发因子和引导因子。5、将所有蚂蚁分配到初始节点,更新禁忌知识。根据禁忌知识和状态转移概率选择下一个节点进行转移直到可选节点为空或达到目的节点,更新历史知识,根据历史知识更新信息素。若达到最大迭代数输出最短路径,知道得到U条多无人机最优多路径航迹。本发明解决了搜索速度慢且计算量大,很难找到无人机的最优飞行航迹的问题,且能实现多无人机航迹规划。

    一种量子大爆炸的单基地MIMO雷达测向方法

    公开(公告)号:CN107290732A

    公开(公告)日:2017-10-24

    申请号:CN201710562238.7

    申请日:2017-07-11

    Abstract: 本发明提供了一种量子大爆炸的单基地MIMO雷达测向方法。(1)建立收发共置的窄带单基地MIMO雷达系统测向模型;(2)确定量子大爆炸算法中所有量子碎片,将量子碎片均匀分配到两个子集合;(3)计算每个量子碎片的适应度,确定第1个量子碎片集合的初始最优量子位置,第2个量子碎片集合的初始最优解量子质心和均匀解量子质心;(4)更新每个量子碎片的量子位置;(5)将每个量子碎片的量子位置映射到定义区间的位置,并计算适应度值;(6)更新全局最优量子位置;(7)输出全局最优量子位置,并将其映射为位置,位置对应所要估计的波达方向。本发明能够在冲击噪声等复杂环境下实现快速高精度的测向,测向性能优秀。

    量子生物地理学演进机制的多约束FIR数字滤波器生成方法

    公开(公告)号:CN107276559A

    公开(公告)日:2017-10-20

    申请号:CN201710333472.2

    申请日:2017-05-12

    Abstract: 本发明提供的是一种量子生物地理学演进机制的多约束FIR数字滤波器生成方法。初始化栖息地,计算适宜指数。将栖息地映射为量子栖息地,对量子栖息地进行降序排列,初始化每个量子栖息地。对量子栖息地进行迁移操作,再对量子栖息地的后50%进行两种变异操作。将量子栖息地映射为栖息地,计算栖息地的适宜指数,对量子栖息地进行降序排列,更新量子栖息地,更新量子信仰空间中的量子形势知识和量子规范知识。更新每个量子栖息地。循环迭代,最终输出量子形势知识中的最优量子栖息地,映射为栖息地,对应FIR数字滤波器的参数向量。本发明设计出的FIR数字滤波器具有收敛速度快,滤波器性能好和满足多约束要求等优点。

    一种基于文化蚁狮机制的特殊阵列动态测向方法

    公开(公告)号:CN109212465B

    公开(公告)日:2024-01-30

    申请号:CN201811017378.7

    申请日:2018-09-01

    Abstract: 一种基于文化蚁狮机制的特殊阵列动态测向方法,属于阵列信号处理领域。本发明包括如下步骤:设置非等距双均匀阵列,初始化搜索区间和最大迭代次数,更新协方差矩阵,初始化蚁群和蚁狮群空间,计算适应度值,标记精英蚁狮,初始化信仰空间;判断迭代次数是否为文化算子参与度的整数倍,若不是,则轮盘赌选择优秀的蚁狮,蚂蚁围绕其和精英蚁狮随机游走,计算蚂蚁适应值,更新蚁狮位置和精英蚁狮位置,否则对蚁狮变异,计算变异后蚁狮适应值,选取适应值较优的一半蚁狮作为下一代蚁狮,更新信仰空间和精英蚁狮位置。本发明不仅跟踪速度快,搜索精度高,而且可扩展阵列孔径,突破信源数不能超过天线数的限制,回避传统方法对天线摆放的苛刻要求。

Patent Agency Ranking