一种自供能无线传感器网络最优节点放置方法

    公开(公告)号:CN109041073B

    公开(公告)日:2022-03-18

    申请号:CN201811017286.9

    申请日:2018-09-01

    Abstract: 本发明涉及无线传感器网络领域,具体涉及一种自供能无线传感器网络最优节点放置方法。首先建立网络模型,将监测区域建立于二维的栅格之中,构建NP问题模型,最小化集合覆盖问题,然后初始化量子猴群,对于量子猴子,从三种量子演化机制依概率选择一种进行演化更新位置,确定每次迭代中,量子猴子的量子位的量子演进方式,之后更新量子猴群中猴子位置,并判断对应的传感器节点所放位置是否能将所有目标节点覆盖,更新每只量子猴子至今为止的局部最优位置,找到全局最优位置作为下一迭代量子位的共同演进方向,最终当前迭代次数达到预先设定的最大值。本发明能够保证网络的能量中立及目标的覆盖与连接性,同时使得传感器节点放置的数量最小化。

    基于量子乌鸦群搜索机制的无人机群任务分配方法

    公开(公告)号:CN108549402B

    公开(公告)日:2020-11-10

    申请号:CN201810224721.9

    申请日:2018-03-19

    Abstract: 本发明涉及一种基于量子乌鸦群搜索机制的无人机群任务分配方法,包括:建立从多个起点到多个任务的无人机群任务分配模型,包括无人机型号数、起点终点和分配模型;初始化量子乌鸦群;根据适应度函数对每只量子乌鸦进行适应度计算,计算出的适应度函数最小值对应的量子乌鸦的位置存为全局最优食物位置;更新每只量子乌鸦的量子位置和位置;根据适应度函数对每只量子乌鸦进行适应度计算,确定每只量子乌鸦的隐藏的食物位置,同时找到迄今为止的最优食物位置,若达到最大迭代代数则输出全局最优食物位置,映射为任务分配矩阵。本发明解决了离散多约束目标函数求解问题,并设计离散量子乌鸦算法作为演进策略,具有收敛速度快,收敛精度高的优点。

    一种物联网中雾计算的计算资源和频谱资源分配方法

    公开(公告)号:CN110233755A

    公开(公告)日:2019-09-13

    申请号:CN201910475842.5

    申请日:2019-06-03

    Abstract: 本发明提供一种物联网中雾计算的计算资源和频谱资源分配方法,包括:建立雾计算系统模型;初始化量子种子群及参数,通过对量子种子进行测量,得到量子种子的位置;计算所有量子种子的适应度值,得到量子种子群全局最优位置并选择量子种子精英位置集;根据量子种子播撒规则,更新种群中所有量子种子的量子位置;对所有更新后的量子种子的量子位置进行测量得到相应的位置,计算每一个量子种子的适应度值,更新全局最优位置和量子种子精英位置集;如果迭代次数小于预先设定的最大迭代次数,返回第四步;否则,终止迭代,输出量子种子群的全局最优位置,得到相应的计算资源和频谱资源分配方案。本发明可以解决物联网中雾计算的网络能量效率优化问题。

    一种冲击噪声下的任意阵列相干源测向方法

    公开(公告)号:CN110007266A

    公开(公告)日:2019-07-12

    申请号:CN201910324483.3

    申请日:2019-04-22

    Abstract: 本发明公开一种冲击噪声下的任意阵列相干源测向方法,包括:建立采样信号模型;构造真实阵列动态随机加权低阶协方差矩阵;定义内插变换矩阵T,构建虚拟阵列协方差矩阵;获得前后向空间平滑修正后的数据协方差矩阵和噪声协方差矩阵,预白化处理得到动态随机加权低阶协方差矩阵;估计信源个数,对动态随机加权协方差矩阵进行特征分解,确定信号子空间和噪声子空间;构建动态随机加权低阶协方差-空间平滑-MUSIC测向方法的谱估计公式,进行谱峰搜索,找出极大值点对应的角度,输出任意阵列相干源测向结果。本发明能够对任意阵列的信源来波方向进行有效估计,可在高斯噪声、弱冲击噪声和强冲击噪声下进行测向,解相干性能优,应用范围广泛。

    基于多目标量子蜘蛛群演化机制的环形天线阵列稀疏方法

    公开(公告)号:CN107944133A

    公开(公告)日:2018-04-20

    申请号:CN201711172473.X

    申请日:2017-11-22

    Abstract: 本发明提供一种基于多目标量子蜘蛛群演化机制的环形天线阵列稀疏方法,建立环形天线阵列稀疏模型,设置恰当的系统参数,并初始化种群中每只蜘蛛在解空间中的量子位置和{0,1}编码位置。设计多目标适应度函数。计算种群中每只蜘蛛的重量,根据重量划分蜘蛛的性别。根据初始种群,生成初始精英解集。从精英解集中选取全局最优解和次优解。然后分别更新雌性蜘蛛和雄性蜘蛛的量子位置,并根据量子位置通过测量的方式转化为{0,1}编码位置。更新精英解集,并更新种群中所有蜘蛛的重量。最后判断是否达到最大迭代次数,如果达到最大迭代次数,则输出精英解集;否则返回迭代。本发明解决了多目标环形天线阵列稀疏构建这样的高维度离散多目标问题。

    一种多鸽群信息交互的单快拍测向方法

    公开(公告)号:CN108614235B

    公开(公告)日:2021-12-24

    申请号:CN201810510981.2

    申请日:2018-05-25

    Abstract: 本发明提供一种多鸽群信息交互的单快拍测向方法,建立均匀线阵单快拍采样信号模型;获得单快拍极大似然方程;初始化鸽群,并将其划分为三个子鸽群;计算鸽群中鸽子位置的适应度值,确定每个子种群的局部最优位置和整个鸽群的全局最优位置;更新基本鸽群的速度和位置,产生混沌权重;反向鸽群中的鸽子根据跳转操作更新位置;更新鸽子位置;确定子鸽群中鸽子的局部最优位置和整个鸽群的全局最优位置;更新信仰空间;最终输出的鸽群全局最优位置即为来波方向估计值。本发明实现了仅对单个快拍的数据进行处理从而得到对阵列接收信号的波达方向估计,降低了DOA估计的运算量,同时提高了系统的实时性,实现了对目标来波的高精度测向。

    量子回溯搜索优化的CCFD-Massive MIMO系统功率分配方法

    公开(公告)号:CN108880734B

    公开(公告)日:2020-05-15

    申请号:CN201810531057.2

    申请日:2018-05-29

    Abstract: 本发明提供一种量子回溯搜索优化的CCFD‑Massive MIMO系统功率分配方法,包括:建立系统模型;初始化量子种群及系统参数,经映射规则,得到量子个体的映射态;计算量子个体的适应值,将量子种群中适应值最大的量子个体记为全局最优解;通过进化和交叉策略生成新的量子个体;根据映射规则得到新生成的量子个体的映射态,计算适应值,经贪婪选择,更新量子种群及全局最优解;如果迭代次数小于预先设定的最大迭代次数,返回第四步;否则,终止迭代,输出全局最优解,得到最佳功率分配方案。本发明有效提高了频谱利用率,充分考虑了基站和用户的自干扰、互干扰,很大程度上提高了系统的保密容量,为复杂系统的功率分配问题提供了一种新的解决方法。

    一种时频DOA估计方法
    30.
    发明公开

    公开(公告)号:CN110046326A

    公开(公告)日:2019-07-23

    申请号:CN201910349676.4

    申请日:2019-04-28

    Abstract: 本发明公开一种时频DOA估计方法,包括:建立阵列接收的时域数据模型;对时域数据进行快拍采样;对快拍采样数据进行时频分析得到PWVD矩阵;计算时频平均的快拍采样数据PWVD矩阵;构造极大似然方程;初始化量子地雷量子位置;由极大似然方程构造适应度函数;模拟量子地雷爆炸过程获得量子弹片的量子位置;计算量子弹片量子位置映射态的适应度函数值,选择适应度大的优秀量子位置作为放置量子地雷的量子位置,用于引爆下一代的量子地雷,根据所有量子位置的适应度更新全局最优量子位置;达到最大迭代次数后,输出信号方位角最优估计值,本发明能在较短时间内得到较准确的非平稳信号DOA估计结果,并且在信号源为相干源的条件下仍有效。

Patent Agency Ranking