-
公开(公告)号:CN114899017B
公开(公告)日:2023-06-02
申请号:CN202210598397.3
申请日:2022-05-30
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种Co/Ni比为1:3的羧基化CNTs负载CoNiB复合材料,以羧基化CNTs、六水氯化钴、六水氯化镍、三乙胺、无水乙醇、水和硼氢化钠为原料,采用在冰水条件下硼氢化钠原位还原的方法,其中三乙胺起到将金属预锚定于羧基化CNTs的作用,其中,所述六水氯化钴和六水氯化镍的质量比为1:3;所得材料的微观形貌为,CoNiB生长在羧基化CNTs表面,羧基化CNTs贯穿于整个复合材料之中;其表面积为70‑120 m2 g‑1,孔径分布为3‑5 nm和30‑35 nm。作为超级电容器电极材料的应用,在电流密度为1 A g‑1时,比电容可以达到1900‑2300 F g‑1;在电流密度为10 A g‑1时,在5000圈循环后的比电容为初始比电容的85‑90%。
-
公开(公告)号:CN115893406A
公开(公告)日:2023-04-04
申请号:CN202211545888.8
申请日:2022-12-05
Applicant: 桂林电子科技大学
IPC: C01B32/324 , C01B32/342 , H01G11/86 , H01G11/34 , H01G11/44
Abstract: 本发明公开了一种基于混合酒糟的多孔絮状碳材料,以固态发酵的酒糟和半固态发酵的酒糟为原料,经低温预碳化形成碳前驱体,再将碳前驱体和碱性物质直接混合煅烧,得到基于混合酒糟的多孔碳材料,所得材料呈多孔絮状且比表面积范围在1000‑4000 m2 g‑1。作为原料的酒糟,必须为经固态发酵酒糟和经半固态发酵酒糟混合的酒糟。固态发酵的酒糟为甘薯酒糟或糯米酒糟,经半固态发酵的酒糟为大米酒糟或高粱酒糟。其制备方法包括以下步骤:1,碳前驱体的制备;2,基于混合酒糟的多孔碳材料的制备。作为超级电容器电极材料的应用,当电流密度为1 A g‑1时,比电容值范围在180‑490 F g‑1。
-
公开(公告)号:CN110589762B
公开(公告)日:2023-03-24
申请号:CN201911012895.X
申请日:2019-11-20
Applicant: 桂林电子科技大学
Abstract: 本发明公开了Al‑BiOI铝基复合制氢材料,将铋盐和碘化物分别溶解得到溶液X,Y,然后将X,Y溶液混合搅拌均匀,然后进行水热反应得到BiOI;将铝粉与所得的BiOI材料球磨制成,Al‑BiOI复合材料中BiOI的掺杂量为10%‑20%。其制备方法包括以下步骤:1)BiOI材料的制备;2)Al‑BiOI铝基复合制氢材料的制备。作为水解制氢材料的应用,单位质量的产氢量为988‑1101 mL/g、产氢速率为875‑4545 mL/g min及产氢率为81‑95%。本发明具有以下优点:1、在中性溶液和室温的条件下,具有高产氢性能;2、BiOI合成步骤简单,价格低廉,反应产物对环境友好;3、放氢效率高,转化率高,放氢时间短,利于实际使用生产。因此,本发明制作过程简单,原料成本价格低且产物无污染,制氢效率高,可为燃料电池提供稳定氢源。
-
公开(公告)号:CN115410831A
公开(公告)日:2022-11-29
申请号:CN202211112489.2
申请日:2022-09-14
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种NiMo‑LDH@Co‑ZIF‑67多孔核壳结构复合材料,以六水硝酸钴和二甲基咪唑为起始原料制备Co‑ZIF‑67,再以六水硝酸镍、二水钼酸钠、Co‑ZIF‑67和尿素为原料,经一步水热法制得NiMo‑LDH@Co‑ZIF‑67多孔核壳结构复合材料;Co‑ZIF‑67为椭圆片状空心结构的核结构;NiMo‑LDH@Co‑ZIF‑67为多孔核壳结构的壳结构。其比表面积为180‑210 m2 g‑1,孔径分布为3‑4 nm。其制备方法包括:1,Co‑ZIF‑67的制备;2,NiMo‑LDH@Co‑ZIF‑67多孔核壳结构复合材料的制备。作为超级电容器电极材料,在0‑0.5 V,电流密度为1 A g‑1时充放电,比电容为1500‑2000 F g‑1;在电流密度为10 A g‑1,5000圈循环,保留初始比电容的85‑90%。
-
公开(公告)号:CN115074855A
公开(公告)日:2022-09-20
申请号:CN202210809277.3
申请日:2022-07-11
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于静电纺丝的疏水性高导热复合相变材料,以氮化硼BN、聚乙二醇PEG、聚偏二氟乙烯PVDF为原料,其中,氮化硼通过超声剥离获得具有羟基的改性二维氮化硼纳米片BNNS,其作用为增强材料导热的同时,提高分散性和相容性以及绝缘性;聚乙二醇作为相变材料,提供相变储能功能;聚偏二氟乙烯作为静电纺丝纤维基体,为提供疏水性。所得复合相变材料的导热系数为0.44‑0.8 W/(m·K),结晶潜热值为107.98‑120 J/g,熔融潜热为112.20‑130 J/g,具备疏水性能和封装性能,材料表面与水的接触角为115.98°。其制备方法包括以下步骤:1、改性二维氮化硼纳米片的制备;2、基于静电纺丝的疏水性高导热复合相变材料的制备。本发明具备疏水性能,增加了材料的应用范围。
-
公开(公告)号:CN111774574B
公开(公告)日:2022-08-30
申请号:CN202010695467.8
申请日:2020-07-20
Applicant: 桂林电子科技大学
Abstract: 本发明公开了Al‑含Bi化合物多孔块体制氢材料,即将原料Al粉和含Bi化合物进行球磨混合,再经放电等离子烧结制成;其含Bi化合物必须满足在球磨过程中不与Al粉反应和在放电等离子烧结过程会发生反应产生气体,使复合制氢材料形成多孔形貌。所述Bi化合物为Bi2O2CO3,Bi2O2CO3在放电等离子烧结过程会产生二氧化碳气体。其制备方法包括以下步骤:1)球磨过程;2)放电等离子烧结过程。作为水解制氢材料的应用,与水反应产氢量为1070‑1200 mL·g‑1,其产氢率可达93‑95%,该材料与水反应的表观活化能为29‑30 KJ·mol‑1。本发明具有以下优点:1、在放电等离子烧结过程中生成气体,复合材料中形成的孔洞增大了材料与水的接触面积;2、生成Bi和Bi2O3,提高复合材料的产氢性能。
-
公开(公告)号:CN114716980A
公开(公告)日:2022-07-08
申请号:CN202210401298.1
申请日:2022-04-18
Applicant: 桂林电子科技大学
Abstract: 本发明提供了一种可逆热致变色功能复合相变材料,以结晶紫内酯、双酚A、硬脂醇和烯烃嵌段共聚体OBC为原料,先将结晶紫内酯、双酚A和硬脂醇熔融共混,得到可逆热致变色共混物;再采用热压法,将可逆热致变色共混物与烯烃嵌段共聚体OBC进行热压成型,自然冷却后,即可制得兼具可逆热致变色功能和相变功能,可逆热致变色温度与相变温度之差小于5℃的可逆热致变色功能复合相变材料。该热致变色过程为可逆过程,结晶紫内酯提供变色色基,双酚A引起热致变色,硬脂醇作为共溶剂调节变色温度。本发明的优点为,以相变材料硬脂醇作为变色体系与相变体系的连接桥梁,实现对可逆热致变色和相变温度进行调节,使其同时具备相变储热性能与光热转换性能。
-
公开(公告)号:CN114713230A
公开(公告)日:2022-07-08
申请号:CN202210598396.9
申请日:2022-05-30
Applicant: 桂林电子科技大学
IPC: B01J23/755 , B01J35/10 , C01B3/06
Abstract: 本发明公开了一种Co/Ni比为3:1的羧基化CNTs负载CoNiB复合材料,以羧基化CNTs、六水氯化钴、六水氯化镍、三乙胺、无水乙醇、水和硼氢化钠为原料,采用在冰水条件下硼氢化钠原位还原的方法,其中三乙胺起到将金属预锚定于羧基化CNTs的作用,其中,所述六水氯化钴和六水氯化镍的质量比为3:1;所得材料的微观形貌为,CoNiB生长在羧基化CNTs表面,羧基化CNTs贯穿于整个复合材料之中;其表面积为70‑120 m2 g‑1,孔径分布为3‑5 nm和30‑35 nm。作为催化硼氢化钠水解产氢催化剂的应用,在298 k条件下提供的产氢速率达到6100‑6500 ml min‑1 gcatalyst‑1,产氢量为理论值的100%,催化产氢的活化能为Ea=27‑29 kJ mol‑1;循环10次后的产氢速率为初始产氢速率的70‑75%。
-
公开(公告)号:CN114672845A
公开(公告)日:2022-06-28
申请号:CN202210447553.6
申请日:2022-04-27
Applicant: 桂林电子科技大学
IPC: C25B11/091 , C25B1/04 , B82Y40/00 , B82Y30/00
Abstract: 本发明公开了一种基于碳纳米纤维金属硫化物自支撑复合材料,以聚丙烯腈、多巴胺、乙酸钴、钼酸钠、硫代乙酰胺和丁烷四羧酸为原料,利用纤维上的羟基和1,2,3,4‑丁烷四羧酸上的羧基之间以及钴钼离子与羧基之间的异性相吸的原理,先采用预氧化和碳化结合的方法制备碳纳米纤维,再通过一步水热法,在碳纳米纤维表面生长纳米花状结构的二硫化钴和三硫化二钼。所述碳纳米纤维为骨架结构;所述二硫化钴和三硫化二钼为导电层;所述二硫化钴和三硫化二钼形成纳米片‑球簇‑包覆三级结构。作为析氢催化剂材料的应用,过电势为105.2 mV达到电流密度为10 mA cm‑2,塔菲尔斜率为152.83 mV dec‑1,电流保持率为94.53%。
-
公开(公告)号:CN113511629B
公开(公告)日:2022-06-17
申请号:CN202110493380.7
申请日:2021-05-07
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种含Bi和Mo的镁基粉体复合制氢材料,将可溶性Bi盐与可溶性Mo酸盐通过水热法制备得Bi/Mo化合物,再将原料Mg粉与Bi/Mo化合物进行球磨混合,所述Bi/Mo化合物必须同时满足以下两个特点,一是纳米级晶体,二是在球磨过程中,含Bi化合物纳米级晶体不与Mg粉反应,且均匀附着于Mg粉上;所述Bi/Mo化合物为Bi2MoO6,Bi/Mo化合物的尺寸为1‑5μm,Bi/Mo化合物由尺寸为100‑200 nm的纳米级晶体组成。其制备方法包括以下步骤:1)含Bi化合物的制备;2)含Bi和Mo的镁基粉体复合制氢材料的制备。作为水解制氢材料的应用,反应产氢量为801.4‑859.2 mLg‑1,产氢率可达91.9‑98.9%,表观活化能为34‑35 KJ·mol‑1。本发明具有以下优点:纳米级颗粒均匀附着于Mg颗粒表面,提供活性位点;具有良好的抗氧化性能。
-
-
-
-
-
-
-
-
-