基于多重光学Tamm态的多通道滤波器

    公开(公告)号:CN102053310B

    公开(公告)日:2012-03-28

    申请号:CN201010552550.6

    申请日:2010-11-19

    Abstract: 本发明公开了一种基于多重光学Tamm态的多通道滤波器,在布拉格反射镜上生长一层微米量级厚的砷化铝镓薄膜,再在砷化铝镓薄膜上镀一层金属薄膜。本发明通过改变砷化铝镓的组分以及砷化铝镓薄膜的厚度来调节滤波器通道的个数和各通道相应的波长,该滤波器具有通道窄且通道的位置在整个禁带范围内连续可调的优点,在光通讯系统中有着重要的应用价值。

    全光傅立叶变换器、反变换器及一种正交频分复用系统

    公开(公告)号:CN101557270A

    公开(公告)日:2009-10-14

    申请号:CN200910061896.3

    申请日:2009-04-30

    Abstract: 全光傅立叶变换器、反变换器及一种由它们构成的正交频分复用系统,属于光信号处理器件和光传输系统,目的是以全光方式实现傅立叶变换和反变换功能,消除对电子芯片处理速率的依赖。全光傅立叶变换器由两个N/2×N/2傅立叶变换器、N/2个2×2傅立叶变换器和N/2个移相器构成;全光傅立叶反变换器与前者区别仅在于其移相器的移相值为相反数;一种正交频分复用系统,包括:时钟分频器、连续光激光器、电光调制器、分路器、串并转换器、全光傅立叶反变换器、光纤通道、全光傅立叶变换器、时间门、解调器和并串转换器。本发明的整个过程都是以全光方式进行处理,消除了对于电子芯片处理速度的依赖,在超高速光纤通信系统中有很大的潜力。

    一种基于非子采样轮廓波变换的图像融合方法

    公开(公告)号:CN101093580A

    公开(公告)日:2007-12-26

    申请号:CN200710052492.9

    申请日:2007-08-29

    Abstract: 本发明提出一种基于非子采样轮廓波变换的图像融合方法,包括以下步骤:①使用非子采样轮廓波变换对图像进行多尺度分解,得到高频子图像系列和低频子图像;②对高频子图像,采用基于清晰度选择的融合方法进行融合;③对低频子图像,用可分割条件进行判断,根据判断结果选择采用四区域关联或者二区域关联方法对低频子图像分割,分割后的区域采用相应像素灰度值选择规则进行融合;④对高频子图像的融合结果与低频子图像的融合结果采用非子采样轮廓波逆变换,得到最终的融合结果。本发明可以有效保留源图像中的边缘信息,增大目标背景对比度,突出图像目标特征,融合结果适合进行视觉分析和目标检测等进一步的处理。

    一种利用分层燃烧法制备消失模型壳和铸件的方法、型壳

    公开(公告)号:CN115740364A

    公开(公告)日:2023-03-07

    申请号:CN202211484899.X

    申请日:2022-11-24

    Abstract: 本发明公开了一种利用分层燃烧法制备消失模型壳和铸件的方法、型壳。所述方法包括下列步骤:(1)将泡沫模具的表面涂覆涂料后烘干使得模具完全脱水,得到铸型;(2)将所述铸型沿轴线固定后旋转,并从铸型的浇口位置开始向其表面浇淋有机助燃剂,使得有机助燃剂透过铸型壁并附着于泡沫表面;(3)从浇口处点燃所述铸型,铸型内部泡沫燃烧分解的气体产物向浇口排出,燃烧结束使得泡沫燃烧完全后,得到由耐火材料组成的消失模空心型壳。本发明在浇注前实现泡沫模的消除,能有效消除传统消失模浇注时由于聚苯乙烯等在金属液中分解导致的增碳、增氢、气孔、夹渣、铸件表面不平等缺陷。

    一种电弧增材制造-旋压复合加工装置及方法

    公开(公告)号:CN113664536A

    公开(公告)日:2021-11-19

    申请号:CN202111009038.1

    申请日:2021-08-31

    Abstract: 本发明属于电弧增材制造领域,并具体公开了一种电弧增材制造‑旋压复合加工装置及方法,其包括旋压机构和熔积成形机构,其中:所述旋压机构包括机床和旋压头,其中,所述旋压头通过主轴安装在所述机床上,所述主轴用于带动旋压头旋转并实现三个垂直方向的移动;所述旋压头包括旋压座和滚珠,所述滚珠安装在所述旋压座底部的圆弧槽内;所述熔积成形机构包括移动轨道、机器人和热源发生器,其中,弧形的移动轨道围绕设置在所述机床周围,所述机器人活动安装在该移动轨道上,所述热源发生器安装在所述机器人末端。本发明实现了电弧增材制造‑旋压工艺复合,可对形状不规则的焊道进行旋压加工,并得到优良的表面形貌和力学性能的曲面零件。

    一种实现NOx近零排放的无焰燃烧供暖锅炉系统

    公开(公告)号:CN110425518B

    公开(公告)日:2020-07-10

    申请号:CN201910680364.1

    申请日:2019-07-26

    Abstract: 本发明属于燃烧装置领域,并具体公开了一种实现NOx近零排放的无焰燃烧供暖锅炉系统,其中供气装置与无焰燃烧器连接;无焰燃烧器中的第一驻涡燃烧室和第二驻涡燃烧室关于保温炉膛中心轴线对称分布,用于进行有焰燃烧从而产生富燃料烟气,空气直喷喷管的出口与保温炉膛连接,用于向保温炉膛提供携带富燃料烟气的空气;富燃料烟气和空气在保温炉膛内进行无焰燃烧,产生的烟气进入烟气换热装置,通过热量传递的方式加热用于供暖的循环水。本发明设计了无切换的无焰燃烧器,因富燃料烟气的温度高于燃料着火点,故不需预热能够直接进行无焰燃烧,同时本发明将无焰燃烧应用到供暖锅炉中,能够保证保温炉膛的温度快速达到无焰燃烧的温度条件。

    一种单层二维材料中能谷光子的分离方法及分离装置

    公开(公告)号:CN109782455B

    公开(公告)日:2020-05-19

    申请号:CN201910094647.8

    申请日:2019-01-31

    Abstract: 本发明涉及一种单层二维材料中能谷光子的分离方法,包括:制作纳米孔阵列;在纳米孔阵列的一表面上层叠单层二维材料薄膜;向纳米孔阵列的另一表面上入射线偏激光,线偏激光经纳米孔阵列的调制,得到自旋相反且发射方向不同的两束圆偏激光,单层二维材料薄膜在两束圆偏激光的激发下,发射出自旋相反且出射方向不同的两束能谷光子,完成能谷光子的分离。本发明采用纳米孔阵列辅助单层二维材料中能谷光子的分离,在产生倍频的能谷光子的同时,提高单层二维材料的倍频效率。另外,可以在常温下对能谷光子的出射方向进行操控,自由度高,能谷光子转换效率高。

    一种基于超表面和二维材料的高效非线性光偏振调制器及其制备方法

    公开(公告)号:CN106681081A

    公开(公告)日:2017-05-17

    申请号:CN201710137988.X

    申请日:2017-03-09

    Abstract: 本发明公开了一种基于超表面和二维材料的高效非线性光偏振调制器及其制备方法,包括位于下层的金属纳米孔阵列和位于上层的单层二维材料。利用聚焦离子束刻蚀的方法对完整的金属纳米薄膜进行加工,得到三角形的纳米孔阵列;通过氢氟酸腐蚀的方法将单层二维材料转移到纳米孔阵列的表面,从而得到单层二维材料和金属三角纳米孔阵列复合的超表面。利用此复合超表面可以对出射的二次谐波偏振方向进行调制。圆偏振的基频光入射可以产生反向圆偏振的倍频光出射,偏振角为θ的线偏振基频光入射可以产生偏振角为‑2θ的线偏振倍频光出射。而且相对于传统的金属超表面,其转换效率提高了近两个数量级。本发明非线性光偏振调制器体积小,结构简单、集成度高。

Patent Agency Ranking