一种分步刻蚀的约瑟夫森结制备方法

    公开(公告)号:CN117881269A

    公开(公告)日:2024-04-12

    申请号:CN202211209042.7

    申请日:2022-09-30

    Abstract: 本发明提供一种分步刻蚀的约瑟夫森结制备方法,至少包括:1)提供衬底,于衬底表面依次沉积第一超导材料层、势垒层、第二超导材料层;2)利用光刻和显影工艺,在第二超导材料层表面形成第一光刻胶图形,将第一光刻胶图形作为掩模,刻蚀部分第二超导材料层,以形成上电极和覆盖势垒层的超导薄层,去除第一光刻胶图形;3)利用光刻和显影工艺,在上电极和超导薄层表面形成第二光刻胶图形,将第二光刻胶图形作为掩模,依次刻蚀超导薄层和势垒层,去除第二光刻胶图形;4)刻蚀第一超导材料层,以形成下电极。本发明在刻蚀势垒层之前,在其表面保留了很薄的一层超导材料层,可以隔绝光刻显影时势垒层与显影液的反应,避免生成黑色反应物。

    一种约瑟夫森结及超导量子干涉器件的制备方法

    公开(公告)号:CN111244259B

    公开(公告)日:2023-07-25

    申请号:CN202010066840.3

    申请日:2020-01-20

    Abstract: 本申请提供一种约瑟夫森结及超导量子干涉器件的制备方法,该约瑟夫森结的制备方法包括以下步骤:获取衬底;在衬底上依次制备第一超导薄膜层、绝缘层和第二超导薄膜层;采用曝光显影结合刻蚀技术对第二超导薄膜层的第一区域进行刻蚀处理,形成第一约瑟夫森结区;采用曝光显影结合刻蚀技术对第二超导薄膜层的第二区域进行刻蚀处理,于第一区域和第二区域的重叠部分形成第二约瑟夫森结区;第二约瑟夫森结区的尺寸能够通过调整衬底的位置或调整校准片的位置调整为A*A微米,其中A的范围为0.1‑1微米。本申请实施例提供的约瑟夫森结的制备方法对第二超导薄膜层采用两次曝光显影结合刻蚀技术定义约瑟夫森结区,能够实现亚微米约瑟夫森结的制备。

    一种超导集成电路器件的制备方法

    公开(公告)号:CN115915908A

    公开(公告)日:2023-04-04

    申请号:CN202211405962.6

    申请日:2022-11-10

    Abstract: 本发明提供一种超导集成电路器件的制备方法,在形成第三绝缘材料层时,先在第三超导材料层表面沉积一定厚度的绝缘材料形成第三绝缘材料层,由于第三绝缘材料层的厚度较大,因此其易在凸角处形成鼓包;接着,采用离子束刻蚀的方法去除具有第一厚度的第三绝缘材料层,从而消除鼓包;最后,在上述结构表面重新沉积具有第一厚度的绝缘材料,最终获得具有平整表面的第三绝缘材料层。本发明提供的超导集成电路器件的制备方法解决了在形成厚度较大的绝缘材料层时易产生的鼓包的问题,从而有效改善了超导集成器件电感层的刻蚀残留问题,避免了层内金属连接时容易产生的短路问题;且本发明提供的超导集成电路器件的制备方法操作简单,大大提高了生产效率。

    提高超导集成电路工作范围的方法

    公开(公告)号:CN113065301A

    公开(公告)日:2021-07-02

    申请号:CN202110426087.9

    申请日:2021-04-20

    Abstract: 本发明提供一种提高超导集成电路工作范围的方法,包括:基于工作原理确定第一信号与第二信号的时序关系,其中,所述第二信号滞后于所述第一信号,并获取所述第一信号及所述第二信号的延时偏离范围;调整所述第一信号及所述第二信号的延时时间,确保所述第二信号的最小延时偏离时间大于所述第一信号的标准延时时间。本发明针对不确定度较大的超导工艺,能在较大程度上有效地提高集成电路的工作范围。

    超导高速存储器
    35.
    发明公开

    公开(公告)号:CN112949229A

    公开(公告)日:2021-06-11

    申请号:CN202110340321.6

    申请日:2021-03-30

    Abstract: 本发明提供一种超导高速存储器,包括:输入缓冲阵列,用于并行暂存输入数据;存储阵列,连接于输入缓冲阵列的输出端,包括多个存储块,用于并行存储输入缓冲阵列输出的数据;输出缓冲阵列,连接于存储阵列的输出端,用于并行暂存存储阵列输出的数据;地址译码控制电路,连接输入缓冲阵列、存储阵列及输出缓冲阵列,分别为输入缓冲阵列及第二缓冲阵列提供有效信号,为存储阵列提供置位信号及复位信号。本发明的超导高速存储器架构简单,可以对并行数据进行存储,拓展了目前应用超导电路实现的高速存储器只能存储串行数据的现状,且无需加入额外的并串转换电路,简化了设计、缩短了存取时间、也降低了片上硬件资源的消耗。

    约瑟夫森结及其超导器件与制备方法

    公开(公告)号:CN112670401A

    公开(公告)日:2021-04-16

    申请号:CN202011518329.9

    申请日:2020-12-21

    Abstract: 本发明提供一种约瑟夫森结、超导器件及制备方法,约瑟夫森结制备包括:在衬底上形成第一超导材料层、势垒材料层、第二超导材料层;刻蚀第二超导材料层形成上电极;在势垒材料层上沉积绝缘材料,然后刻蚀掉,紧接着刻蚀势垒层;最后刻蚀第一超导材料层,得到下电极。本发明在刻蚀势垒层之前,先沉积一层绝缘材料,基于同一掩膜层先刻蚀绝缘材料,不去除光刻胶,接着进行势垒层的刻蚀,很好的保护了势垒层,避免了势垒层与显影液反应生成黑色反应物。先沉积的绝缘层还可以提升后沉积的绝缘层的绝缘效果,减小漏电流,并且可以实现同质生长,两者不存在明显界面,对后续工艺无影响,可以提升超导电路的性能和稳定性,以及整体超导电路的工作范围。

    一种约瑟夫森结及超导量子干涉器件的制备方法

    公开(公告)号:CN111244259A

    公开(公告)日:2020-06-05

    申请号:CN202010066840.3

    申请日:2020-01-20

    Abstract: 本申请提供一种约瑟夫森结及超导量子干涉器件的制备方法,该约瑟夫森结的制备方法包括以下步骤:获取衬底;在衬底上依次制备第一超导薄膜层、绝缘层和第二超导薄膜层;采用曝光显影结合刻蚀技术对第二超导薄膜层的第一区域进行刻蚀处理,形成第一约瑟夫森结区;采用曝光显影结合刻蚀技术对第二超导薄膜层的第二区域进行刻蚀处理,于第一区域和第二区域的重叠部分形成第二约瑟夫森结区;第二约瑟夫森结区的尺寸能够通过调整衬底的位置或调整校准片的位置调整为A*A微米,其中A的范围为0.1-1微米。本申请实施例提供的约瑟夫森结的制备方法对第二超导薄膜层采用两次曝光显影结合刻蚀技术定义约瑟夫森结区,能够实现亚微米约瑟夫森结的制备。

    氮化铌薄膜的制备方法、SQUID器件及其制备方法

    公开(公告)号:CN105449094B

    公开(公告)日:2019-04-05

    申请号:CN201511018443.4

    申请日:2015-12-29

    Abstract: 本发明提供一种氮化铌薄膜的制备方法、SQUID器件及其制备方法,包括:在衬底上采用磁控溅射方式依次外延生长第一氮化铌材料层、第一绝缘材料层、第二氮化铌材料层的三层薄膜结构;通过刻蚀形成底电极图形;形成约瑟夫森结;沉积第二绝缘材料层;制备旁路电阻;沉积第三氮化铌材料层,并形成顶电极。该SQUID器件包括:衬底,制备于所述衬底上的超导环,制备于所述衬底上并嵌于所述超导环的环路上的约瑟夫森结,所述约瑟夫森结包括底电极、绝缘材料层和对电极。本发明提供一种制备高质量氮化铌薄膜的方法,并在此基础上制备出基于氮化铌/氮化铝/氮化铌约瑟夫森结的SQUID器件,使得SQUID器件可以在高于4.2K的温度下工作,降低了超导SQUID器件的制冷成本。

    基于ERSFQ电路的低温超导读出电路及读出系统

    公开(公告)号:CN106767944B

    公开(公告)日:2019-02-22

    申请号:CN201611085483.5

    申请日:2016-11-30

    Inventor: 任洁 应利良 王镇

    Abstract: 本发明提供一种基于ERSFQ电路的低温超导读出电路及读出系统,所述低温超导读出电路包括:m个超导量子干涉器,与低温超导传感器阵列连接,用于将低温超导传感器阵列的多路输出信号转换为多路SFQ脉冲信号;ERSFQ电路,与m个超导量子干涉器连接,用于将多路SFQ脉冲信号转换成二进制单路脉冲信号输出;驱动放大电路,与ERSFQ电路连接,用于对二进制单路脉冲信号进行放大输出;其中,m为大于1的整数;通过本发明的基于ERSFQ电路的低温超导读出电路及读出系统,解决了现有技术中读出放大电路热负载大而且电路系统抗噪声干扰能力较弱的问题。

    全张量磁场梯度测量组件及制备方法

    公开(公告)号:CN107329098A

    公开(公告)日:2017-11-07

    申请号:CN201710363781.4

    申请日:2017-05-22

    Abstract: 本发明提供一种全张量磁场梯度测量组件及制备方法,至少包括:衬底、制备在所述衬底上的第一SQUID器件、第二SQUID器件、第三SQUID器件、第四SQUID器件、第五SQUID器件以及第一梯度线圈、第二梯度线圈、第三梯度线圈、第四梯度线圈、第五梯度线圈,其中,所述第一梯度线圈与所述第一SQUID器件用于测量Gxx磁场梯度分量;所述第二梯度线圈与所述第二SQUID器件用于测量Gyy磁场梯度分量;所述第三梯度线圈与所述第三SQUID器件用于测量Gyx磁场梯度分量;所述第四梯度线圈与所述第四SQUID器件用于测量Gzx磁场梯度分量;所述第五梯度线圈与所述第五SQUID器件用于测量Gzy磁场梯度分量。本发明在同一衬底上制备5个SQUID器件,且每个SQUID器件探测1个分量,减小了组件体积和安装难度,降低制备成本。

Patent Agency Ranking