一种基于多特征深度学习技术的农田害虫图像识别方法

    公开(公告)号:CN105488536A

    公开(公告)日:2016-04-13

    申请号:CN201510923464.4

    申请日:2015-12-10

    IPC分类号: G06K9/62

    CPC分类号: G06K9/6267 G06K9/6269

    摘要: 本发明涉及一种基于多特征深度学习技术的农田害虫图像识别方法,与现有技术相比解决了复杂环境条件下害虫图像识别性能差的缺陷。本发明包括以下步骤:针对大规模害虫图像样本进行多特征提取,提取大规模害虫图像样本的颜色特征、纹理特征、形状特征、尺度不变特征转换特征和方向梯度直方图特征;多特征深度学习,对不同类型特征分别进行非监督字典训练,获得不同类型特征的稀疏表示;训练样本的多特征表示,通过结合不同类型特征,构建害虫图像样本的多特征表示形式-多特征稀疏编码直方图;构建多核学习分类器,通过学习害虫图像正负样本的稀疏编码直方图构建多核分类器,实现害虫图像的分类。本发明提高了害虫识别的准确率。