-
公开(公告)号:CN103931727B
公开(公告)日:2016-03-30
申请号:CN201410193395.1
申请日:2014-05-08
Applicant: 吉林大学
Abstract: 本发明的人参叶饼干及其制备方法,属于食品的技术领域。人参叶饼干含有如下重量份的成分:人参叶粉0.1-1份,面粉40-60份,莜面粉10-20份,淀粉0.5-0.8份,玉米油1-5份,脱脂奶粉10-15份,木糖醇15-20份,小苏打0.05-0.10份。经制成乳浊液,混合粉料,调制面团,辊压成型,烘烤冷却得到人参叶饼干。本发明的人参叶饼干配方中添加了人参叶粉和木糖醇,原料天然健康,实现了对废弃人参叶的有效利用;采用本发明所述配方及方法制备的人参叶饼干,口感良好,营养丰富,比普通饼干更加有益健康。
-
公开(公告)号:CN103931727A
公开(公告)日:2014-07-23
申请号:CN201410193395.1
申请日:2014-05-08
Applicant: 吉林大学
Abstract: 本发明的人参叶饼干及其制备方法,属于食品的技术领域。人参叶饼干含有如下重量份的成分:人参叶粉0.1-1份,面粉40-60份,莜面粉10-20份,淀粉0.5-0.8份,玉米油1-5份,脱脂奶粉10-15份,木糖醇15-20份,小苏打0.05-0.10份。经制成乳浊液,混合粉料,调制面团,辊压成型,烘烤冷却得到人参叶饼干。本发明的人参叶饼干配方中添加了人参叶粉和木糖醇,原料天然健康,实现了对废弃人参叶的有效利用;采用本发明所述配方及方法制备的人参叶饼干,口感良好,营养丰富,比普通饼干更加有益健康。
-
公开(公告)号:CN117690190B
公开(公告)日:2024-08-13
申请号:CN202410130129.8
申请日:2024-01-31
Applicant: 吉林大学
IPC: G06V40/20 , G06V20/05 , G06V10/34 , G06V10/426 , G06V10/44 , G06V10/52 , G06V10/62 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/084 , G06N3/0895
Abstract: 本发明属于水下动作识别技术领域,本发明公开了基于超图文本对比的水下动作识别方法、系统及存储介质,包括以下步骤:获取水下动作基准数据集;基于姿态估计法提取水下各种动作指令下的水下人体骨骼数据;对基本人体骨骼进行分区设计,建立关于骨骼关节点的超边,进而获得超图;将所述超图和所述水下人体骨骼数据进行结合,输出水下骨骼的超边特征;基于Transformer模型,输出骨骼特征,将所述骨骼特征和所述文本模型中的文本特征进行对比学习,最终输出精确的潜水员动作指令识别结果。本发明,将超图与输入特征结合推到超边特征,采用文本编码器生成文本特征,实现骨骼‑文本的对比学习,有效地利用多模态信息进一步提升潜水员动作识别的效能。
-
公开(公告)号:CN117893894B
公开(公告)日:2024-06-11
申请号:CN202410294510.8
申请日:2024-03-15
Applicant: 吉林大学
IPC: G06V20/05 , G06N3/045 , G06N3/0464 , G06N3/0495 , G06N3/08 , G06V10/25 , G06V10/82
Abstract: 一种基于红外偏振图像的水下目标轻量化检测方法及装置,涉及水下机器视觉目标检测技术领域,方法包括:基于红外偏振相机采集水下目标红外偏振图像;将所述目标红外偏振图像划分为训练集和测试集;设计增强特征提取模块,并插入SlimNeck网络中,构成轻量化颈部网络;设计轻量化检测头SlimDetect,并采用所述轻量化检测头SlimDetect和所述轻量化颈部网络替换单阶段目标检测模型中的对应部分,得到轻量化目标检测模型;基于所述训练集训练所述轻量化目标检测模型;将训练后的轻量化目标检测模型用于水下目标检测;该方法通过轻量化设计,减少模型的参数量和计算复杂度,使得在资源有限的水下设备上实现实时目标检测成为可能。
-
公开(公告)号:CN117649597B
公开(公告)日:2024-05-14
申请号:CN202410114303.X
申请日:2024-01-29
Applicant: 吉林大学
IPC: G06V20/05 , G06V20/40 , G06V20/64 , G06V40/20 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/0499 , G06N3/082
Abstract: 一种基于事件相机的水下三维手部姿态估计方法和系统,涉及水下机器视觉的技术领域。解决在静态的手势重建方法在水下环境中具有局限性的问题。所述方法包括:利用事件相机采集水下潜水员手势视频,将手势视频转换成事件序列,构建数据集;对所述事件序列进行体素化,并通过体素网格方式进行数据表示;利用高斯滤波器处理体素网格形式的事件序列进行滤波处理,获取清洗后的事件序列;构建视频观测模型,获取估计值;使用卡尔曼滤波器对估计值进行处理并生成蒙皮参数;根据蒙皮参数生成蒙皮的可视化结果,完成水下三维手部姿态估计。应用于水下动态手部姿态估计领域。
-
公开(公告)号:CN117590867B
公开(公告)日:2024-03-26
申请号:CN202410070527.5
申请日:2024-01-18
Applicant: 吉林大学
IPC: G05D1/485 , G05D101/10
Abstract: 基于深度强化学习的水下自主航行器接驳控制方法和系统,涉及水下航行器的接驳控制领域。解决现有水下自主航行器的接驳基于导航信息的Pid控制,控制稳定性受洋流影响大,面对未知障碍物时决策能力不足的问题。方法包括:根据海洋环境数据和接驳控制任务场景构建状态空间和动作空间以及仿真环境模型;设计奖励函数;构建基于SAC改进的深度神经网络模型;初始化深度神经网络模型参数和经验重放缓冲区;深度神经网络模型根据当前环境状态信息输入,输出当前时间步下的最优决策,并与模拟环境模型交互,产生新状态并存储;训练深度神经网络模型,利用模型为水下自主航行器提供接驳控制支持。应用于水下探测领域。
-
公开(公告)号:CN117745596A
公开(公告)日:2024-03-22
申请号:CN202410182761.7
申请日:2024-02-19
Applicant: 吉林大学
IPC: G06T5/77 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/0499 , G06N3/08 , G06T5/50 , G06T5/60
Abstract: 一种基于跨模态融合的水下去遮挡方法。本发明属于水下机器视觉的技术领域,具体而言,涉及事件和RGB两种数据模态深度融合方法,以及基于事件和RGB数据的水下场景去遮挡重建方法。本发明提供了一种基于跨模态融合的水下去遮挡方法,解决了现有技术中在水下去遮挡时都是先将事件序列与RGB图像各自的特征先进行编码后再融合,此种处理方式容易导致模型计算量和硬件要求翻倍,无法适配于资源受限的水下环境的问题。本发明所述方法将事件序列与RGB图像直接进行融合,然后再进行编码解码,在前融合阶段进行数据融合,减少了系统对计算量的要求,使网络更加轻量化。
-
公开(公告)号:CN117649597A
公开(公告)日:2024-03-05
申请号:CN202410114303.X
申请日:2024-01-29
Applicant: 吉林大学
IPC: G06V20/05 , G06V20/40 , G06V20/64 , G06V40/20 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/0499 , G06N3/082
Abstract: 一种基于事件相机的水下三维手部姿态估计方法和系统,涉及水下机器视觉的技术领域。解决在静态的手势重建方法在水下环境中具有局限性的问题。所述方法包括:利用事件相机采集水下潜水员手势视频,将手势视频转换成事件序列,构建数据集;对所述事件序列进行体素化,并通过体素网格方式进行数据表示;利用高斯滤波器处理体素网格形式的事件序列进行滤波处理,获取清洗后的事件序列;构建视频观测模型,获取估计值;使用卡尔曼滤波器对估计值进行处理并生成蒙皮参数;根据蒙皮参数生成蒙皮的可视化结果,完成水下三维手部姿态估计。应用于水下动态手部姿态估计领域。
-
公开(公告)号:CN116912675A
公开(公告)日:2023-10-20
申请号:CN202311175150.1
申请日:2023-09-13
Applicant: 吉林大学
IPC: G06V20/05 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N3/096 , G06V10/80 , G06V10/82
Abstract: 一种基于特征迁移的水下目标检测方法及系统,涉及水下机器视觉目标检测技术领域。解决现有水下目标检测方法存在的水下图像质量差、识别误差大和泛化能力差的问题。方法为:构建基准数据集进而训练迁移对抗学习网络模型,采用训练后的迁移对抗学习网络模型将水下高清图像的特征迁移到水下模糊目标图像上;将两层坐标注意力增强模块添加到YOLOv5的骨干网络中,并添加一组锚框和SIOU位置损失函数,获得DCA‑YOLOv5目标检测模型;采用DCA‑YOLOv5目标检测模型对特征增强后的水下高清目标图像进行目标检测,获得目标的位置和类别信息。本发明适用于水下模糊场景增强以及高精度的水下目标检测。
-
公开(公告)号:CN116405626B
公开(公告)日:2023-09-22
申请号:CN202310650996.X
申请日:2023-06-05
Applicant: 吉林大学
IPC: H04N7/01 , G06T5/00 , G06N3/0464 , G06N3/0455
Abstract: 本发明是一种全局匹配的水下运动目标视觉增强方法。本发明涉及模式识别技术领域,本发明利用水下摄影设备采集目标的RGB视频序列数据集;利用基于特征金字塔的多级编码器,得到多尺度RGB边界帧特征;利用滑动窗口的分层视觉变换器进行特征增强;对提取的特征进行全局相关性匹配;利用逐级上采样特征解码器,并在上采样的过程中联合优化中间光流和中间帧特征,最终输出清晰视频中间帧;使用图像损失结合约束重建中间帧。通过通过本申请中的技术方案,实现了为水下视频重建清晰的中间帧,增强了运动目标的视觉质量,提高了水下视频的帧率,为水下的检测、识别和追踪等任务提供了鲁棒的视觉表达。
-
-
-
-
-
-
-
-
-