-
公开(公告)号:CN112971258A
公开(公告)日:2021-06-18
申请号:CN202110276145.4
申请日:2021-03-15
Applicant: 吉林大学
Inventor: 韩志武 , 张爽 , 张俊秋 , 李因武 , 韩奇钢 , 牛士超 , 穆正知 , 李博 , 张斌杰 , 秦晓静 , 杨敬德 , 张芷嫣 , 王宇飞 , 宋文达 , 李健豪 , 刘莉莉 , 葛俊洋
Abstract: 本发明公开了一种具有减振吸能效果的仿生防护头盔内衬,包括:吸能层以及至少两个减振层,吸能层位于两个减振层之间;减振层采用仿啄木鸟头骨的减振层结构;减振层包括:硬质矩形框架,硬质矩形框架内形成若干个矩形孔;粘弹性填充件,粘弹性填充件与矩形孔的内壁连接;粘弹性填充件发生粘弹性变形以减小振动,硬质结构提供结构强度,吸能层用于吸能。在头盔内衬中的两个减振层之间设置吸能层,减振层采用硬质矩形框架和粘弹性填充件,头盔内衬受外力时,由于粘弹性填充件可发生粘弹性变形,从而通过衰减应力波来减小振动。在减振层的基础上,通过吸能层吸收振动的能量,通过减振层和吸能层配合实现吸能减振效果,确保头盔内衬的安全性。
-
公开(公告)号:CN112729628A
公开(公告)日:2021-04-30
申请号:CN202011567504.3
申请日:2020-12-25
Applicant: 吉林大学
IPC: G01L1/18
Abstract: 本发明涉及一种超敏柔性传感器及其制备方法,所述超敏柔性传感器包括柔性基底层以及柔性压敏层;所述柔性基底层具有导电性,用于传输压力响应信号;所述柔性压敏层用于放大并传输所述压力响应信号;所述柔性压敏层包括微纳结构阵列,所述柔性基底层叠设在所述微纳结构阵列上。通过在柔性基底层和柔性压敏层之间设置微纳阵列结构,利用微纳结构具有微小压力下易变形的特点,柔性基底层和柔性压敏层在压力作用下的接触面积显著增加,降低了接触电阻,从而获得较大电阻变化率,从而使得超敏柔性传感器的灵敏度较高,具有较短的响应时间。
-
公开(公告)号:CN111590973B
公开(公告)日:2021-04-20
申请号:CN202010493620.9
申请日:2020-06-03
Applicant: 吉林大学
Abstract: 本发明公开了一种纤维复合材料的仿生耐磨结构及其制备方法,所述纤维复合材料的仿生耐磨结构包括纤维树脂层和设置在纤维树脂层上的仿生硬质层;所述仿生硬质层的表面设置有凹槽阵列;其中,所述凹槽阵列中的凹槽为仿生凹槽。本发明的仿生硬质层表面的仿生凹槽阵列能够减小表面受到摩擦磨损时的接触面积,以及抵抗由摩擦磨损带来的剪切应力,从而可提高纤维复合材料表面的耐磨性和机械稳定性,延长材料的使用寿命。而且在较软的纤维树脂层上设置仿生硬质层,提高了纤维复合材料的仿生耐磨结构的韧性,改善了仿生硬质层接触使用时的舒适度,此外,这种刚柔耦合的结构能够在保留纤维树脂层的轻质、高强特性的同时改善结构的耐磨性能。
-
公开(公告)号:CN112066803A
公开(公告)日:2020-12-11
申请号:CN202010973578.0
申请日:2020-09-16
Applicant: 吉林大学
Abstract: 一种盾状尾节式仿生变向防弹插板,包括盾状尾节表层、仿生变向层、中间吸能层和内层,盾状尾节表层、仿生变向层、中间吸能层和内层通过热压罐成型法压制成型,盾状尾节表层为通过3D打印技术中的激光选区烧结技术将氧化铝陶瓷打印成两个盾状尾节对称拼接结构,仿生变向层与中间吸能层接触侧为波纹状结构,中间吸能层为超高分子量聚乙烯纤维板;内层为凯芙拉机织布,抑制背凸,本发明借鉴了雀尾螳螂虾的鳌棒结构和盾状尾节结构,盾状尾节表层在与弹丸撞击中盾状尾节龙骨状突起向内弯曲吸收大量能量,同时仿生变向层起到改变弹丸方向、降低冲击动能的作用,极大的增加了防弹插板抗穿透能力。
-
公开(公告)号:CN109957870B
公开(公告)日:2020-09-08
申请号:CN201910351694.6
申请日:2019-04-28
Applicant: 吉林大学
Abstract: 本发明公开了一种纤维材料及纤维复合材料的制备方法,所述纤维材料包括:上纤维层、下纤维层、连接所述上纤维层与下纤维层的中纤维层;其中,所述中纤维层由纬向纤维和经向纤维组成;所述纬向纤维和所述经向纤维均由竖直段纤维和连接在所述竖直段纤维两端的过渡段纤维组成;所述过渡段纤维与所述上纤维层和所述下纤维层在连接处的夹角均为钝角。本发明所述纤维材料具有良好的抗剥离性能。
-
公开(公告)号:CN111516307A
公开(公告)日:2020-08-11
申请号:CN202010401400.9
申请日:2020-05-13
Applicant: 吉林大学
IPC: B32B5/02 , B32B5/26 , B32B9/00 , B32B9/04 , B32B27/02 , B32B27/12 , B32B27/30 , B32B27/40 , B32B33/00
Abstract: 本发明公开一种仿生吸振复合材料及其制备方法与应用。本发明通过将具有能够承受较大载荷和吸收振动能量特点的轻质吸振填料填充在具有均化应力和传递载荷的网格状芯体的空腔中,用加固纤维连续穿插在填充有轻质吸振填料的所述网格状芯体中形成结构稳定的吸振芯体,并在其上、下表面铺覆具有优异的抗弯和抗拉伸特性的单向纤维布层形成的仿生吸振复合材料兼具吸振、质轻、高强的特点,解决了现有吸振工程材料质量大、吸振效果差或寿命短的问题。
-
公开(公告)号:CN109648943B
公开(公告)日:2020-06-19
申请号:CN201811627265.9
申请日:2018-12-28
Applicant: 吉林大学
IPC: B32B9/00 , B32B9/02 , B32B9/04 , B32B17/04 , B32B17/12 , B32B21/02 , B32B21/10 , B32B27/02 , B32B27/12 , B32B27/34 , B32B37/02 , B32B38/00
Abstract: 本发明公开一种仿生复合材料及其制备方法。所述仿生复合材料包括交替设置的正弦纤维树脂层和螺旋纤维树脂层,所述正弦纤维树脂层与螺旋纤维树脂层之间为正弦曲率半径渐增式过渡联接;所述正弦纤维树脂层由纤维树脂层按正弦曲线的形状多层铺排而成,所述螺旋纤维树脂层由纤维树脂层按照每次铺敷时较上一层转过相等角度,最终转过180°为一个周期,循环铺敷若干个周期而成,所述纤维树脂层由纤维经树脂浸润而成。本发明借鉴了螳螂虾的鳌棒抗冲击纤维结构与功能启示,实现了通过不同纤维结构的相互耦合与协同作用,提升层状复合材料性能,解决普遍使用的层状纤维复合材料的铺层结构单一、抗冲击性能提升困难等缺点。
-
公开(公告)号:CN109957870A
公开(公告)日:2019-07-02
申请号:CN201910351694.6
申请日:2019-04-28
Applicant: 吉林大学
Abstract: 本发明公开了一种纤维材料及纤维复合材料的制备方法,所述纤维材料包括:上纤维层、下纤维层、连接所述上纤维层与下纤维层的中纤维层;其中,所述中纤维层由纬向纤维和经向纤维组成;所述纬向纤维和所述经向纤维均由竖直段纤维和连接在所述竖直段纤维两端的过渡段纤维组成;所述过渡段纤维与所述上纤维层和所述下纤维层在连接处的夹角均为钝角。本发明所述纤维材料具有良好的抗剥离性能。
-
公开(公告)号:CN109648943A
公开(公告)日:2019-04-19
申请号:CN201811627265.9
申请日:2018-12-28
Applicant: 吉林大学
IPC: B32B9/00 , B32B9/02 , B32B9/04 , B32B17/04 , B32B17/12 , B32B21/02 , B32B21/10 , B32B27/02 , B32B27/12 , B32B27/34 , B32B37/02 , B32B38/00
Abstract: 本发明公开一种仿生复合材料及其制备方法。所述仿生复合材料包括交替设置的正弦纤维树脂层和螺旋纤维树脂层,所述正弦纤维树脂层与螺旋纤维树脂层之间为正弦曲率半径渐增式过渡联接;所述正弦纤维树脂层由纤维树脂层按正弦曲线的形状多层铺排而成,所述螺旋纤维树脂层由纤维树脂层按照每次铺敷时较上一层转过相等角度,最终转过180°为一个周期,循环铺敷若干个周期而成,所述纤维树脂层由纤维经树脂浸润而成。本发明借鉴了螳螂虾的鳌棒抗冲击纤维结构与功能启示,实现了通过不同纤维结构的相互耦合与协同作用,提升层状复合材料性能,解决普遍使用的层状纤维复合材料的铺层结构单一、抗冲击性能提升困难等缺点。
-
公开(公告)号:CN115216033A
公开(公告)日:2022-10-21
申请号:CN202210839933.4
申请日:2022-07-18
Applicant: 吉林大学
IPC: C08J5/06 , C08J5/04 , C08L63/00 , C08L61/06 , C08L23/12 , C08L61/16 , C08L81/06 , C08L77/00 , C08L67/00 , C08L33/20 , C08L29/14 , C08L27/16 , C08K9/02 , C08K7/06 , C08K7/08 , D06M11/44 , D06M11/49 , G01N3/06 , G01N3/08 , D06M101/24 , D06M101/28 , D06M101/32 , D06M101/34 , D06M101/40
Abstract: 本发明公开一种仿生纤维增强复合材料及其制备方法,仿生纤维增强复合材料包括:树脂层;设置在树脂层中的导电纤维层,导电纤维层中的导电纤维上设置有多个压电柱;设置在树脂层中并设置在导电纤维层的至少一表面上的压电纤维层,压电纤维层中的压电纤维缠绕在多个压电柱之间。本发明中压电柱的设置增强了导电纤维和树脂层间的界面强度,压电纤维层中的压电纤维缠绕在多个压电柱之间,使得压电纤维层与多个压电柱构成仿生勾连增韧结构,实现复合材料的增强增韧。当材料受到机械应力时会产生相应的机械变形,压电柱和压电纤维层因为压电效应从而产生响应电压,通过对响应电压的测量判断机械损伤的程度,实现了低成本、响应快速的高效损伤监测。
-
-
-
-
-
-
-
-
-