-
公开(公告)号:CN112217678A
公开(公告)日:2021-01-12
申请号:CN202011097353.X
申请日:2020-10-14
Applicant: 哈尔滨工程大学
IPC: H04L12/24 , H04B17/382
Abstract: 本发明提供一种基于量子帝王蝶优化机制的双层异构网络频谱分配方法,包括:建立双层异构网络系统模型;得到帝王蝶的整数编码位置;计算所有帝王蝶的适应度值,得到全局最优量子位置及其对应的全局最优位置;对帝王蝶种群排序,分为两个帝王蝶子种群;更新子种群中每个帝王蝶个体的过渡量子位置;合并两个新生成的子种群为一个新的过渡种群,更新帝王蝶种群的量子位置,计算量子帝王蝶的适应度值,更新全局最优量子位置和全局最优位置;判断是否达到最大迭代次数,若是则输出全局最优量子位置和全局最优位置,全局最优位置即为频谱分配的最佳方案;否则令迭代次数加1,返回进行新一轮的迭代。本发明解决整数离散优化的双层异构网络频谱分配问题。
-
公开(公告)号:CN118487679A
公开(公告)日:2024-08-13
申请号:CN202410651288.2
申请日:2024-05-24
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种分布式阵列幅度相位误差校正方法及系统,涉及阵列信号处理技术领域。本发明的技术要点包括:设置辅助信源和分布式阵列,分布式阵列分为两个快拍周期接收辅助源信号;构造辅助信源精细定位的目标函数;初始化量子浣熊搜索机制,并根据目标函数给出量子浣熊搜索机制的适应度函数,并计算适应度值;执行量子浣熊搜索机制,选择不同更新公式更新量子旋转角;根据更新的量子旋转角使用模拟的量子旋转门更新量子浣熊的量子位置,更新最优量子位置和最优适应度值,并得到辅助源角度的最终估计结果,进而得到分布式阵列的幅度相位误差值。本发明在实际工程中更易实现,校正后的分布式阵列具有更高的测向精度,具有良好的普适性。
-
公开(公告)号:CN113095465B
公开(公告)日:2023-10-17
申请号:CN202110358000.9
申请日:2021-04-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种量子大马哈鱼洄游机制演化博弈的水下无人集群任务分配方法,包括:建立水下无人集群任务分配模型;初始化量子熊群和人群位置;根据适应度函数计算量子熊群和人群的大马哈鱼密度;对量子熊群及人群的量子旋转角和位置进行更新;形成混合策略;判断是否到达最大迭代次数,如达到则终止迭代;如未达到,则令t=t+1,并返回步骤三继续执行;输出所得最终混合策略G、G'、#imgabs0#它们最大值所对应的策略即为收益期望最大的策略。本发明使用量子大马哈鱼洄游机制演化博弈论对水下无人集群进行任务部署分配,通过计算各部署所得到的损失比,调整部署分配方式,并通过混合策略优劣性判别所获得的混合策略的好坏,从而输出收益期望最高的部署分配方式。
-
公开(公告)号:CN115933633A
公开(公告)日:2023-04-07
申请号:CN202211218920.1
申请日:2022-10-07
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明提供一种基于量子绸鱼优化机制的机船协同任务分配方法,以某片海域及相应空域内全部目标的地理位置为先验知识,使用模糊C均值聚类方法来智能获取平台各既定航标。平台搭载多架无人机和无人船向既定航标航行,在既定航标处暂缓航行,考虑多种约束条件并基于量子绸鱼优化机制,多架搭载无人机升空协同对若干空域目标执行既定任务后归航,多艘无人船下海协同对若干海域目标执行既定任务后归航,平台向下一既定航标航行直至到达目的地。仿真实验证明了基于量子绸鱼优化机制的机船协同任务分配方法的有效性,可应用于工程实际。
-
公开(公告)号:CN115718504A
公开(公告)日:2023-02-28
申请号:CN202211467803.9
申请日:2022-11-22
Applicant: 哈尔滨工程大学
IPC: G05D1/10
Abstract: 本发明公开了一种基于量子闪蝶机制的无人机集群协同路径规划方法,包括:建立考虑可变航速和同时到达约束下的无人机集群协同路径规划模型;建立考虑可变航速和同时到达约束下的无人机集群协同路径规划代价函数;初始化量子闪蝶群并设定参数;定义并计算量子闪蝶所散发气味;根据量子闪蝶所散发气味值对全部量子闪蝶排序;量子闪蝶依次执行直线逃生和曲线逃生过程,并在逃生过程中使用模拟量子旋转门来演化量子闪蝶的量子位置。应用贪心选择策略,确定下一代量子闪蝶的量子位置。演进终止判断,输出无人机集群航路与航速矩阵。本发明在避障要求下额外考虑可变航速和同时到达约束,收敛速度快、收敛精度高且实现简单、参数较少。
-
公开(公告)号:CN115617071A
公开(公告)日:2023-01-17
申请号:CN202211224098.X
申请日:2022-10-07
Applicant: 哈尔滨工程大学
IPC: G05D1/10
Abstract: 本发明设计了量子雪豹机制的多无人机对抗任务规划方法,每个目标都有三个任务:勘察,袭击和评估,三个任务严格按照时间顺序执行。为了实现三种任务的时间耦合,本发明设计了协同对抗和独立对抗并行使用的战斗方略,有效解决了时间约束问题。本发明设计的量子编码的雪豹量子位置演化机制,得到一种新的量子雪豹机制方法,量子雪豹中的移动追踪策略用于全局搜索,狩猎策略用于局部搜索,种群繁衍和灭绝策略用于淘汰劣等量子雪豹个体,三种策略协同优化适应度函数,克服了过去方法容易陷入局部收敛的弊端,也提升了演化机制的寻优速率。
-
公开(公告)号:CN113115456B
公开(公告)日:2022-07-12
申请号:CN202110357285.4
申请日:2021-04-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于量子星系搜索机制的双层异构网络功率分配方法,包括:建立双层异构网络功率分配模型;初始化星体量子位置;更新量子旋转角,实现局部搜索的寻优搜索过程;判断是否达到最大循环次数K1,若未达到,返回步骤三;若达到,终止循环;选出更优的星系;判断是否达到最大循环次数K2,若未达到,返回步骤五;若达到,终止循环;判断标志变量flag;实现局部搜索的寻优搜索过程;判断是否达到最大循环次数K3,若未达到,返回步骤八;若达到,终止循环,将第g迭代中得到的作为最优结果,判断是否达到最大迭代次数G,若未达到,返回到步骤三;若达到,则终止迭代,将第G次迭代中的最优星体位置输出。本发明能获得比其他的智能求解机制更优秀的系统性能。
-
公开(公告)号:CN112036453A
公开(公告)日:2020-12-04
申请号:CN202010816157.7
申请日:2020-08-14
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于量子犀牛搜索机理的盲源分离方法,设计了基于两种不同的独立性判据设计的混合优化目标函数,即基于最大化峰度和最大化负熵两种独立性判据设计混合优化目标函数,赋予两种判据相应的权重系数,可以根据混合优化目标函数值随权重系数的变化情况判断出智能计算方法的最佳判据,从而得到更加精确的盲源分离结果。进而设计了一种基于量子犀牛搜索机理及混合优化目标函数的盲源分离方法。本发明所设计的方法可以实现混叠信号的盲源分离,具有收敛速度快、分离精度高、性能稳定等优势,拥有着广泛的应用前景。
-
-
-
-
-
-
-