-
公开(公告)号:CN113820717B
公开(公告)日:2022-10-21
申请号:CN202110967520.X
申请日:2021-08-23
Applicant: 哈尔滨工程大学
Abstract: 本发明是一种基于负梯度波导下warping变换的单矢量传感器无源测距方法。本发明通过矢量声信号的简正波表示和简正波分类,确定升压和振速信号;基于含负梯度波导,保留海底反射相移;确定声压和水平振速与声压和垂直振速的互相关函数,得到频谱;利用含负梯度波导下warping变换,进行无源测距。本发明提出的测距方法主要适用于下发下收的情况,仅利用引导声源和单矢量水听器即可实现对目标的无源测距,估计结果与真实距离符合较好,目标距离在10~30km时,算法测距相对误差在8%以内。
-
公开(公告)号:CN110411480B
公开(公告)日:2022-10-21
申请号:CN201910796111.0
申请日:2019-08-27
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明公开了一种复杂海洋环境下水下机动平台声学导航误差预测方法,包括以下步骤:S1建立水下机动平台声学导航模型,确定导航误差的主要来源;S2确定与实际环境相关的时延测量误差;S3确定与实际环境相关的声速测量误差;S4确定与实际环境相关的阵位测量误差;S5推导出机动平台声学导航误差预测模型,将上述时延测量误差、声速测量误差及阵位测量误差带入机动平台声学导航误差预测模型,获得全空间声学导航误差预测结果。本发明更符合水声物理实际环境特性,测时延误差选择更切合实际,误差预测结果不仅适用于静止平台,也适用于机动平台,且大大缩短计算时间,提高运算效率,具有简便易操作性。
-
公开(公告)号:CN114217321B
公开(公告)日:2022-10-18
申请号:CN202111434375.5
申请日:2021-11-29
Applicant: 哈尔滨工程大学
IPC: G01S15/08 , G06F30/20 , G06F17/16 , G06F111/04
Abstract: 本发明通过一种多约束匹配处理器定位方法,本发明相比于原多约束匹配处理器的匹配场定位方法,仅需要额外对其计算过程中的自相关矩阵进行处理并计算,除此之外并未增加计算的难度与复杂性,同时使得原计算结果更加准确的与便于搜寻,大大降低了其他干扰峰或者旁瓣的对目标峰的干扰,提高了主峰的辨识度,同时由于引入了加权之后的线性匹配处理器,也使得该方法对环境失配的抗性有一定的提高。
-
公开(公告)号:CN111948657B
公开(公告)日:2022-08-19
申请号:CN202010738626.8
申请日:2020-07-28
Applicant: 哈尔滨工程大学
Abstract: 本发明是一种基于多模粒子滤波的机动弱目标检测前跟踪方法。本发明属于水下目标跟踪技术领域,进行参数初始化处理,确定被动声纳阵列的接收信号;根据被动声纳阵列的接收信号,采用宽带常规波束形成算法处理得到空间谱,将空间谱作为量测数据;根据量测数据,噪声均衡判断当前时刻可疑目标;根据量测数据,进行目标状态空间分区;根据目标状态空间分区结果,采样每个目标每个粒子状态,并计算权值;对同一目标的粒子单独进行重采样;根据采样结果,估计目标的状态;当目标持续时间超过联合观测帧数时,则对目标进行联合判决,并删除没有通过判决的目标信息。本发明实现多个机动目标的实时跟踪,实现被动声纳场景下的机动弱目标的检测和跟踪。
-
公开(公告)号:CN114386296A
公开(公告)日:2022-04-22
申请号:CN202111437026.9
申请日:2021-11-29
Applicant: 哈尔滨工程大学
IPC: G06F30/23 , G06F111/10
Abstract: 本发明公开一种混响水池中三维声场的数值计算方法。步骤1:构建混响水池模型;步骤2:在混响水池中设有一个声源S0,在池壁表面放置一个矢量水听器R0,基于步骤1的混响水池模型,直达声线为轴,对混响水池中的声场进行平面划分,得到声场的截面;步骤3:基于步骤2的声场截面,利用虚源法绘制声场平面的声线传播情况,构建出声线在声场平面的虚源图像及其反射声线模型;步骤4:基于步骤3的虚源图像及其反射声线模型构建出声源位于混响水池中心位置时的三维声场。本发明针对现有技术中对对水池内的声场进行数值计算时,用时长,效率低的问题。
-
公开(公告)号:CN112766304A
公开(公告)日:2021-05-07
申请号:CN202011555455.1
申请日:2020-12-24
Applicant: 哈尔滨工程大学
Abstract: 本发明是一种基于稀疏贝叶斯学习的机动阵列方位估计方法。本发明涉及声纳探测技术领域,本发明根据声纳阵形和平台导航系统提供的阵列指向角,构建机动阵列稀疏信号模型;基于接收噪声的高斯分布假设,建立机动阵列稀疏贝叶斯学习框架,确定阵列接收信号的后验分布形式;根据阵列接收信号的后验分布形式,进行对数最大化操作,得到远场目标方位。本发明利用稀疏贝叶斯学习的思想解决机动阵列方位估计问题,有效提升了方位估计精度和方位分辨能力,同时还能更有效地抑制左右舷模糊。
-
公开(公告)号:CN112230205A
公开(公告)日:2021-01-15
申请号:CN202011109940.6
申请日:2020-10-16
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种利用舰船辐射噪声仿真信号的水下目标识别系统性能评估方法,通过对仿真生成的一定数量的理想舰船辐射噪声样本,与由信道仿真软件仿真得到的信道冲激响应函数进行卷积,或是设置更为复杂的舰船运动参数,得到数个复杂程度不同的样本库。从每个样本库中分别产生训练集和测试集,对不同水下目标分类识别系统进行训练和性能评估。最后再单独从一个样本库中产生训练集,对不同水下目标分类识别系统进行训练,从不同样本库中产生测试集对这些训练好的水下目标分类识别系统进行性能评估。本方法实现了在实测得到的水下目标样本库不足时,对水下目标分类识别系统的泛化性能的评估。
-
公开(公告)号:CN110471455A
公开(公告)日:2019-11-19
申请号:CN201910304772.7
申请日:2019-04-16
Applicant: 哈尔滨工程大学
IPC: G05D1/12
Abstract: 本发明提出一种基于深潜器的黑匣子声信标搜探航路规划方法,采用本发明所涉及的航路规划方法能使潜器发现声信标,引导潜器接近声信标,定位声信标坐标并有效提高定位精度。本发明所涉及的航路规划主要由三个阶段构成,即:信号搜索阶段、测向导引阶段及精确定位阶段。其中,信号搜索阶段采用梳形搜索路径,采用梳形搜索路径可保证较高的信号搜索效率及较低的漏扫概率;测向导引阶段采用弧形路径,目的是在不丢失目标的前提下,引导潜器快速接近目标;精确定位阶段采用圆形路径,保证了目标的定位精度。本发明可应用于飞机、舰船黑匣子搜索,失事潜艇、潜器营救等场景。
-
公开(公告)号:CN110411480A
公开(公告)日:2019-11-05
申请号:CN201910796111.0
申请日:2019-08-27
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明公开了一种复杂海洋环境下水下机动平台声学导航误差预测方法,包括以下步骤:S1建立水下机动平台声学导航模型,确定导航误差的主要来源;S2确定与实际环境相关的时延测量误差;S3确定与实际环境相关的声速测量误差;S4确定与实际环境相关的阵位测量误差;S5推导出机动平台声学导航误差预测模型,将上述时延测量误差、声速测量误差及阵位测量误差带入机动平台声学导航误差预测模型,获得全空间声学导航误差预测结果。本发明更符合水声物理实际环境特性,测时延误差选择更切合实际,误差预测结果不仅适用于静止平台,也适用于机动平台,且大大缩短计算时间,提高运算效率,具有简便易操作性。
-
公开(公告)号:CN110260858A
公开(公告)日:2019-09-20
申请号:CN201910554950.1
申请日:2019-06-25
Applicant: 哈尔滨工程大学
Abstract: 本发明提出了一种基于最优阶数灰色自适应动态滤波的航迹跟踪方法,属于目标跟踪滤波技术领域。所述方法为:首先,建立r阶灰色模型;其次,对阶数r进行自主优化确定最优阶数,并预测第n+1时刻导航数据的估计值;再次,通过第n+1时刻导航数据的估计值和n+1时刻初始导航数据计算偏差e,并对第n+1时刻导航数据的估计值和n+1时刻初始导航数据进行加权融合,获得第n+1时刻的UUV的导航数据;然后,通过数据更新获得新的初始序列,利用所述新的初始序列重新建立新的灰色模型,并利用新的灰色模型对n+2时刻导航数据的采样值进行滤波处理;最后,重复以上过程直到最后一个导航数据的采样值完成滤波处理,实现动态滤波。
-
-
-
-
-
-
-
-
-