去中心化的联邦学习方法、系统及相关设备

    公开(公告)号:CN118982064A

    公开(公告)日:2024-11-19

    申请号:CN202411473105.9

    申请日:2024-10-22

    Abstract: 本申请公开了去中心化的联邦学习方法、系统及相关设备,涉及计算机技术领域,包括:联邦学习的组织者和参与者加入区块链;组织者将参与者划分为普通节点和委员会节点;各节点基于区块链获取联邦学习任务配置信息和待训练的全局模型并进行本地模型更新获得前一轮次训练完成后的本地模型;普通节点对前一轮次训练完成后的本地模型进行训练获得当前轮次的本地训练模型并上传至区块链;委员会节点通过区块链获取本地训练模型以确定普通节点的贡献度评分及当前轮次训练完成后的全局模型,并确定委员会节点对应的贡献度评分;响应于触发委员会节点更新事件,组织者重新进行节点身份划分。如此,有利于提高联邦学习过程中模型训练的准确性。

    基于零知识证明的属性凭证的验证方法及装置

    公开(公告)号:CN115499247A

    公开(公告)日:2022-12-20

    申请号:CN202211432463.6

    申请日:2022-11-16

    Abstract: 本发明公开了一种基于零知识证明的属性凭证验证方法及装置,方法包括:构造属性凭证;签发属性凭证,用户向作为签发者的可信第三方提出属性凭证申请;签发者生成每个用户唯一的随机盐值,签发者对已认证的属性信息和随机盐值进行凭证签发;验证属性凭证,用户从安全信道中获取验证者所需的验证约束条件,用户使用凭证证明生成模块生成对应的零知识的属性值消息,用户将零知识的凭证证明消息通过可信信道发送给验证者;验证者在收到用户发来的凭证证明消息后对消息内容进行解析,验证凭证证明的正确性和有效性。本发明具有保护用户数据隐私和细粒度验证策略的优点,同时以比较低的交互次数和交互通信量完成凭证的签发和证明。

    一种神经网络差量压缩方法、装置、电子设备及存储介质

    公开(公告)号:CN114418098A

    公开(公告)日:2022-04-29

    申请号:CN202210255131.9

    申请日:2022-03-16

    Abstract: 本发明提供一种神经网络差量压缩方法、装置、电子设备及存储介质,该方法在获取到神经网络的两个相邻训练版本时,可为这些版本所包含的各网络层生成专用的量化参数,并利用这些量化参数为对应的网络层进行浮点参数量化处理,得到训练版本对应的整数版本,再利用这些整数版本替代训练版本进行差量数据计算及差量压缩。换而言之,本发明为神经网络模型的每一网络层设置了生成的专用的量化参数,可采用不同力度对每一网络层进行针对性量化,相较于全局量化策略额外考虑了神经网络模型不同网络层之间的参数取值差异,能够有效避免将整个网络的浮点数参数看作一个集合来确定全局的量化参数所导致的量化误差增大及模型的精度下降问题。

Patent Agency Ranking