-
公开(公告)号:CN115424282A
公开(公告)日:2022-12-02
申请号:CN202211188303.1
申请日:2022-09-28
申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC分类号: G06V30/413 , G06V30/18 , G06V10/82 , G06N3/08 , G06N3/04
摘要: 本发明提供了一种非结构化文本(包括所有格式的办公文档、文本、图片、各种报表和图像等)表格识别方法,涉及文本识别领域,该方法包括:采集数据集,首先把非结构化文本转化为图像类集合,然后对集合进行图像预处理,把图像集合作为数据集导入模型,对图像数据集的信息进行分析,检测出表格区域,把图像转换成序列,进行表格结构序列预测,检测出表格行结构,进行表格行识别,表格行单元格识别后,识别结果经过后处理,融合表格行结构和单元格文本内容,最终通过文本框和单元格内容进行匹配得到Excel形式的表格识别数据。该方法通过特征学习训练了模型,实现了非结构化文本数据信息的智能提取,有利于非结构化文本数据的进一步分析和实际应用,极大地节省了人力成本提高了工作效率,在一定程度上提高了表格检测速度和准确率,使用本发明所述的方法和系统,可以通过转化进行非结构化文本内容的分析和信息的识别提取,使得非结构化文本在各行各业中具有更好的实用价值和应用。
-
公开(公告)号:CN115392214A
公开(公告)日:2022-11-25
申请号:CN202211035627.1
申请日:2022-08-26
申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC分类号: G06F40/205 , G06F40/268 , G06F40/295 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本发明公开了一种基于文本生成的数据增强方法、系统及存储介质,该方法以原始文本数据集为基础,通过自然语言处理技术实现文本生成,得到增强数据集。包括:获取某文本数据集,将文本合集中的文本内容作为文本数据增强的原始数据上传至临时存储区中;获取临时存储区中的文本内容,进行原始文本数据进行数据预处理和分句、分词和词性标注;对分词后的原始语句进行关键词抽取、命名实体识别,根据分词识别结果完成原始语句的分词状态标注;将带有分词状态标注的原始分词语句输入到文本生成模型生成目标增强语句;将原始语句集和目标增强语句集进行汇总,得到增强数据集。本发明有效地缓解了自然语言处理任务中数据量少、有效数据稀疏性等问题。
-
公开(公告)号:CN112217665A
公开(公告)日:2021-01-12
申请号:CN202011032210.0
申请日:2020-09-27
申请人: 山东省计算中心(国家超级计算济南中心) , 中国电子技术标准化研究院
IPC分类号: H04L12/24
摘要: 本发明属于物联网终端领域,提供了一种物联网终端接收和发射性能的定量评估方法,包括获取物联网终端的通信数据,提取物联网终端的接收性能参数和发射性能参数;将接收性能参数和发射性能参数输入至评估模型中,输出物联网终端的接收性能等级和发射性能等级及相应评分,筛选出接收性和发射性能均在最优等级的物联网终端来构建物联网;其中,评估模型包括并行连接且模型架构相同的接收性能评估模型和发射性能评估模型。
-
公开(公告)号:CN118196089A
公开(公告)日:2024-06-14
申请号:CN202410605255.4
申请日:2024-05-16
IPC分类号: G06T7/00 , G06V10/764 , G06V10/82 , G06N3/096
摘要: 本发明属于视觉缺陷检测领域,提供了一种基于知识蒸馏的玻璃容器缺陷检测网络轻量化方法及系统,包括对玻璃容器缺陷图片进行缺陷类别筛选、标注和数据预处理;采用搭建置信度蒸馏分支,训练教师模型得到教师模型权重,将训练好的教师模型进行推理,从教师模型取出置信度最高且互不重叠的多个预测框并训练学生模型进行置信度蒸馏;搭建全局蒸馏分支,训练教师模型得到教师模型权重,将训练好的教师模型进行推理,从教师模型取出多尺度特征并重新加载和训练好的学生模型权重进行全局蒸馏;利用置信度蒸馏分支和全局蒸馏分支实现对缺陷检测网络的轻量化。
-
公开(公告)号:CN117933831B
公开(公告)日:2024-06-11
申请号:CN202410338056.1
申请日:2024-03-25
IPC分类号: G06Q10/0639 , G06Q10/10 , G06F16/33 , G06F16/35 , G06F18/213 , G06N3/0455 , G06N3/0442 , G06N3/048 , G06N3/08
摘要: 本发明涉及项目绩效评估的大数据分析领域,公开一种基于机器学习可训练的项目绩效评估方法及系统,属于信息化项目绩效评估评审领域。该方法包括以下步骤:(1)获取目标项目的数据材料,并进行特征要素提取,构建目标项目的实施特征集合;(2)根据特征要素与评估属性进行标签匹配,根据标签匹配结果对特征要素进行分类;(3)利用不同分类的评估准则和绩效制度对项目绩效进行评估,并根据评估结果对项目实施过程中和项目验收的工作表现进行评价打分。该系统包括数据输入模块、特征提取模块、属性分类模块和绩效评估模块。本发明提升了数据收集、数据评估和数据审核等过程中的工作效率,并实现了绩效评估的准确性、全面性和客观性。
-
公开(公告)号:CN118154603A
公开(公告)日:2024-06-07
申请号:CN202410578270.4
申请日:2024-05-11
申请人: 山东省计算中心(国家超级计算济南中心)
IPC分类号: G06T7/00 , G06V10/52 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08
摘要: 本发明属于图像处理技术领域,提供了一种基于级联多层特征融合网络的显示屏缺陷检测方法及系统,液晶显示屏缺陷检测模型包括用于提取图像特征的残差特征提取网络,用于融合图像中浅层细粒度信息和深层语义信息的级联多层特征融合网络,以及用于确定缺陷类别、位置和置信度信息的目标识别网络;设计的残差特征提取模块,利用深度卷积模块和逐点卷积模块有效捕捉图像中的细粒度特征的同时降低模型参数量,提高模型检测速度;在特征提取网络设计特征增强模块,同时考虑液晶显示屏缺陷的细节特征和整体结构,能够提取更重要、更明显的缺陷特征,提高了模型对不同类型缺陷检测的准确性。
-
公开(公告)号:CN117853491B
公开(公告)日:2024-05-24
申请号:CN202410262991.4
申请日:2024-03-08
申请人: 山东省计算中心(国家超级计算济南中心)
IPC分类号: G06T7/00 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/08
摘要: 本发明属于数字图像处理和计算机视觉领域,提供了基于多场景任务下的少样本工业产品异常检测方法及系统,其技术方案为:将多场景下多种类别的工业产品图像数据集划分为训练集和测试集,所述训练集只包含正常产品图片,将测试集分为支持集和查询集,其中,支持集仅包含正常产品图片,查询集包括各类异常产品图片和对应的正常图片;利用深度对比学习方法构建双孪生网络框架,通过双孪生网络框架构建训练集对应的多场景任务下正常产品的特征分布的目标检测模型;基于训练后的多场景任务下正常产品的特征的目标检测模型建立支持集的特征分布,并通过查询集进行工业产品异常检测得到异常检测结果,可有效地解决实际工业多场景变换下存在的各种问题。
-
公开(公告)号:CN117933831A
公开(公告)日:2024-04-26
申请号:CN202410338056.1
申请日:2024-03-25
IPC分类号: G06Q10/0639 , G06Q10/10 , G06F16/33 , G06F16/35 , G06F18/213 , G06N3/0455 , G06N3/0442 , G06N3/048 , G06N3/08
摘要: 本发明涉及项目绩效评估的大数据分析领域,公开一种基于机器学习可训练的项目绩效评估方法及系统,属于信息化项目绩效评估评审领域。该方法包括以下步骤:(1)获取目标项目的数据材料,并进行特征要素提取,构建目标项目的实施特征集合;(2)根据特征要素与评估属性进行标签匹配,根据标签匹配结果对特征要素进行分类;(3)利用不同分类的评估准则和绩效制度对项目绩效进行评估,并根据评估结果对项目实施过程中和项目验收的工作表现进行评价打分。该系统包括数据输入模块、特征提取模块、属性分类模块和绩效评估模块。本发明提升了数据收集、数据评估和数据审核等过程中的工作效率,并实现了绩效评估的准确性、全面性和客观性。
-
公开(公告)号:CN117190078B
公开(公告)日:2024-02-09
申请号:CN202311450870.4
申请日:2023-11-03
申请人: 山东省计算中心(国家超级计算济南中心)
IPC分类号: F17D5/00 , F17D5/02 , F17D1/02 , G06F18/2433 , G06F18/25 , G06F123/02
摘要: 本发明公开了一种输氢管网监测数据异常检测方法及系统,涉及氢能源和数据处理技术领域,该方法包括:获取当前设定时间步长的输氢管网监测数据,提取时间变量序列数据和动态变量序列数据;将提取的数据输入至时序预测模型中,通过时间特征嵌入层和动态特征嵌入层,提取时间特征嵌入和动态特征嵌入,并通过时序编码器和动态编码器分别进行编码,将编码后的特征嵌入输入至转码器中进行融合,输出融合后的变量矩阵;最后动态特征嵌入、编码后的时间特征嵌入和变量矩阵均输入至解码器进行解码,输出预测值;将预测值和实际观测值的差值与设定阈值进行比较,实际观测值是否为异常数据。本发明实现了非平稳的输氢管网监测数据的准确异常检测。
-
公开(公告)号:CN117132584A
公开(公告)日:2023-11-28
申请号:CN202311227287.7
申请日:2023-09-22
申请人: 山东省计算中心(国家超级计算济南中心)
摘要: 一种基于深度学习的液晶显示屏瑕疵检测方法及装置,涉及计算机视觉目标检测技术领域,通过设计轻量化特征提取网络,在保证液晶显示屏瑕疵特征提取能力的基础上减少计算量,提高模型的检测速度;设计跨层多尺度特征融合网络,高效的融合特征提取网络的浅层细粒度信息和深层语义信息;设计精细化预测网络,包括特征聚合器和特征提纯模块,特征聚合器融合了多层次的特征,提取更多上下文信息,增强细粒度特征的提取;特征提纯模块抑制了不同尺度特征图的冲突信息,减少语义差异,提高了模型对液晶显示屏瑕疵检测的准确率。
-
-
-
-
-
-
-
-
-